
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Nonlinear Regularization Path for Quadratic Loss
Support Vector Machines

Masayuki Karasuyama, Student Member, IEEE, Ichiro Takeuchi, Member, IEEE,

Abstract—Regularization path algorithms have been proposed
to deal with model selection problem in several machine learning
approaches. These algorithms allow to compute the entire path
of solutions for every value of regularization parameter using
the fact that their solution paths have piecewise linear form.
In this paper we extend the applicability of regularization path
algorithm to a class of learning machines that have quadratic loss
and quadratic penalty term. This class contains several important
learning machines such as squared hinge loss SVM and modified
Huber loss SVM. We first show that the solution paths of this
class of learning machines have piecewise nonlinear form, and
piecewise segments between two breakpoints are characterized
by a class of rational functions. Then we develop an algorithm
that can efficiently follow the piecewise nonlinear path by solving
these rational equations. To solve these rational equations, we use
rational approximation technique with quadratic convergence
rate, and thus, our algorithm can follow the nonlinear path
much more precisely than existing approaches such as predictor-
corrector type nonlinear-path approximation. We show the algo-
rithm performance on some artificial and real data sets.

Index Terms—support vector machines, parametric program-
ming, rational approximation

I. INTRODUCTION

In this paper we study binary classification problem with
training data points {(xi, yi)}ni=1, where xi ∈ X ⊆ Rd is the
input and yi ∈ {1,−1} is the output class label. We consider
a linear discriminant function:

f(x) = w>Φ(x),

where Φ maps the data into some feature space F . A large
class of learning machines are formulated as minimization of
the following regularized risk function:

min
w

n∑
i=1

`(yi, f(xi)) + λJ(w), (1)

where ` is a loss function, J is a penalty function, and λ > 0
is a regularization parameter. In order to obtain a discriminant
function with good generalization property, we need to select
a good λ that appropriately controls the model complexity
(model selection). A typical model selection approach is to
specify a list of candidate values of λ and then apply cross
validation to select the best one. However, this procedure is
time-consuming since we need to solve many optimization
problems in various settings.

Regularization path algorithm [21] provides an efficient
approach to model selection problem. It allows to compute the

The authors with the Department of Engineering, Nagoya Institute of Tech-
nology, Nagoya, Aichi, 466-8555 Japan e-mail: (krsym@goat.ics.nitech.ac.jp,
and takeuchi.ichiro@nitech.ac.jp).

entire solution path for a range of regularization parameters λ.
The regularization path algorithm is built on an optimization
technique called parametric programming also a.k.a. path-
following [1], [16]. Recently, in the machine learning lit-
erature, path-following was used for various purposes (e.g.
[3], [9], [19], [22], [25], [26], [28], [35], [41], [29]). Most
regularization path algorithms in the literature were developed
by exploiting the fact that the solution paths in a class of
learning machines have piecewise linear form. For example,
the support vector machine (SVM) [37] characterized by the
following hinge loss:

`(yi, f(xi)) = max(0, 1 − yif(xi)) (2)

and `2-norm penalty term: J(w) = 1
2‖w‖

2
2 is shown to

have piecewise linear regularization path [21]. Recently, [34]
showed that the regularization path has piecewise linear form
if the loss function ` is a piecewise quadratic function and the
penalty term J(w) is a piecewise linear function. The LASSO
[36] is a typical example of this class of learning machine. In
optimization literature, [32] has derived more general sufficient
conditions for piecewise linearity in quadratic and linear
programming problems.

In other class of learning machines, the solution path may
have nonlinear form. Predictor corrector approach [1] is usu-
ally adopted for general nonlinear path-following. In predictor
corrector approach, the predictor step and the corrector step are
iterated: the predictor step approximates the nonlinear (curved)
solution path (in many cases, using Taylor expansion), while
the corrector step projects the predicted solution to the solution
space so that it satisfies the optimality conditions. This ap-
proach have been applied to some learning problems [4], [24],
[30]. Some other approaches are also proposed in machine
learning literature. For example, [33] proposed second-order
approximation algorithm for nonlinear regularization path, in
which small step is taken and the approximation is updated at
each iteration. As another example, [40] derived an updating
formula to obtain the path of solutions along the change of
the kernel parameter (such as standard deviation in Gaussian
kernel). In these methods, we can only obtain roughly approx-
imated nonlinear path of solutions. If we want these nonlinear
approximated solution path to be accurate, the algorithm would
be computationally demanding because we need to take very
small steps.

In this study we consider a class of learning machines that
have quadratic loss and quadratic penalty. This class contains
several important learning machines such as squared hinge
loss SVM and modified Huber loss SVM. These loss functions
are formulated as

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

−1 0 1
0

2

4

6

8
Lo

ss

yf(x)

Hinge
0−1 loss

(a) Hinge loss (2)

−1 0 1
0

2

4

6

8

Lo
ss

yf(x)

Squared Hinge
0−1 loss

(b) Squared hinge loss (3)

−1 0 1
0

2

4

6

8

Lo
ss

yf(x)

Huber(Zhang)
0−1 loss

(c) Modified Huber loss (4)

−1 0 0.5 1 1.5
0

2

4

6

8
Lo

ss

yf(x)

Huber(Chapelle)
0−1 loss

(d) Modified Huber loss (5) (ε =
0.5)

Fig. 1. Loss functions

• Squared hinge loss:

`(y, f(x)) = max(0, 1 − yf(x))2. (3)

• Modified Huber loss [43]:

`(y, f(x)) =

 0, yf(x) > 1,
(1 − yf(x))2, yf(x) ∈ [−1, 1],
−4yf(x), yf(x) < −1.

(4)

Another formulation of Huber-type loss function pro-
posed in [11]:

`(y, f(x)) =


0, yf(x) > 1 + ε,
(1+ε−yf(x))2

4ε , |1 − yf(x)| ≤ ε,
1 − yf(x), yf(x) < 1 − ε,

(5)

where ε > 0 is a parameter. If ε → 0, this loss function
approaches to the hinge loss.

Fig. 1 shows these loss functions along with the 0-1 loss.
These quadratic loss functions are sometimes preferred to
the hinge loss. For example, it is known that this type of
loss functions are suited to estimate conditional probability
P (Y = 1 | X = x) (see e.g., [5], [43]). Another advantage
of these loss functions is their differentiability. Some primal
SVM solvers [6], [11], [23] require differentiable objective
function.

Unfortunately, the regularization paths of this class of
learning machines (quadratic loss + quadratic penalty) do
not exhibit piecewise linear form anymore. To extend the
applicability of regularization path algorithm, we develop
a nonlinear regularization path algorithm for this class of
learning machines. We first show that the solution path of this
class of learning machine is represented as piecewise nonlinear
form, and the piecewise segment of solutions between two
breakpoints are characterized by a class of rational function.
The breakpoint itself can be identified solving the rational
equations. Then we develop an efficient algorithm that can

efficiently follow the piecewise nonlinear path by solving
these rational equations. To solve these rational equations, we
introduce a rational approximation technique with quadratic
convergence rate used in rank-one-update of eigenvalue de-
compositions [8]. Note that our algorithm is NOT a predictor-
corrector type approach. While predictor corrector approach
can only follow nonlinear path with rather rough approxima-
tion, our algorithm can compute accurate path of solutions
because we use an efficient iterative procedure with quadratic
convergence rate. Fig. 2 illustrates the differences among our
approach and the other nonlinear path following strategies.

The rest of the paper is organized as follows. Section II
formulates learning machines with quadratic loss function and
quadratic penalty. We restrict the penalty term to have the
form: J(w) = 1

2‖w‖2
2, and consider a class of quadratic

loss functions, this type of learning machines are sometimes
referred to as quadratic loss support vector machine (SVM). In
Section III, we describe our nonlinear regularization path algo-
rithm for quadratic loss SVM. After presenting experimental
results in Section IV, we close in Section V with concluding
remarks.

II. THE SUPPORT VECTOR MACHINES WITH A QUADRATIC
LOSS FUNCTION

In this paper, we set the penalty term as J(w) = 1
2‖w‖2

and the loss function as the following general quadratic loss
function:

`(y, f(x)) =

 0, yf(x) > ρ,
(ρ− yf(x))2, yf(x) ∈ [ρ− h, ρ],
2h(ρ− yf(x))−h2, yf(x) < ρ− h,

(6)

where ρ > 0 and h > 0. The loss function (6) can represent the
previous three quadratic loss functions (3)-(5) by specifying
(ρ, h). If we set (ρ, h) = (1,∞), (1, 2) and (1 + ε, 2ε), the
loss function (6) is reduced to (3),(4) and (5), respectively1.
The optimization problem (1) is now written as

min
w,{ξi}n

i=1

λ

2
‖w‖2

2 +
1
2

n∑
i=1

φ(ξi),

s.t. ρ− yif(xi) ≤ ξi, ξi ≥ 0, i = 1, · · · , n,

where

φ(ξi) =
{
ξ2i , ξi ∈ [0, h],
2hξi − h2, ξi > h.

We derive the dual problem using the same approach in [12].
Introducing Lagrange multipliers αi, ηi ≥ 0, i = 1, · · · , n, we
can write the corresponding Lagrangian as

L =
λ

2
‖w‖2

2 +
1
2

n∑
i=1

φ(ξi)+

n∑
i=1

αi{ρ− yiw
>Φ(xi) − ξi} −

n∑
i=1

ηiξi. (7)

1To represent (5) by (6), we further need to multiply (6) by 1/(4ε). This
difference can be absorbed by the scale of regularization parameter.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

predictor step
corrector step

(a)

hot start

(b)

our approach

(c)

Fig. 2. Schematic illustrations of the differences among several nonlinear path following approaches. In each illustration, the piecewise thick curves represent
the nonlinear solution path and vertical dashed lines indicate the breakpoints. (a) Predictor corrector approach iterates the predictor step and the corrector
step. The predictor step approximates the solution along the path and the corrector step brings the predicted point back to the path. (b) Hot start approach
uses previous solution for initial estimation of the next solution. (c) In our approach the analytical form of the nonlinear solution path is derived and the
breakpoints can be detected exactly. The first two approaches (a) and (b) roughly approximate the nonlinear path and they could not detect the breakpoints.

Setting the derivatives w.r.t. primal variables w and ξi to zero,
we obtain

∂L

∂w
= 0 ⇔ w =

1
λ

n∑
i=1

αiyiΦ(xi), (8)

∂L

∂ξi
= 0 ⇔ 1

2
∂φ(ξi)
∂ξi

= αi + ηi,

⇔
{
ξi = αi + ηi, ξi ∈ [0, h],
h = αi + ηi, ξi > h.

(9)

Substituting (8) into (7), we obtain

L = − 1
2λ

n∑
i=1

n∑
j=1

αiαjQij + ρ

n∑
i=1

αi

+
n∑
i=1

{1
2
φ(ξi) − (αi + ηi)ξi},

where Qij = yiyjK(xi,xj). Using (9), we can eliminate ξi
from Lagrangian. If ξi ∈ [0, h], we have

1
2
φ(ξi) − (αi + ηi)ξi =

1
2
ξ2i − (αi + ηi)ξi

= −1
2
(αi + ηi)2.

On the other hand, if ξi > h,

1
2
φ(ξi) − (αi + ηi)ξi = hξi −

1
2
h2 − hξi

= −1
2
(αi + ηi)2.

Then, the dual problem is represented as

max
α,η

W (α,η) = − 1
2λ

n∑
i=1

n∑
j=1

αiαjQij

+ ρ
n∑
i=1

αi −
1
2

n∑
i=1

(αi + ηi)2,

s.t. αi, ηi ≥ 0, αi + ηi ≤ h, i = 1, · · · , n,

where α = [α1, · · · , αn]> and η = [η1, · · · , ηn]>. Since
αi, ηi ≥ 0, an inequality W (α,η) ≤W (α,0) holds for every
feasible α and η. Therefore, we can delete η and the dual

problem is finally written as

max
α

W (α) = − 1
2λ

n∑
i=1

n∑
j=1

αiαjQij

+ ρ
n∑
i=1

αi −
1
2

n∑
i=1

α2
i , (10)

s.t. 0 ≤ αi ≤ h, i = 1, · · · , n.

The discriminant function f : X → R is formulated as

f(x) =
1
λ

(n∑
i=1

αiyiK(xi,x)
)
.

III. THE REGULARIZATION PATH

In this section we derive nonlinear regularization path
algorithm for quadratic loss SVM.

A. Optimal Solution and Regularization Parameter

At the optimal, αi, i = 1, · · · , n, satisfies the following
first-order optimality conditions (KKT conditions):

∂W

∂αi
= − 1

λ

n∑
j=1

Qijαj + ρ− αi

= −yif(xi) + ρ− αi

 ≥ 0, αi = h,
= 0, αi ∈ (0, h),
≤ 0, αi = 0.

(11)

Using these relationships, we define the following index sets:

L = {i | yif(xi) ≤ ρ− h, αi = h},
C = {i | yif(xi) = ρ− αi, αi ∈ (0, h)}, (12)
R = {i | yif(xi) ≥ ρ, αi = 0}.

The regularization path algorithm keeps track of these sets
while the regularization parameter λ is perturbed.

In what follows, the subscription by an index set, such as
vC for a vector v ∈ Rn, indicates a subvector of v whose
elements are indexed by C. Similarly, the subscription by two
index sets, such as MC,L for a matrix M ∈ Rn×n, denotes a
submatrix whose rows are indexed by C and the columns are
indexed by L. Principal submatrix such as QC,C is abbreviated
as QC .

The KKT conditions (11) for i ∈ C can be written as∑
j∈C

Qijαj + λαj = ρλ− h
∑
j∈L

Qij , i ∈ C.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Using matrix notation, it is written as(
QC + λI

)
αC = ρλ1 − hQC,L1, (13)

where (i, j)-th entry of Q is Qij and I is an identity matrix
with appropriate size. Let the eigenvalue decomposition (EVD)
of QC be QC = UΣU>, where Σ ∈ R|C|×|C| is a diagonal
matrix whose i-th diagonal entry σi is the i-th eigenvalue of
QC and U ∈ R|C|×|C| is an orthogonal matrix whose i-th
column is the i-th eigenvector of QC . It is easy to show that
the EVD of QC + λI is explicitly obtained as

QC + λI = U(Σ + λI)U>, (14)

Using (13) and (14), we can compute αC as follows:

αC = U(Σ + λI)−1U>
{
ρλ1 − hQC,L1

}
. (15)

Let us denote the index of the set C as C = {c1, · · · , c`C},
where `C = |C|. Then, we can write (15) by element-wise
notation:

αci =
`C∑
j=1

`C∑
k=1

uikujk{ρλ− hqLcj
}

σk + λ
, i = 1, · · · , `C ,

where uij is a (i, j)-th entry of U and qLi =
∑
j∈LQij . This

equation can be reduced to the following form:

αci = ρ−
`C∑
k=1

ζik
σk + λ

, i = 1, · · · , `C , (16)

where

ζik = uik

`C∑
j=1

ujk(ρσk + hqLcj
).

Using (16), yif(xi) can be written as

yif(xi) =
1
λ

(
di −

`C∑
k=1

ωik
σk + λ

)
, (17)

where

di = ρ
∑
j∈C

Qij + hqLi and ωik =
`C∑
`=1

Qic`
ζ`k.

The above derivation indicates that, if we have complete
information on the index sets L, C, and R, the set of model
parameters {αi}ni=1 can be represented as a function of the
regularization parameter λ. In particular, for a data point i ∈ C,
the corresponding parameter αi is formulated by a rational
function (16).

B. Event Detection

Equation (16) holds only when the indices in the sets C,
L and R are not changed. The change of these indices is
called an event, and a λ is called an event point if there
is an event at λ. Events in our path-following algorithm are
categorized into four types in Table I. Each type of events is
relevant to the inequality constraints in the definitions of the
sets C, L and R in (12). In the case of piecewise linear path,
event points are easily detected by solving linear equations.

TABLE I
EVENT CATEGORIZATION

Event The change of index The change of inequality
type 1 i ∈ C migrates to R αi > 0 to αi = 0
type 2 i ∈ C migrates to L αi < h to αi = h
type 3 i ∈ R migrates to C yif(xi) > ρ to yif(xi) = ρ
type 4 i ∈ L migrates to C yif(xi) < ρ− h to yif(xi) = ρ− h

ϕ(t)

ρ+ ψ(t)r + s
δ−t

ρ+ p

q−t

t0 t1 t∗ t

Fig. 3. Rational approximation for the type 1 in Table I. Note that
ρ + ψζ(t) > ϕζ(t), t ∈ (t0, t∗). The approximated solution t1 can be
computed via a quadratic equation. Iterating this, we can obtain a sequence
of approximated solution with quadratic convergence.

In our nonlinear path, however, we need to solve nonlinear
equations to detect the event points. To this end, we introduce
rational approximation approach. Rational approximation has
been used in the context of rank-one-update of EVD [8].

Here, we consider how to detect an event point when we
decrease λ from the current value λ0 (the same discussion
holds when we increase λ). For the type 1 in Table I, we need
to find λ∗ such that αci > 0, ci ∈ C, becomes αci = 0. Let us
define t = −λ. Then, we increase t from t0 = −λ0 until we
find t∗ such that

ρ−
`C∑
k=1

ζik
σk − t∗

= 0, t∗ ∈ (t0, 0). (18)

If this equation has multiple solutions, we choose the min-
imum one as t∗. We note the fact that (18) is similar to
the secular equation which often arises in rank-one-update
problem of the EVD [8], [17], [18]. In this paper we introduce
rational approximation approach [8] for solving (18). Let us
define

ψζ(t) ≡
∑

k∈{k|ζik<0}

−ζik
σk − t

, ϕζ(t) ≡
∑

k∈{k|ζik>0}

ζik
σk − t

.

Using these functions, (18) is represented as

ρ+ ψζ(t∗) = ϕζ(t∗), t∗ ∈ (t0, 0).

Since the kernel matrix Q is positive semi-definite, σk ≥ 0,
k = 1, · · · , `C . Therefore, we see that both ρ+ψζ(t) and ϕζ(t)
are increasing convex functions of t ∈ (t0, 0). We approximate
ψζ and ϕζ by their lower and upper bounds (see Fig. 3):

ψζ(t) >
p

q − t
, ϕζ(t) < r +

s

δ − t
, t ∈ (t0, 0), (19)

where δ = min{σk | ζik > 0}. These upper and lower bound
functions are the 1st order local approximations to ψζ and

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

ϕζ at t0, respectively. The four parameters p, q, r and s are
defined to satisfy these requirements, i.e., they are defined as

p =
{ψζ(t0)}2

ψ′
ζ(t0)

, r = ϕζ(t0) − ∆ϕ′
ζ(t0),

q = t0 +
ψζ(t0)
ψ′
ζ(t0)

, s = ∆2ϕ′
ζ(t0),

(20)

where ψ′
ζ(t) = ∂ψζ(t)/∂t, ϕ′

ζ(t) = ∂ϕζ(t)/∂t, and ∆ =
δ − t0. Then, inequalities (19) hold as in [8]. Using the
approximation by these simple rational functions in (19), we
compute an approximate solution t1 by solving

ρ+
p

q − t1
= r +

s

δ − t1
.

This equation can be reduced to a quadratic equation, and we
choose the minimum one in (t0, 0) as t1. In case we have
no solution in (t0, 0), the point i ∈ C is disregarded for the
moment because it has no chance to define the next event
point. Given t1, we iterate the same procedure to obtain new
approximate solution t2 ∈ (t1, 0). As a consequence, we can
produce a sequence {tk} that approaches t∗ from the left.

For the type 2 in Table I, we need to find λ∗ such that
αci < h, ci ∈ C, becomes αci = h. We increase t from t0
until we find t∗ such that

ρ−
`C∑
k=1

ζik
σk − t∗

= h, t∗ ∈ (t0, 0).

This can be written as

ρ+ ψζ(t∗) = φζ(t∗) + h, t∗ ∈ (t0, 0),

We use the following bounds:

ψζ(t) < r +
s

δ − t
, ϕζ(t) >

p

q − t
, t ∈ (t0, 0),

where δ = min{σk | ζik < 0}. Since ρ + ψζ(t) < ϕζ(t) +
h, t ∈ (t0, t∗), we need to set the upper bound to ψζ and the
lower bound to ϕζ . Note that p, q, r and s are computed by
alternating ψζ and ϕζ in (20):

p =
{ϕζ(t0)}2

ϕ′
ζ(t0)

, r = ψζ(t0) − ∆ψ′
ζ(t0),

q = t0 +
ϕζ(t0)
ϕ′
ζ(t0)

, s = ∆2ψ′
ζ(t0).

For the type 3 of Table I, we have to detect λ∗ such that
yif(xi) > ρ, i ∈ R, becomes yif(xi) = ρ. Using (17), we
obtain the following equation:

di −
`C∑
k=1

ωik
σk − t∗

= −ρt∗, t∗ ∈ (t0, 0). (21)

As in the previous two types of cases, we define the following
functions:

ψω(t) ≡
∑

k∈{k|ωik<0}

−ωik
σk − t

, ϕω(t) ≡
∑

k∈{k|ωik>0}

ωik
σk − t

.

Then, (21) can be written as

di + ψω(t∗) + ρt∗ = ϕω(t∗), t∗ ∈ (t0, 0). (22)

Both sides of equation are increasing convex functions of t ∈
(t0, 0). Since di+ψω(t)+ρt > ϕω(t), t ∈ (t0, t∗), we replace
ψω by its lower bound and ϕω by its upper bound:

di +
p

q − t1
+ ρt1 = r +

s

δ − t1
, (23)

where δ = min{σk | ωik > 0}. p, q, r and s are computed by
(20) with ψζ replaced by ψω and ϕζ replaced by ϕω . We can
easily solve (23) because it is reduced to a cubic equation. To
detect the event, we only need the minimum solution of that
cubic equation in (t0, 0). Once we obtain t1, we can iterate
rational approximation in the same way as the type 1 and 2.

For the last type 4 of Table I, we solve

di −
`C∑
k=1

ωik
σk − t

= −(ρ− h)t∗, t∗ ∈ (t0, 0),

to find λ∗ where yif(xi) < ρ− h, i ∈ L, reaches a boundary
yif(xi) = ρ− h. This can be written as

di + ψω(t∗) + (ρ− h)t∗ = ϕω(t∗), t∗ ∈ (t0, 0). (24)

When h ≤ 1, both sides of the equation are increasing convex
functions of t ∈ (t0, 0). Even if h > 1, we can make the
increasing convex functions by moving the term (ρ− h)t∗ to
the right hand side. In this case, we approximate ψω by its
upper bound and ϕω by its lower bound using the rational
approximation.

By checking all the four types in Table I, we obtain λ∗’s
for each inequality constraint. The event point is determined
as the maximum λ∗ among those candidates.

C. Advantages of The Rational Approximation and Cutoff
Strategy

Rational approximation generates approximate solution se-
quence {tk} for a nonlinear equation expressed by two
monotonic convex functions. The sequence {tk} can reach
tk ∈ [t∗− ε, t∗] by the finite number of iterations for arbitrary
small ε > 0. This convergence is guaranteed for any starting
point t0 < 0 (note, in contrast, that Newton method may be
trapped in periodic cycle). Furthermore, if we assume that the
gradient of nonlinear equation is not 0 at t∗, we can prove
quadratic convergence of the approximation (we provide the
proof in Appendix).

Since {tk} is a monotonically increasing sequence, it ap-
proaches t∗ from the left. Exploiting this property, we can
sometimes terminate iteration for approximation before con-
vergence without affecting the accuracy of the event detection.
Suppose we have obtained λ∗max = −t∗min which is the
maximum λ∗ among some of the inequalities in Table I.
When we investigate the next inequality, we can terminate
the approximation at the i-th iteration if ti becomes larger
than t∗min. This is because we only need the minimum t∗ to
detect the event. We refer to this early termination strategy as
cutoff (Note that this strategy has no effects on the accuracy
of solutions).

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

yf(x)

ℓ(y, f(x))

0 ρ − h ρ

L
︷ ︸︸ ︷

R
︷ ︸︸ ︷

C
︷ ︸︸ ︷

(a) case (i): 0 < ρ− h

yf(x)

ℓ(y, f(x))

0ρ − h ρ

L
︷ ︸︸ ︷

R
︷ ︸︸ ︷

C
︷ ︸︸ ︷

(b) case (ii): 0 > ρ− h > −∞

Fig. 4. The loss function and ρ− h

D. Empty Set C and Initialization

When we have no data points in C, αi is either αi = 0,
i ∈ R, or αi = 1, i ∈ L. Then, yif(xi) can be written as

yif(xi) =
h

λ

(∑
j∈L

Qij

)
.

Using this, we can easily check the type 3 and 4 in Table I.
We can use the optimal solution α for any λ > 0 as a

starting point of the regularization path. Although optimal α
at initial λ can be obtained by directly solving the optimization
problem (10) using, for instance, active set method there is a
more appealing approach for initialization. We can find a triv-
ial solution for sufficiently large λ, and we may easily obtain
the initial solution by following the path with decreasing λ. We
explain how to obtain those trivial solutions in the following
three cases: (i) 0 < ρ− h, (ii) 0 > ρ− h > −∞, (iii) h = ∞
(squared hinge loss).

When λ = ∞, optimal w is obviously 0, and then
yif(xi) = 0 for i = 1, · · · , n. Thus, in the first case (i)
0 < ρ − h, all the data points are in L (see Fig. 4(a)). We
search the first event point λ1 so that i ∈ L moves to C using
the same approach to empty C.

In the second case (ii), all the data points are in C as λ→ ∞
(see Fig. 4(b)). Then yif(xi) must be in the following range:

yif(xi) ∈ [ρ− h, ρ], i = 1, · · · , n. (25)

On the other hand, from αi ∈ [0, h], we know yif(xi) has the
following bounds:

yif(xi) =
1
λ

n∑
j=1

Qijαj ∈
h

λ
[
n∑
j=1

min(0, Qij),
n∑
j=1

max(0, Qij)]

If the inequalities

ρ− h ≤ h

λ

n∑
j=1

min(0, Qij), i = 1, · · · , n,

ρ ≥ h

λ

n∑
j=1

max(0, Qij), i = 1, · · · , n,

are hold, optimal solution of such λ satisfies (25). We can
easily calculate λ which satisfies the above inequalities.

In the third case (iii), as in the previous case, all the data
points are in C as λ → ∞. However since αi has no upper
bound, we can not apply the same strategy as the previous

case. We use the following lower bound:

αci = ρ−
`C∑
k=1

ζik
σk + λ

≥ ρ−
∑

k∈{k|ζik>0}

ζik
σmin + λ

,

where σmin = min{σk | k = 1, · · · , `C}. Since this lower
bound monotonically approaches to ρ as λ→ ∞, all αci

’s are
positive at some large λ. We can find such λ by the following:

max

{∑
k∈{k|ζik>0} ζik

ρ
− σmin

∣∣∣∣∣ i = 1, · · · , `C

}
.

If we set ρ = h, then yif(xi) = 0 is a boundary between
L and C. In this case, detecting the first event is more difficult
than the previous three cases. However, even if we can not
find trivial initial solution, we can start our path algorithm
from any λ and its optimal solution.

E. Computational Complexity

The major computational cost of each iteration of the
regularization path involves

• The eigenvalue decomposition of `C×`C matrix QC with
O(`3C).

• Computing ζik, i = 1, · · · , `C , k = 1, · · · , `C . This needs
O(`2C) computations.

• Computing ωik, i ∈ R ∪ L, k = 1, · · · , `C . Since we
need to compute

∑`C
`=1Qic`

ζ`k for each ωik, it takes
O(`2C(`R + `L)), where `R = |R| and `L = |L|.

• Solving nonlinear equations to detect the event. We solve
2`C + `R + `L = O(n) equations using the rational
approximation. In each iteration of the rational approx-
imation, we have O(`C) computation (mainly for re-
calculating αi or yif(xi)). If we assume that the rational
approximation terminates at the Ira-th iteration, the total
cost is roughly O(Ira`Cn).

Thus, the approximate complexity for one iteration of the
regularization path is O(`2Cn+Ira`Cn). Note that `C changes
each iteration. If we assume Ira is small enough, it can be
considered as O(`2Cn). As we will see in later experiments,
the rational approximation converges very quickly. O(`2Cn)
is similar to the cost of a single SVM training. Therefore,
an event detection in our algorithm is as costly as re-training
the SVM at each event point. However, empirical results in
the next section suggests that our algorithm is an order of
magnitude faster than exhaustive grid search by the the SMO
algorithm [31], [39]. Note that we take L grid points to run
the SMO where L is the number of breakpoints (details are
in the next section).

IV. EXPERIMENTS

To demonstrate our algorithm, we show some numerical
results on artificial and real data sets. Using our algorithm,
we traced the sequence of event points λ1 > λ2 > · · · > λL
where λ1 is the first event point computed by the initial-
ization in Subsection III-D and λL is the first event point
which becomes smaller than 10−5. The Gaussian RBF kernel
K(xi,xj) = exp(−γ‖xi − xj‖2) is used. We set kernel

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

parameter as γ = 1/d, where d is the number of features (This
is a default setting in LIBSVM [10]). In the event detection,
we iterate rational approximation until approximation error
becomes less than 10−12. We investigated the performances of
our algorithm for modified Huber loss function and squared
hinge loss. For the former loss function (ρ, h) = (1.1, 0.2)
and for the latter loss function (ρ, h) = (1,∞).

We compared the CPU time of our algorithm with the SMO
(Sequential Minimal Optimization) algorithm [31]. Since we
did not use the explicit bias term for simplicity, the dual
problem (10) has no equality constraints. Then, the SMO
algorithm is adapted to optimize only one parameter αi per
iteration [39]. We select updating index i by

i =
{

iup, if giup > −gidown ,
idown, if −gidown > giup ,

where gi = ∂W/∂αi and

iup = argmax
j∈{j|αj<1}

gj , idown = argmax
j∈{j|αj>0}

−gj .

The SMO algorithm stops when |gi| < 10−6 are satisfied.
We confirmed that the solutions which are obtained by our λ-
path algorithm satisfied this condition at all of the breakpoints.
We ran the SMO algorithm at L regularization parameters
λ−1 = {10p1 , · · · , 10pL} where L is the number of the
events in regularization path. We set p1 = log10 λ

−1
1 and

uniformly took L values from [p1, 5]. We used the alpha
seeding approaches in the SMO, i.e., solution at the previous
C is used to produce initial estimates of αi’s. We examined
direct alpha reuse and scaling all alphas strategies (see [13]
for detail).

Our regularization path algorithm was mostly implemented
in C++. For efficient matrix computations (e.g. matrix vector
multiplication or the eigenvalue decomposition), we used
LAPACK [2] routine. On the other hand, the SMO algorithm
was written solely by C++ on the basis of the-state-of-the-art
SVM solver LIBSVM [10]. In both algorithms, we computed
and cached the entire kernel matrix at the beginning.

A. Artificial Data

First, we used simple artificial data set. We generated data
points (x, y) ∈ R2 × {+1,−1} using the 2-dimensional
Normal distributions:

p(x | y = +1) =
1
2
N (µ+

1 ,Σ
+
1) +

1
2
N (µ+

2 ,Σ
+
2),

p(x | y = −1) = N (µ−,Σ−),

where,

µ+
1 =

[
0
0

]
, Σ+

1 =
[

0.5 −0.1
−0.1 0.5

]
,

µ+
2 =

[
0
2

]
, Σ+

2 =
[

0.5 0.1
0.1 0.5

]
,

µ− =
[

1
1

]
, Σ− =

[
0.5 −0.1
−0.1 0.5

]
.

We generated n ∈ {100, 200, 400} training data points and
the sizes of each class is set to be n/2. We normalized each

−2 −1 0 1 2 3
−2

−1

0

1

2

3

4

x
1

x 2

Fig. 5. An example of artificial data set

TABLE III
THE NUMBER OF THE EVENTS AND THE MEAN NUMBER OF ITERATIONS

OF A RATIONAL APPROXIMATION OF THE MODIFIED HUBER SVM
(ρ = 1.1, h = 0.2) FOR ARTIFICIAL DATA. (THE FIGURES IN THE TABLE

ARE THE AVERAGE (AND THE STANDARD DEVIATION) OF 10 RUNS)

n #events L iteration iteration (no cutoff)
100 150.00 (14.79) 1.20 (0.04) 11.99 (0.51)
200 286.80 (15.45) 1.12 (0.01) 14.72 (0.46)
400 532.80 (33.02) 1.07 (0.01) 16.28 (0.44)

dimension of x to [0, 1]. Fig.5 shows an example of data set
when n = 400. For each size n, we generated 10 data sets
to alleviate random sampling effect and computed results as
average of 10 runs.

Table II and III show the results of the modified Huber
SVM. Table II compares the CPU times on modified Huber
SVM, where figures in the table are the average (and the
standard deviations in the round bracket) of 10 runs. We refer
to our regularization path algorithm as λ-path in Table II. We
see that λ-path is much faster than the SMO algorithm (we
observed, as is well known, the SMO took relatively longer
time when C = λ−1 was large [7] (data not shown)). When
we did not use cutoff strategy, λ-path becomes much slower.
This result suggests that the cutoff strategy can significantly
reduce the iterations of rational approximations.

Table III shows the number of the events L and the mean
number of iterations in a rational approximation per one
nonlinear equation. Some authors suggested that the number
of the events appears to be roughly proportional to the number
of training points [19], [21], [41]. Although this is only
from empirical observations, we also see that the number of
the events increased linearly with n in this simple artificial
data sets. Even if we did not use cutoff strategy, iterations
of rational approximation were only about 10-15 iterations.
This rapid convergence is due to the quadratic convergence
property of the rational approximation. With the use of cutoff
strategy, the average number of iterations became close to 1.
This drastic reduction of the number of iterations leads to
acceleration of our path algorithm in Table II.

Fig. 6 shows how the sizes of index sets C,R and L change
in the λ-path. Each plot is one of the 10 runs of n = 100 and
400. The two plots for n = 100 and n = 400 look similar
except their scale.

Table IV and V show the results of the squared hinge SVM.
We see similar results to the modified Huber SVM case. Our
λ-path algorithm is faster than the SMO. Since the squared

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

TABLE II
COMPUTATIONAL COST OF THE MODIFIED HUBER SVM (ρ = 1.1, h = 0.2) FOR ARTIFICIAL DATA (SEC.)

n λ-path λ-path (no cutoff) SMO (from scratch) SMO (direct alpha reuse) SMO (scaling all alphas)
100 0.28 (0.03) 2.80 (0.33) 68.44 (20.41) 49.40 (16.08) 37.73 (12.27)
200 1.10 (0.07) 13.43 (1.08) 548.36 (105.30) 358.15 (80.13) 271.89 (59.33)
400 4.72 (0.33) 57.06 (2.87) 4021.58 (535.73) 2285.46 (261.51) 1635.52 (224.54)

20 40 60 80 100
0

20

40

60

80

100

Iteration

S
iz

e
of

 S
V

 s
et

s

C
R
L

(a) n = 100

100 200 300 400
0

100

200

300

400

Iteration

S
iz

e
of

 S
V

 s
et

s

C
R
L

(b) n = 400

Fig. 6. The sizes of index sets L, C and R in the regularization path for
artificial data.

TABLE V
THE NUMBER OF THE EVENTS AND THE MEAN NUMBER OF ITERATIONS

OF A RATIONAL APPROXIMATION OF THE SQUARED HINGE SVM
(ρ = 1, h = ∞) FOR ARTIFICIAL DATA. (THE FIGURES IN THE TABLE ARE

THE AVERAGE (AND THE STANDARD DEVIATION) OF 10 RUNS)

n #events L iteration iteration (no cutoff)
100 42.10 (8.80) 1.82 (0.21) 14.28 (1.39)
200 83.40 (16.59) 1.40 (0.15) 14.15 (1.74)
400 145.10 (18.58) 1.37 (0.12) 12.92 (1.01)

hinge SVM does not have the set L, the number of event L
reduced from the modified Huber SVM case.

B. Real Data

We also apply our algorithm to 6 real world data sets in
Table VI. These data sets are available from LIBSVM site
[10]. In all data sets, each dimension of x is normalized to
[−1, 1]. We randomly sampled n data points from original data
set 10 times (we set n be approximately 80% of the original
number of data points).

Table VII and VIII show the results of the modified Huber
SVM. Table VII shows the CPU time of each algorithm. Our
algorithm is much faster than the SMO algorithm in all the
data sets. Table VIII shows the number of the events L and the
mean number of iterations in a rational approximation. We see
that the number of the events is about 2-3 times n and the itera-
tion of rational approximations is very small. These tendencies
are also observed in the artificial data set experiments. These

TABLE VI
REAL DATA SETS (THE FIGURES IN THE PARENTHESES ARE THE SIZE OF

ORIGINAL DATA SET)

n d
sonar 166 (208) 60
heart 216 (270) 13
australian 552 (690) 14
diabetes 614 (768) 8
fourclass 689 (862) 2
german 800 (1000) 24

TABLE VIII
THE NUMBER OF THE EVENTS AND THE MEAN NUMBER OF ITERATIONS

OF THE RATIONAL APPROXIMATION OF THE MODIFIED HUBER SVM
(ρ = 1.1, h = 0.2) FOR REAL DATA SETS.

#events L iteration
sonar 279.40 (9.55) 1.14 (0.01)
heart 424.20 (7.05) 1.09 (0.01)
australian 1274.90 (30.90) 1.05 (0.00)
diabetes 1298.80 (27.32) 1.08 (0.00)
fourclass 1634.00 (14.21) 1.04 (0.00)
german 1821.80 (25.07) 1.04 (0.01)

500 1000 1500
0

100

200

300

400

500

600

700

Iteration

S
iz

e
of

 S
V

 s
et

s

C
R
L

(a) fourclass

500 1000 1500
0

200

400

600

800

Iteration

S
iz

e
of

 S
V

 s
et

s

C
R
L

(b) german

Fig. 7. The size of index sets L, C and R in the regularization path for real
data sets.

experimental results illustrate that our approach can trace the
nonlinear regularization path more efficiently as well as more
precisely than existing rough approximation approaches.

Fig. 7 shows the size of index sets of fourclass and german
data sets. Although the size n of these 2 data sets are not
much different, the changing patterns of the set sizes are very
different. These differences have effect on the computational
cost of the regularization path (see Section IV). For example,
we need to compute EVD of `C × `C matrix at each iteration.
The german data set has much larger `C compared to the
fourclass data set in Fig. 7. Therefore, in the german data
set, it takes longer time to compute EVD than the case of the
fourclass data set.

Table IX and X are the results of the squared hinge
SVM. Here again, we obtain similar results to the modified
Huber SVM case. The results demonstrate efficiency of our
algorithm.

C. Monitoring the Path of Model-selection Performance Mea-
sure

An important advantage of regularization path approach
over grid search is that the path of model-selection per-
formance measures (e.g., the path of 0-1 classification loss
on validation set) can also be obtained precisely with little
additional cost.

Remark 1: In each nonlinear segment between two nearby
breakpoints, the model-selection performance measure can be

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

TABLE IV
COMPUTATIONAL COST OF THE SQUARED HINGE SVM (ρ = 1, h = ∞) FOR ARTIFICIAL DATA (SEC.)

n λ-path λ-path (no cutoff) SMO (from scratch) SMO (direct alpha reuse) SMO (scaling all alphas)
100 0.18 (0.03) 0.70 (0.22) 185.59 (28.89) 178.05 (28.66) 130.13 (22.48)
200 1.48 (0.20) 4.25 (1.35) 1302.44 (201.31) 1207.30 (186.03) 852.27 (93.04)
400 16.27 (1.37) 28.43 (3.55) 8763.64 (966.75) 7669.12 (824.68) 4962.62 (509.71)

TABLE VII
COMPUTATIONAL COST OF THE MODIFIED HUBER SVM (ρ = 1.1, h = 0.2) FOR REAL DATA (SEC.)

λ-path SMO (from scratch) SMO (direct alpha reuse) SMO (scaling all alphas)
sonar 1.23 (0.08) 9.24 (0.78) 5.25 (0.35) 6.21 (0.57)
heart 2.62 (0.14) 28.97 (6.69) 16.92 (4.55) 20.38 (4.98)
australian 82.81 (7.13) 4294.12 (638.70) 2371.00 (340.46) 2519.12 (366.11)
diabetes 54.01 (3.03) 26987.53 (2189.93) 15310.13 (1320.48) 14316.77 (1274.24)
fourclass 50.22 (1.18) 5019.78 (458.86) 3607.11 (302.86) 2319.08 (210.31)
german 313.91 (15.62) 4118.85 (264.45) 2159.13 (146.79) 2409.60 (164.76)

TABLE IX
COMPUTATIONAL COST OF THE SQUARED HINGE SVM (ρ = 1, h = ∞) FOR REAL DATA (SEC.)

λ-path SMO (from scratch) SMO (direct alpha reuse) SMO (scaling all alphas)
sonar 1.11 (0.03) 3.49 (0.48) 2.69 (0.26) 2.67 (0.29)
heart 2.83 (0.08) 13.75 (2.64) 9.88 (1.78) 10.50 (1.98)
australian 84.61 (2.47) 3498.90 (697.69) 2825.95 (563.69) 2275.22 (395.63)
diabetes 120.69 (4.41) 30884.68 (1550.91) 28118.80 (1344.21) 21276.58 (1041.52)
fourclass 185.34 (6.57) 3403.16 (179.35) 3801.39 (146.05) 1800.37 (132.66)
german 339.70 (9.00) 1383.52 (162.89) 993.90 (138.92) 928.53 (121.83)

TABLE X
THE NUMBER OF THE EVENTS AND THE MEAN NUMBER OF ITERATIONS

OF THE RATIONAL APPROXIMATION OF THE SQUARED HINGE SVM
(ρ = 1, h = ∞) FOR REAL DATA SETS.

#events L iteration
sonar 93.30 (4.52) 1.52 (0.09)
heart 146.60 (6.67) 1.41 (0.05)
australian 468.70 (22.32) 1.18 (0.05)
diabetes 353.70 (20.84) 1.22 (0.04)
fourclass 690.00 (12.90) 1.07 (0.01)
german 504.40 (19.52) 1.23 (0.05)

expressed as the function of the regularization parameter λ
because the functional form of the solution path α(λ) is
available.

In this section we illustrate this desirable property by
showing the path of 0-1 classification loss and that of AUC
(area under the ROC curve). The same experimental setup
is employed as section VI-B. For each data set in Table VI,
we split the data into two sets: 80% for training and the
remaining 20% for validation. The SVM classifier is trained
with modified Huber loss (ρ, h) = (1.1, 0.2).

Fig. 9 shows the paths of 0-1 classification loss on the
validation sets. We observe in the figure that the paths of the
0-1 loss validation errors have several complicated forms. For
example, in (d) diabetes data set, there seems to be two local
minimums around log10(

1
λ) ' 0.2 and 4.8. It is difficult to

note such detailed observations in grid search approach unless
the SVM is trained with huge number of grid of λs.

Fig. 9 shows the paths of AUC on the validation sets.
The ROC (Receiver Operating Characteristics) analysis is a
standard way to display the rate of true positives against false
positives over a range of possible threshold values (e.g., [15]).

The AUC (area under the ROC curve) is a natural performance
measure for binary classifier. It can be interpreted as the
probability that the classifier assigns larger decision function
value for a randomly chosen positive example than a random
negative example. The plots in the figure indicates that the
AUC paths have totally different forms in each data set.

As illustrated in Figs. 8 and 9, the regularization path
approach provides the complete picture on how the model-
selection performance measure changes with respect to the
regularization parameter. On the other hand, the conventional
grid search approach only provides the performances in limited
number of finite points. The path of model-selection per-
formances as in Figs. 8 and 9 offer additional insight for
detailed behavior of the trained classifier (e.g. [14], [38]).
Our proposed approach is advantageous especially when such
detailed investigations are required.

We also evaluated prediction performance of our path ap-
proach. Using 90% of the original data set in Table VI, we
performed 10-fold Cross Validation (CV) and remaining 10%
was used for the test. As a comparison, we conducted a simple
grid search experiments in which the best λ was selected
from {2−5, 2−3, . . . , 215} based on CV errors 2. Table XI
and Table XII shows the minimum CV errors and test errors
measured in 0 − 1 loss function, respectively. Since our path
approach monitors changes of the CV error more precisely
than the grid search, all of the CV errors of the path algorithm
are smaller than the grid search in Table XI. We also see that
test performances of our approach in Table XII are comparable
or slightly better than the standard grid search.

2This the default choice of the well-known LIBSVM software [10].

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

0 1 2 3 4 5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

log
10

(1/λ)

V
al

id
at

io
n

er
ro

r

(a) sonar

0 1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

log
10

(1/λ)

V
al

id
at

io
n

er
ro

r

(b) heart

−1 0 1 2 3 4 5
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

log
10

(1/λ)

V
al

id
at

io
n

er
ro

r

(c) australian

−1 0 1 2 3 4 5
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

log
10

(1/λ)

V
al

id
at

io
n

er
ro

r

(d) diabetes

−1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

log
10

(1/λ)

V
al

id
at

io
n

er
ro

r

(e) fourcalss

−1 0 1 2 3 4 5
0.24

0.26

0.28

0.3

0.32

0.34

0.36

log
10

(1/λ)

V
al

id
at

io
n

er
ro

r

(f) german

Fig. 8. The plots of the validation errors measured by the 0-1 loss.

TABLE XI
CROSS VALIDATION ERROR COMPARISON (ρ, h) = (1.1, 0.2)

path grid search
sonar 0.1358 0.1455
heart 0.1584 0.1663
australian 0.1338 0.1386
diabetes 0.2230 0.2271
fourclass 0.0010 0.0022
german 0.2297 0.2348

TABLE XII
TEST ERROR COMPARISON (ρ, h) = (1.1, 0.2)

path grid search
sonar 0.1227 0.1333
heart 0.1714 0.1630
australian 0.1357 0.1420
diabetes 0.2128 0.2143
fourclass 0.0034 0.0034
german 0.2430 0.2460

V. CONCLUSION

We proposed nonlinear regularization path algorithm for
a class of learning machines that have quadratic loss and
quadratic penalty which is sometimes referred to as quadratic
loss SVM. We developed an accurate and efficient nonlinear
path following algorithm using rational approximation tech-
nique. Experiments show that the advantage of our algorithm
over conventional approach. Since our algorithm uses an EVD
at each iteration, we need some further elaborations on the

0 1 2 3 4 5
0.65

0.7

0.75

0.8

0.85

0.9

log
10

(1/λ)

A
U

C

(a) sonar

0 1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

log
10

(1/λ)

A
U

C

(b) heart

−1 0 1 2 3 4 5
0.86

0.88

0.9

0.92

0.94

0.96

log
10

(1/λ)

A
U

C

(c) australian

−1 0 1 2 3 4 5
0.76

0.78

0.8

0.82

0.84

log
10

(1/λ)

A
U

C

(d) diabetes

−1 0 1 2 3 4 5
0.8

0.85

0.9

0.95

1

log
10

(1/λ)

A
U

C

(e) fourcalss

−1 0 1 2 3 4 5

0.65

0.7

0.75

0.8

log
10

(1/λ)

A
U

C

(f) german

Fig. 9. The plots of the paths of the AUC for validation data set.

related numerical linear algebra task, especially for applying
it to larger data sets.

Another direction of an important future work is to be
widening the applicability of regularization path following
approach to more recent machine learning techniques such as
[20], [27], [42].

REFERENCES

[1] E. L. Allgower and K. Georg, “Continuation and path following,” Acta
Numerica, vol. 2, pp. 1–64, 1993.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J.
Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney,
and D. Sorensen, LAPACK Users’ guide (third ed.). Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1999.

[3] F. Bach, D. Heckerman, and E. Horvitz, “Considering cost asymmetry
in learning classifiers,” Journal of Machine Learning Research, vol. 7,
pp. 1713–1741, 2006.

[4] F. R. Bach, R. Thibaux, and M. I. Jordan, “Computing regularization
paths for learning multiple kernels,” in Advances in Neural Information
Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds.
Cambridge, MA: MIT Press, 2005, pp. 73–80.

[5] P. L. Bartlett and A. Tewari, “Sparseness vs estimating conditional
probabilities: Some asymptotic results,” Journal of Machine Learning
Research, vol. 8, pp. 775–790, 2007.

[6] L. Bo, L. Wang, and L. Jiao, “Recursive finite newton algorithm for
support vector regression in the primal,” Neural Comput., vol. 19, no. 4,
pp. 1082–1096, 2007.

[7] L. Bottou and C.-J. Lin, “Support vector machine solvers,” in Large
Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and
J. Weston, Eds. Cambridge, MA.: MIT Press, 2007, pp. 301–320.

[8] J. Bunch, C. Nielsen, and D. Sorensen, “Rank-one modification of the
symmetric eigenproblem,” Numerische Mathematik, vol. 31, no. 1, pp.
31–48, 1979.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

[9] G. Cauwenberghs and T. Poggio, “Incremental and decremental support
vector machine learning,” in Advances in Neural Information Processing
Systems, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds., vol. 13.
Cambridge, Massachussetts: The MIT Press, 2001, pp. 409–415.

[10] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for
support vector machines,” 2001, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[11] O. Chapelle, “Training a support vector machine in the primal,” Neural
Computation, vol. 19, no. 5, pp. 1155–1178, 2007.

[12] W. Chu, S. S. Keerthi, and C. J. Ong, “Bayesian support vector
regression using a unified loss function,” IEEE Transaction on Neural
Networks, vol. 15, no. 1, pp. 29–44, 2004.

[13] D. DeCoste and K. Wagstaff, “Alpha seeding for support vector ma-
chines,” in Proceedings of the International Conference on Knowledge
Discovery and Data Mining, 2000, pp. 345–359.

[14] K. Duan, S. S. Keerthi, and A. N. Poo, “Evaluation of simple perfor-
mance measures for tuning SVM hyperparameters,” Neurocomputing,
vol. 51, pp. 41–59, 2003.

[15] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861 – 874, 2006.

[16] T. Gal, Postoptimal Analysis, Parametric Programming, and Related
Topics. Walter de Gruyter, 1995.

[17] G. H. Golub, “Some modified eigenvalue problems,” Stanford Univer-
sity, Stanford, CA, USA, Tech. Rep., 1971.

[18] G. H. Golub and C. F. V. Loan, Matrix computations. Baltimore, MD,
USA: Johns Hopkins University Press, 1996.

[19] L. Gunter and J. Zhu, “Efficient computation and model selection for
the support vector regression,” Neural Computation, vol. 19, no. 6, pp.
1633–1655, 2007.

[20] P. Gutiérrez, C. Hervás-Marti, and F. Martinez-Estudillo, “Logistic re-
gression by means of evolutionary radial basis function neural networks,”
Neural Networks, IEEE Transactions on, vol. 22, no. 2, pp. 246 –263,
2011.

[21] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regularization
path for the support vector machine,” Journal of Machine Learning
Research, vol. 5, pp. 1391–1415, 2004.

[22] M. Karasuyama and I. Takeuchi, “Multiple incremental decremental
learning of support vector machines,” in Advances in Neural Information
Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.
Williams, and A. Culotta, Eds., 2009, pp. 907–915.

[23] S. S. Keerthi and D. DeCoste, “A modified finite newton method for
fast solution of large scale linear SVMs,” Journal of Machine Learning
Research, vol. 6, pp. 341–361, 2005.

[24] V. Krishnamurthy, S. D. Ahipasaoglu, and A. d’Aspremont, “A path-
wise algorithm for covariance selection,” in NIPS 2009 Workshop on
Optimization for Machine Learning, 2009.

[25] P. Laskov, C. Gehl, S. Kruger, and K.-R. Muller, “Incremental support
vector learning: Analysis, implementation and applications,” Journal of
Machine Learning Research, vol. 7, pp. 1909–1936, 2006.

[26] J. Ma and J. Theiler, “Accurate online support vector regression,” Neural
Computation, vol. 15, no. 11, pp. 2683–2703, 2003.

[27] R. Mahdi and E. Rouchka, “Reduced hyperbf networks: Regularization
by explicit complexity reduction and scaled rprop-based training,” Neu-
ral Networks, IEEE Transactions on, vol. 22, no. 5, pp. 673–686, 2011.

[28] M. Martin, “On-line support vector machines for function approxima-
tion,” Software Department, University Politecnica de Catalunya, Tech.
Rep., 2002.

[29] C.-J. Ong, S. Shao, and J. Yang, “An improved algorithm for the solution
of the regularization path of support vector machine,” Neural Networks,
IEEE Transactions on, vol. 21, no. 3, pp. 451–462, 2010.

[30] M. Park and T. Hastie, “L1-regularization path algorithm for generalized
linear models,” Journal of the Royal Statistical Society. Series B:
Statistical Methodology, vol. 69, no. 4, pp. 659–677, 2007.

[31] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods — Support
Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds.
Cambridge, MA: MIT Press, 1999, pp. 185–208.

[32] K. Ritter, “On parametric linear and quadratic programming prob-
lems,” in Mathematical programming: Proceedings of the International
Congress on Mathematical Programming, R. W. Cottle, M. L. Kelman-
son, and B. Korte, Eds. Elsevier Science Publishers, 1984, pp. 307–335.

[33] S. Rosset, “Following curved regularized optimization solution paths,”
in Advances in Neural Information Processing Systems 17, L. K. Saul,
Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005, pp.
1153–1160.

[34] S. Rosset and J. Zhu, “Piecewise linear regularized solution paths,”
Annals of Statistics, vol. 35, pp. 1012–1030, 2007.

[35] I. Takeuchi, K. Nomura, and T. Kanamori, “Nonparametric conditional
density estimation using piecewise-linear solution path of kernel quantile
regression,” Neural Computation, vol. 21, no. 2, pp. 533–559, 2009.

[36] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society (Series B), vol. 58, no. 1, pp.
267–288, 1996.

[37] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer-
Verlag, 1995.

[38] V. N. Vapnik and O. Chapelle, “Bounds on error expectation for support
vector machines,” Neural Computation, vol. 12, no. 9, pp. 2013–2036,
2000.

[39] M. Vogt, “SMO algorithms for support vector machines without bias
term,” Technische Universität Darmstadt, Tech. Rep., 2002.

[40] G. Wang, D.-Y. Yeung, and F. H. Lochovsky, “A kernel path algorithm
for support vector machines,” in Twenty-fourth International Conference
on Machine Learning, 2007, pp. 951–958.

[41] ——, “A new solution path algorithm in support vector regression,”
Neural Networks, IEEE Transactions on, vol. 19, no. 10, pp. 1753–1767,
2008.

[42] Y. Washizawa, “Feature extraction using constrained approximation and
suppression,” Neural Networks, IEEE Transactions on, vol. 21, no. 2,
pp. 201–210, 2010.

[43] T. Zhang, “Statistical behavior and consistency of classification methods
based on convex risk minimization,” Annals of Statistics, vol. 32, no. 1,
pp. 56–134, 2004.

APPENDIX

We provide convergence proof of the rational approxima-
tion. We can prove it in almost same way as [8]. Although we
will consider the case of solving (22) (i.e., type 3 in Table I),
other types can also be proved in similar way. Here, we
employ simple notations such as d = di, ψk = ψω(tk), ψ∗ =
ψω(t∗), ψ′ = ∂ψω(t)/∂t. In the proof, we assume that the
following condition holds:
Assumption 1 ψ∗′

+ ρ− ϕ∗′ 6= 0. Since ψ∗′
+ ρ− ϕ∗′ ≤ 0,

Assumption 1 just means that ψ∗′
+ ρ− ϕ∗′

< 0.
The following two theorems provide the convergence prop-

erty of our algorithm.
Theorem 2 Under Assumption 1, the sequence of the rational
approximation {tk}k=1,2,··· converges to t∗ as k → ∞. Even if
the Assumption 1 does not hold, {tk} can reach tk ∈ [t∗−ε, t∗)
by the finite number of iterations for arbitrary small ε > 0.
Theorem 3 Under Assumption 1, if the sequence {tk} con-
verges to t∗, the rational approximation has the quadratic rate
of convergence for sufficiently large k.

A. Proof of Theorem 2

Proof: Let β ∈ (0, 1) be a constant which is independent
of the iteration k. We prove the following condition holds for
any t1 ∈ (t0, t∗):

t∗ − t2 ≤ (1 − β)(t∗ − t1),

where t2 is obtained by one iteration of the rational approxi-
mation from t1. Let τ satisfy

d+ ψ1 + ρt1 + (ψ′
1 + ρ)(τ − t1) = r +

s

δ − τ
.

The left hand side represents the tangent line ` of d+ψ(t)+ρt
at t1 (see Fig. 10). Let us define α as the angle between the
line ` and the horizontal line. Then we see

tanα = ψ′
1 + ρ =

r + s
δ−τ − (d+ ψ1 + ρt1)

τ − t1
.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

ϕ(t)

d+ ψ(t) + ρtr + s
δ−t

d+ p

q−t
+ ρt

ℓ

τt1 t2 t
∗ t

Fig. 10. The schematic illustration of the approximation. ` is a tangent line
of d+ψ(t)+ρt. From the convexity, ` becomes lower bound of d+ψ(t)+ρt
and d+ p

q−t
+ ρt.

d+ ψ(t) + ρt− ϕ(t)

t1 t∗
t

Fig. 11. g1 is the slope of the dashed line.

From (20), we set r = ϕ1 − (δ − t1)ϕ′
1 and s = (δ − t1)2ϕ′

1.
Substituting r and s into above equation, we obtain

τ − t1 = −d+ ψ1 + ρt1 − ϕ1

ϕ′
1 + ρ

+
ϕ′

1

ψ′
1 + ρ

δ − t1
δ − τ

(τ − t1).

Arranging this equation, we have

τ − t1 =
−g1

γϕ′
1 − ψ′

1 − ρ
(t∗ − t1) (26)

where γ = (δ − t1)/(δ − τ) and

g1 = −d+ ψ1 + ρt1 − ϕ1

t∗ − t1
.

g1 can be interpreted as the slope of a line which passes
through (t1, d+ψ1 +ρt1−ϕ1) and (t∗, 0) (see Fig. 11). From
the Assumption 1, g1 has an upper bound which is smaller
than 0, i.e., g1 ≤ gmax < 0. If the Assumption 1 does not
hold, we can maintain this inequality when t1 is in (t0, t∗−ε]
for arbitrary small ε > 0. Substituting this into (26), we obtain
the following inequalities:

τ − t1 ≥ −gmax

γϕ′
1 − ψ′

1 − ρ
(t∗ − t1) ≥ β(t∗ − t1),

where

β =
−gmax

maxt∈(t0,t∗)(γϕ′(t) − ψ′(t) − ρ)
.

Since t2 ≥ τ , we have

t2 − t1 ≥ β(t∗ − t1)
−t∗ + t2 ≥ −(t∗ − t1) + β(t∗ − t1)
t∗ − t2 ≤ (1 − β)(t∗ − t1).

Finally, we need to prove β ∈ (0, 1). First, we consider β < 1.
It can be derived from the following inequalities:

max
t∈(t0,t∗)

(γϕ′(t) − ψ′(t) − ρ) > max
t∈(t0,t∗)

(ϕ′(t) − ψ′(t) − ρ)

≥ −gmax.

The first inequality comes from γ > 1 and ψ′(t) ≥ 0. From the
mean-value theorem, there exists at least one θ ∈ (t0, t∗) such
that ψ′(θ) + ρ − ϕ′(θ) = gmax. Then the second inequality
holds. Next, we consider the lower bound of β. From the
monotonicity of ψ′ and ϕ′, we obtain

max
t1∈(t0,t∗)

(γϕ′
1 − ψ′

1 − ρ) <
δ − t0
δ − t∗

ϕ∗′
− ψ′

0 − ρ.

Then we see β is in (0, 1).

B. Proof of Theorem 3

Proof: Let κ be a constant which is independent on the
iteration. We show |tk+1 − t∗| ≤ κ|tk − t∗|2 for sufficiently
large k, when tk → t∗. Subtracting

d+ ψ∗ + ρt∗ = ϕ∗,

from

d+
p

q − t2
+ ρt2 = r +

s

δ − t2
,

we obtain
p

q − t2
− ψ∗ + ρ(t2 − t∗) = r +

s

δ − t2
− ϕ∗.

Substituting p, q, r and s, this equation can be reduced to

ψ1 − ψ∗G(t1) + ρ(t2 − t∗)G(t1) ={
ϕ1 − ϕ∗ + ∆ϕ′

1

(
t2 − t1
δ − t2

)}
G(t1), (27)

where G(t1) = 1+ ψ′
1
ψ1

(t1− t2) and ∆ = δ− t1. The left hand
side of (27) can be written as

ψ1 − ψ∗G(t1) + ρ(t2 − t∗)G(t1) =
1
ψ1

(ψ2
1 − ψ∗ψ1 − ψ∗ψ′

1ε1) +
ψ∗ψ′

1

ψ1
ε2 + ρε2G(t1),

where ε1 = t1 − t∗ and ε2 = t2 − t∗. Using the Taylor
expansion of ψ1 and ψ′

1 around t∗, we obtain

ψ2
1 − ψ∗ψ1 − ψ∗ψ′

1ε1 =
{

(ψ∗′
)2 − 1

2
ψ∗ψ∗′′

}
ε21 +O(ε31).

Finally the left hand side of (27) becomes

ψ∗ψ′
1

ψ1
ε2 + ρε2G(t1) +O(ε21). (28)

Expanding ϕ1 and ϕ′
1 in the right hand side of (27), we obtain

ϕ∗′
ε2

(
∆ − ε1
δ − t2

)
G(t1) +O(ε21). (29)

Using (28) and (29), (27) is reduced to{
ψ∗ψ′

1

ψ1
+ ρG(t1) − ϕ′

1

(
∆ − ε1
δ − t2

)
G(t1)

}
ε2 = O(ε21).

Since G(t1) → 1 as t1 → t∗,

lim
t1→t∗

{
ψ∗ψ′

1

ψ1
+ ρG(t1) − ϕ′

1

(
∆ − ε1
δ − t2

)
G(t1)

}
=

ψ∗′
+ ρ− ϕ∗′

6= 0

Then we can see ε2 = O(ε21).

