ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究論文

Speech Analysis Based on AR Model Driven by t-Distribution Process

https://nitech.repo.nii.ac.jp/records/4173
https://nitech.repo.nii.ac.jp/records/4173
d5e9f8cd-0e39-4101-b8b2-0c614bd48fb3
名前 / ファイル ライセンス アクション
E75-A_1159.pdf 本文_fulltext (769.7 kB)
Copyright (c) 1992 IEICE http://search.ieice.org/index.html
Item type 学術雑誌論文 / Journal Article(1)
公開日 2012-11-07
タイトル
タイトル Speech Analysis Based on AR Model Driven by t-Distribution Process
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Sanubari, Junibakti

× Sanubari, Junibakti

en Sanubari, Junibakti

Search repository
Wu, Yi-Jian

× Wu, Yi-Jian

en Wu, Yi-Jian

ja Wu, Yi-Jian
ISNI


Search repository
Onoda, Mahoki

× Onoda, Mahoki

en Onoda, Mahoki

Search repository
著者別名
姓名 Tokuda, Keiichi
言語 en
姓名 徳田, 恵一
言語 ja
姓名 トクダ, ケイイチ
言語 ja-Kana
書誌情報 en : IEICE transactions on fundamentals of electronics, communications and computer sciences

巻 E75-A, 号 9, p. 1159-1169, 発行日 1992-09-20
出版者
出版者 Institute of Electronics, Information and Communication Engineers
言語 en
ISSN
収録物識別子タイプ ISSN
収録物識別子 0916-8508
item_10001_source_id_32
収録物識別子タイプ NCID
収録物識別子 AA10826239
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
内容記述
内容記述タイプ Other
内容記述 In this paper, a new M-estimation technique for the linear prediction analysis of speech is proposed. Since in the conventional linear prediction (CLP) method the obtained estimates are very much affected by the large amplitude residual parts, in the proposed method we use a loss function which assigns large weighting factor for small amplitude residuals and small weighting factor for large amplitude residuals which is for instance caused by the pitch excitations. The loss function is based on the assumption that the residual signal has an independent and identical t-distribution t(α) with α degrees of freedom. The efficiency of this new estimator depends on α. When α=, we get the CLP method. When the proposed method with small α is applied to the problems of estimating the formant frequencies and bandwidths of the synthetic speech by finding the roots of the prediction polynomial, we can achieve a more accurate and a smaller standard deviation (SD) estimate than that with large α. When the signal is very spiky, the proposed method can ahieve more efficient and accurate estimates than that with robust linear prediction (RBLP) method. The loss function is modified in the similar manner as the autocorrelation method. The solution is calculated by the Newton-Raphson iteration technique. The simulation results show that only few iterations are needed to reach a stationary point, the stationary point is always a local minimum and the obtained prediction filter is always minimum phase. Preliminary experiments on the human speech data indicate that the obtained results are insensitive to the placement of the analysis window and a higher spectral resolution than the CLP and RBLP method can be achieved.
言語 en
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 13:49:02.478364
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3