・名古屋工業大学学術機関リポジトリは、名古屋工業大学内で生産された学術情報を電子的に収集・保存・発信するシステムです。 ・論文の著作権は、著者または出版社が保持しています。著作権法で定める権利制限規定を超える利用については、著作権者に許諾を得てください。 ・著者版フラグに「author」と記載された論文は、著者原稿となります。実際の出版社版とは、レイアウト、字句校正レベルの異同がある場合もあります。 ・Nagoya Institute of Technology Repository Sytem is built to collect, archive and offer electronically the academic information produced by Nagoya Institute of Technology. ・The copyright and related rights of the article are held by authors or publishers. The copyright owners' consents must be required to use it over the curtailment of copyrights. ・Textversion "Author " means the article is author's version. Author version may have some difference in layouts and wordings form publisher version.
Behavior of the series of laminar vortex rings with circumferential flow, so-called swirl, were investigated using flow visualization, to evaluate the transport efficiency of the ejected fluid as vortex rings. In this study, the interval time of the vortex ring ejection, the formation number of vortex ring <i>L</i><sub>O</sub>/<i>D</i><sub>O</sub> (the normalized length of the ejected slug of fluid), and the angular velocity of the ejected fluid <i>ω</i> are changed, while the mean ejection velocity is fixed. When vortex rings were generated at a short time interval, independent of <i>L</i><sub>O</sub>/<i>D</i><sub>O</sub> and <i>ω</i>, they were broken, and most of the fluid included in them was diffused near the orifice. When the vortex rings with little mutual interference were generated at an appropriate interval time, the breakdown of vortex ring structure is suppressed with moderate swirling flow. In those cases, each vortex ring moves separately for a long distance and the distribution area becomes wider as <i>L</i><sub>O</sub>/<i>D</i><sub>O</sub> increases.