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Abstract

The real-space grid based implementation of the Kohn-Sham density-functional
theory of electrons using the finite difference method for derivatives of vari-
ables, has attractive features of parallelizability and applicability to various
boundary conditions in addition to universality in target materials. Follow-
ing the divide-and-conquer strategy, we propose a linear scaling algorithm of
it by advancing the algorithm in [Shimojo et al, Comput. Phys. Comm. 167
(2005) 151]. In the Kohn-Sham-type equation for a domain, we introduce
(i) the density-template potential for density continuity with simple stepwise
weight-functions and (ii) the embedding potential to take into account all the
quantum correlation effects with other overlapping domains in addition to
the classical effects of ionic and electronic Coulomb potentials. We thereby
realize reasonably high accuracies in atomic forces with relatively small num-
bers of buffer ions irrespective of the electronic characters of materials. The
timing tests on parallel machines demonstrate the linear scaling of the code
with little communication time between the domains.
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1. Introduction

The Kohn-Sham (KS) formulation of the density-functional theory (DFT)
[1, 2], which uses the electron density instead of 3N -dimensional wavefunction
(the number of electrons N) as the basic variable, has made great successes
in analyzing the ground state electronic properties of small systems [3]. Re-
cent advancement in fabricating electronic devices and systems [4] at the
nano-meter scale such as the LSI and micro-electromechanical systems [5]
motivates us to apply the KS-DFT scheme to such complex-structured sys-
tems. Issues of interest include: prediction of microscopic structures of ma-
terials interfaces and their strengths, and understanding reaction dynamics
in both fabrication and failure processes [6, 7]. Among various forms of the
numerical implementation of the KS-DFT scheme, it is conventional to use
planewaves [8, 9, 10] to represent electronic orbitals of a supercell of a solid-
state system under the periodic boundary conditions (PBC’s). The merits
of using the basis set of the planewaves include: their independence on ionic
positions, high accuracy in the computation of the kinetic energy, efficient
usage of the Fast Fourier Transform (FFT) [11] method, and universality in
target materials. Using such a delocalized basis set as the planewaves, how-
ever, make the conventional KS-DFT code too slow even on parallel machines
to be applied directly to such a large system.

One of the promising methods to calculate the static and dynamic prop-
erties of such an inherently multi-scaled system with the KS-DFT scheme
is to use the hybrid quantum-classical (QM-CL) method [12]. In the hybrid
method, we apply, for instance, the KS-DFT scheme to a relatively small
region selected adaptively, while the classical inter-atomic potential to the
environmental region [13, 14]. The mechanical coupling of the two regions
at the atomistic scale is realized by introducing virtual buffer atoms to both
descriptions [15]. The atomic forces in both QM and CL regions are calcu-
lated concurrently to simulate the dynamics of atoms. At the re-selection of
the QM region, the calculated atomic forces are unchanged practically, while
the energy of the system is not.

The real-space grid (RG) based KS-DFT method [16, 17, 18, 19, 20, 21,
22, 23] has been used for the QM calculation in the hybrid QM-CL method,
in which the eigen orbitals and the potentials are represented on a set of
grid points in 3D and their derivatives are evaluated by the finite difference

2



method. The RGDFT method has the same computation scale-order and
universality in target systems as the conventional planewave-based KS-DFT
method does. Furthermore the RGDFT method is applicable to charged
systems with various boundary conditions including external electric field.
As the RGDFT method does not use the FFT method that is not suited
to parallel machines, it is highly parallelizable by spatial decomposition of
the grid points [21, 23]. Former applications of the hybrid QM-CL method
include: calculation of the migration energy of an O atom in stressed Si [24],
simulation of the Li diffusion in stressed graphite [25], and pressure-induced
oxidation dynamics at the contact area of diamond tip and Si surface in mois-
ture environment [26]. The larger QM region, the better from the viewpoint
of the physical accuracy. On the other hand, the QM computation at every
time step should be finished within reasonable timings. Balancing the two
needs, we set the QM regions composed of about 100 atoms only (about 200
atoms including the buffer atoms) in the former hybrid QM-CL simulation
runs [24, 25, 26, 27].

The atomic orbital (AO)-based KS-DFT method [28, 29], in which eigen
orbitals are represented by a localized basis set of electronic orbitals of free
atoms or their modifications, can also be used in the hybrid QM-CL method.
However, careful choice of the basis set is essential for high accuracy, partic-
ularly for metallic systems or when chemical bonds break. Despite such in-
convenience, the AODFT method has been widely used for various molecules
because of its high computation speed and accumulation of experiences. Its
extension to the order-N scheme has been proposed following the divide-
and-conquer (DC) strategy [30, 31, 32, 33, 34, 35]. In such a DC-AODFT
method, a target system is divided into overlapping domains with buffer ions.
For each domain, the eigen orbitals represented by the AO basis set are ob-
tained as the self-consistent eigen functions of the total KS equation up to
the global Fermi energy. The total density is then obtained as the summation
of the weighted densities of the domains.

The RGDFT method has the attractive feature of universality in tar-
get materials and settings resulting from no usage of the AO to represent
the eigen orbitals. With application to a large QM region in the hybrid
QM-CL simulation in mind, we will therefore develop an order-N RGDFT
method following the DC strategy. Since no basis set will be used in the
DC-RGDFT, the electronic states relating to the buffer ions may vary signif-
icantly depending on the effective potential field created by other domains.
Controlling those electronic states relating to the buffer ions to resemble the
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states in the original system will be crucial for the DC-RGDFT method to
give accurate density and atomic forces. Such a control has not been con-
sidered in the DC-AODFT method because of the limited flexibility of the
AO-based orbitals.

A seminal paper [36] exists for such a DC-RGDFT scheme. Possibility of
applying the DC-RGDFT scheme to large-scale systems were demonstrated
using massively parallel machines [37, 38]. In the formulation in Ref. [36], the
embedding effect of the electronic kinetic energy for a domain was considered
in addition to that of the electronic and ionic Coulomb potentials. Unfortu-
nately, the formulas were sensitive to the forms of the weight functions that
were introduced to divide the total system into the domains. The quantum
embedding effect of the exchange-correlation potential was ignored. Critical
analyses on the accuracy of atomic forces have not been shown. Consid-
ering these, in the present paper, we will include all the embedding effects
of the electronic and ionic Coulomb potentials and of electronic kinetic and
exchange-correlation potentials through formulas that are not sensitive to
the weight functions. Therefore a proper embedding potential will be intro-
duced to the KS-type equation for a domain. In addition, we will introduce
a novel density-template potential for the overlapping area of the domains to
the KS-type equation to realize continuation of density. We will demonstrate
that the combination of the embedding and density-template potentials gives
accurate atomic forces for various materials as ceramics, semiconductors, and
metals with relatively small numbers of buffer ions. Benchmark tests of the
DC-RGDFT code on parallel machines will be performed to show its order-N
scaling and practical computation times for large-scale atomic clusters.

Organization of the rest of the this paper is the following. In §2, based
on the RGDFT method, present formulation of the DC-RGDFT method
will be explained. In §3, physical accuracies of both density and atomic
forces for various materials will be analyzed. Computation times of the
DC-RGDFT code on parallel machines will be presented. Summary and
concluding remarks will be given in §4.

2. Methods

2.1. Real-space implemented Kohn-Sham DFT (RGDFT) method

In this subsection we summarize the RGDFT method [16, 17, 18, 19,
20, 21, 22, 23] before we advance it to the DC-type. Let us consider an
atomic cluster composed of Nion ions with charge numbers {Zi} at positions
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{R⃗i} (i = 1, 2, ..., Nion) and the valance electrons. For simplicity, the charge-
neutral system is assumed though the formulation is applicable to non-neutral
systems also; the total number of electrons Ne =

∑
i Zi.

The well-known Kohn-Sham equation for the eigen orbital φn(r⃗) with the
eigen energy ϵn is[

−1

2
∇2 + vH(r⃗) +

Nion∑
i=1

vion,i(r⃗) + vxc(r⃗)

]
φn(r⃗) = ϵnφn(r⃗) (1)

in the atomic unit (i.e., me = ~ = e = 1). The Hartree potential in Eq. (1)
is

vH(r⃗) =

∫
dr⃗′

ρ(r⃗′)

|r⃗ − r⃗′|
(2)

or
∇2vH(r⃗) = −4πρ(r⃗) (3)

with the density of electrons

ρ(r⃗) =

Ne/2∑
n=1

2|φn(r⃗)|2 (4)

in the spin neutral case.
The pseudopotential of ion-i, vion,i(r⃗), for φn(r⃗) acts as

vion,i(r⃗)φn(r⃗) = vL,i(r⃗)φn(r⃗) + vNL,i(r⃗)|φn〉 (5)

with

vNL,i(r⃗)|φn〉 =
lmax∑
l=0

l∑
m=−l

φps
lm,i(r⃗)∆vl,i(r⃗)

∫
dr⃗′φps∗

lm,i(r⃗
′)∆vl,i(r⃗′)φn(r⃗′)∫

dr⃗φps∗
lm,i(r⃗)∆vl,i(r⃗)φ

ps
lm,i(r⃗)

. (6)

Here the Kleinman-Bylander form [39] is adopted for the treatment of the
non-local pseudopotential. The norm-conserving pseudopotentials [40] are
used. The φps

lm,i(r⃗) in Eq. (6) is the pseudo eigen-orbital for a free atom-
i at angular state (l,m). The pseudopotential at a chosen angular state
l = lloc (often the maximum of l) is regarded as the local pseudopotential,
and the deviation of the pseudopotential from the local one as the non-local
pseudopotential:

vL,i(r⃗) ≡ vlloc,i(r⃗) and ∆vl,i(r⃗) ≡ vl,i(r⃗) − vlloc,i(r⃗) (7)
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with the pseudopotential vl,i(r⃗) for a free ion-i at angular state l. The
vL,i(r⃗) contains the long-ranged Coulomb potential, while the ∆vl,i(r⃗) is
short-ranged.

The vxc(r⃗) in Eq. (1) is the exchange-correlation potential defined as the
functional derivative of the exchange-correlation energy:

vxc(r⃗) =
δExc(ρ)

δρ(r⃗)
. (8)

Various approximation formulas of Exc(ρ) are given in literatures. For sim-
plicity, we use the local density approximation (LDA) formula in Ref. [41].

The eigen orbitals in Eq. (1) are solved numerically through the self-
consistent field (SCF) iteration [8, 9, 42] under the orthonormalization con-
straint: ∫

dr⃗φ∗
i (r⃗)φj(r⃗) = δi,j ≡

{
1, for i = j ,
0, for i ̸= j .

(9)

The number of SCF iterations required to reach the convergence, which is
independent of the target system size, is typically twenty. In the conventional
planewave-based KS-DFT method, eigen orbitals are represented using the
planewaves under the PBC’s. And the SCF iteration procedure contains the
local iteration for all the energy levels considered. In sweeping the orbitals
for a given ρ(r⃗) in the local iteration procedure, orbitals are updated one
by one from the lowest to highest energy levels by the conjugate gradient
method with the Gram-Schmidt orthonormalization [11] to the orbitals at
lower energy levels.

In the RGDFT method, we set the Cartesian grid points in 3D with the
grid size h to describe the eigen orbitals and the potentials. The grid size
h in unit of the Bohr radius aB ≈ 0.529 Å corresponds to the cutoff energy
0.5(π/h)2 (a.u.) (1 a.u. of energy ≈ 27.2 eV) in the conventional planewave-
based KS-DFT method. The overall shape of the grid points is spherical with
radius rmax, which is determined to enclose all the ions with a few Å vacuum
width so that ρ(r⃗) = 0 at r = rmax. The second derivative operations in
the three directions in the KS and Poisson equations are calculated by the
high-order (fourth or more) finite difference method [11, 16, 22, 23] using the
data on multiple grid points in both plus and minus sides. For the ion with
relatively deep pseudopotential as oxygen, a smaller grid size of h/3 is used
at around the ion only to represent the pseudopotential accurately [43]. The
RGDFT method is well suited to the parallel computation environment. It
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is free from the FFT method that becomes inefficient for massively parallel
machines. The idea of spatial decomposition of the grid points works well
for parallel machines. In addition, the RGDFT method has a unique feature
of numerical stability that helps to realize high computation performance
of the Gram-Schmidt orthonormalization of the orbitals as explained below.
While the Gram-Schmidt orthonormalization needs to be performed orbital-
by-orbital for stability reasons in the conventional planewave-based method,
it can be performed for all the orbitals together in the RGDFT method after
the orbital sweep in the local iteration procedure [23]. That rearrangement of
the Gram-Schmidt orthonormalization procedure improves the computation
performance [23] on a parallel machine by employing a highly tuned linear-
algebra library.

2.2. Divide-and-conquer-type RGDFT method

For the present formulation, we divide a target system into the total
of Nd basic domains arranged in 3D, as depicted in Fig. 1(a) for 2D case.
The boundary surface between the neighboring basic-domains are denoted
as S⃗bdry. To each basic domain, we add a surface layer taken from the

neighboring basic-domains with the cutoff depth dc from S⃗bdry to define the
domain that overlaps with neighboring domains. For a domain, we call those
ions located in the basic domain as the real ions as depicted in Fig. 1(b).
Those ions located in the additional surface layer are called the buffer ions.
Other ions that are neither real nor buffer are the external ions. The Coulomb
potential due to the external ion should be considered in the domain, while it
will be modified at the vicinity of the ion so that the valence electrons become
unbound to it. The weight function WI(r⃗) for domain-I should obey the sum
rule of

∑Nd−1
I=0 WI(r⃗) = 1 at any r⃗. For simplicity we assume the stepwise

form for WI(r⃗): that is, WI(r⃗) = 1 in basic domain-I, while WI(r⃗) = 0
outside the basic domain.

For domain-I, the density ρI(r) is obtained through the KS-type equation
explained below with the Fermi energy common to all the domains. The grid
points form a sphere of radius rmax with its center set at the averaged position
of the real and buffer ions. The value of rmax is determined so that the real
and buffer ions are enclosed with sufficient vacuum width so that ρI(r⃗) = 0
at r = rmax. The total density defined as

ρtot(r⃗) ≡
Nd−1∑
I=0

WI(r⃗)ρI(r⃗) (10)
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is thereby calculated, which corresponds to ρ(r⃗) in the RGDFT method. We
call WI(r⃗)ρI(r⃗) the real density and [1 − WI(r⃗)]ρI(r⃗) the shadow density of
domain-I.

The KS-type equation in the DC-RGDFT method for domain-I is[
−1

2
∇2 + vDC

H (r⃗) +

Nion∑
i=1

vDC
ion,i(r⃗) + vDC

xc (r⃗)

+ wDT(r⃗)vDT(r⃗) + (1 − wDT(r⃗))vemb(r⃗)
]
φn(r⃗) = ϵnφn(r⃗) . (11)

Here the kinetic energy term (i.e., the 2nd derivative term) is the same as in
the standard KS equation [see, Eq. (1)]. The exchange-correlation potential
is

vDC
xc (r⃗) =

δExc(ρtot)

δρtot(r⃗)
. (12)

The density ρI(r⃗) is calculated as

ρI(r⃗) =

Ne,I/2∑
n=1

2|φn(r⃗)|2 (13)

with either integer or non-integer number of electrons Ne,I for domain-I.
The global Fermi level is determined so that the total number of electrons
becomes Ne =

∑Nd−1
I=0 Ne,I .

The Hartree potential in Eq. (11) is defined as

vDC
H (r⃗) =

∫
dr⃗′

ρtot(r⃗′)

|r⃗ − r⃗′|
. (14)

It includes the embedding effect of the electronic Coulomb potential from
other domains. Note that vDC

H (r⃗) is felt by both real and shadow densities.
As for the pseudopotentials {vDC

ion,i(r⃗)} in Eq. (11), those terms relating
to the real and buffer ions are the same as that in vion,i(r⃗) in Eq. (1). On the
other hand, the vDC

ion,i(r⃗)’s relating to the external ions are modified at small
r so that no bound orbital exists on them. That is, while a relatively short
cutoff radius rc

L is used to calculate the local pseudopotential vL,i(r⃗) of an
external ion at r⃗ if the r⃗ corresponds to the angle within plus and minus 60◦

from the direction orienting from the external ion to the nearest-neighbor
buffer ion, a longer cutoff distance than rc

L is used if the condition does not
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meet. The non-local pseudopotentials by the external ions are assumed to
be zero.

Continuation of ρtot(r⃗) at the boundary S⃗bdry is a principal property that
should be held in the DC-RGDFT method. To realize this, the existing
method [36, 37] used a soft weight-function with the embedding potential in
a unique form. In the method, however, artificial density decrease of ρtot(r⃗)

occurs at around S⃗bdry even if the unweighted density ρI(r⃗) is accurate at the
location, as explained in a proceeding paragraph. We therefore take a differ-
ent route by introducing a potential in the KS-type equation to minimize the
possible difference in density at the boundary. Firstly, the density-template
potential defined as

vDT(r⃗) =
ρI(r) − ρtot(r)

α
(15)

is considered for domain-I with the adjustable parameter α (> 0). If ρI(r⃗) <
ρtot(r⃗), the vDT(r⃗) lowers the base of the potential in the KS-type equation
and hence acts to increase ρI(r⃗), and vice versa. Since the vDT(r⃗) should work

at around S⃗bdry only, we secondary introduce the support function wDT(r⃗) to

define a finite-depth layer just outside the S⃗bdry as depicted in Fig. 1(c):

wDT(r⃗) =
1

1 + exp[(r − dc)/b]
, (16)

where b = dc/2 and r is measured from S⃗bdry toward the outside. The
supported density-template potential wDT(r⃗)vDT(r⃗) is finally added to the
KS-type equation for domain-I [see, Eq. (11)]. Note that the wDT(r⃗)vDT(r⃗)
works on both real and shadow densities. We will demonstrate in the next
section that the supported density-template potential is effective to stabilize
the shadow density.

The ρI(r⃗) is assumed to decrease to zero as the r⃗ approaches to rmax.
Such abrupt decrease of ρI(r⃗) at peripheral grid points, which is an artifact
of introducing the domains, may modify the eigen orbitals and energies sub-
stantially. To minimize the modification, we consider the quantum embed-
ding effects [44] of the kinetic and exchange-correlation energies of electrons
by defining the embedding potential

vemb(r⃗) =
δTs(ρtot)

δρtot(r⃗)
− δTs(ρI)

δρI(r⃗)
+

δExc(ρtot)

δρtot(r⃗)
− δExc(ρI)

δρI(r⃗)
, (17)

where Ts =
∑Ne,I/2

n=1

∫
dr⃗φ∗

n(r⃗)(−∇2)φn(r⃗) and Exc is the exchange-correlation
energy. The LDA is applied to Ts and Exc. When ρI(r⃗) differs from ρtot(r⃗),
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the vemb(r⃗) acts to shift up or down the base of the potential to take into
account the many-body quantum effects of electrons. At a high density
situation with rs ≡ (3/4πρtot)

1/3/aB < 3, the Fermi degeneracy effect dom-
inates and thereby shifts up the averaged electron energy; at a low density
with rs > 3, the exchange-correlation effect dominates and shifts down the
averaged electron energy. Since the vemb(r⃗) should work only at the arti-
ficially decreasing tail of ρI(r⃗), the supported embedding potential defined
as [1 − wDT(r⃗)]vemb(r⃗) is added in the KS-type equation for domain-I [see,
Eq. (11)].

Let us compare the present method with existing similar methods. The
AODFT method uses the pre-computed AO basis set to describe the eigen
orbitals. To advance the AODFT method to the DC-type, only the classical
embedding effects of the Hartree and ionic Coulomb potentials are considered
with soft weight functions [30, 32, 33, 34]. Hence the DC-AODFT method
requires relatively thick buffer layers to obtain accurate results. As a side
effect of using the AO basis set, the shadow density relating to the buffer ions
fluctuates little in the DC-AODFT method. Therefore the density-template
potential is not considered in the DC-AODFT method.

Difference between the existing method in Ref. [36] and the present one is
clarified below. Both methods use the RGDFT method for each domain. In
Ref. [36], the quantum embedding effect of the kinetic energy is considered
for a domain in addition to the classical embedding effect of the Hartree
and ionic Coulomb potentials, while the density-template potential is not
considered. Hence the KS-type equation for domain-I in Ref. [36] contains
the embedding potential

vemb(r⃗) =
δTs(ρtot)

δρtot(r⃗)
−

(
δTs(ρ)

δρ

)
ρ=WI(r⃗)ρI(r⃗)

(18)

with a soft weight-function WI(r⃗). The method ignores the shadow density
and regards the real density as embedded in ρtot(r⃗). The method may cause
the following problem. Let us consider the case of applying the method
to a homogeneous system with a soft weight-function. In the case, the
ρI(r) should be nearly equal to ρtot(r) at around S⃗bdry. Since the inequality
WI(r⃗)ρI(r⃗) < ρtot(r⃗) holds for a thick region (relating to the softness of the

weight function) at around S⃗bdry, the embedding potential takes on positive
values, i.e., vemb(r⃗) > 0, in the region. It means that ρI(r⃗) will be suppressed
artificially in the region by vemb(r⃗) despite the intrinsic homogeneity of the
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system, resulting in inhomogeneity of ρtot(r⃗). In our formulation for the
embedding potential, no such an unphysical situation is expected to occur.

In Refs. [45, 46], both density-template and embedding potentials are ig-
nored in the KS-type equation for a domain. As in the present method, the
eigen orbitals are assumed to vanish outside the spherical grid points. The
radii (i.e., {rmax}) and locations of the domains are optimized adaptively
for a target system during the calculation. We will show in §3.2 that inclu-
sion of both potentials in the KS-type equation make the calculated density
and atomic forces have similar high accuracies irrespective of target systems
without such an optimization procedure.

In the DC-RGDFT method we calculate the forces on atoms as follows.
For an ion-i with charge number Zi at position R⃗i, we firstly identify the
basic domain I to which the ion belongs. Using the eigen orbitals and ρI(r⃗)

for domain-I, we then calculate the force F⃗i acting on atom-i based on the
Hellmann-Feynmann formula [8]:

F⃗i = −
∫

dr⃗vxc(ρI(r⃗) + ρc,I(r⃗))
∂ρc,I(r⃗)

∂R⃗i

−
∫

dr⃗
∂vL,i(r⃗)

∂R⃗i

ρtot(r⃗)

−
Ne,I/2∑
n=1

2〈φn|
∂vNL,i(r⃗)

∂R⃗i

|φn〉 +

̸=i∑
j

ZiZj(R⃗i − R⃗j)

|R⃗i − R⃗j|3
, (19)

where ρc,I(r⃗) is the partial core-charge density [47] of the real ions. The

atomic force, F⃗i, is explicitly independent of the weight function. We expect
the combination of the density-template and embedding potentials makes the
total density in the DC-RGDFT method comparable to that in the RGDFT
method, resulting in high accuracy in atomic forces.

3. Accuracy and timing

3.1. Implementation of DC-RGDFT method

The KS-type equation for each domain [Eq. (11)] is treated on the real-
space grid points that form a sphere. The grid size h is common to all the do-
mains. The KS-type equations are solved simultaneously for all the domains
by repeating the following SCF iteration procedure. As shown in Fig. 2, the
procedure for a given set of densities {ρI(r⃗)} is composed of the following
three major steps: (i) The local iteration in each domain about the orbitals
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by the conjugate gradient (CG) method [8, 11] with their mutual orthonor-
malization. The global Fermi energy is determined. (ii) The transferring
of data on the overlapping grid points between the domains with respect to
the weighted densities, {WI(r⃗)ρI(r⃗)}, and the corresponding Hartree poten-
tials. (iii) The update of the set of densities {ρI(r⃗)} using the Pulay mixing
method [48, 49].

For the step (i) we exploits the RGDFT code [13, 14, 21] that is paral-
lelized following the spatial decomposition strategy to treat the grid points
by multiple compute-nodes. The local CG iteration is repeated for about
3-5 times per orbital. It is composed of the updates of the orbitals and of
their Gram-Schmidt orthonormalization all together. The pre-conditioning
(or smoothing) of the gradients of the orbitals using the six nearest-neighbor
grid point data (two for each direction) with the relative weight 0.1 with
respect to the central point is important for numerical stability. The fourth
order finite difference method that uses nine data points for each direction is
adopted to evaluate the second derivative term; the possible error is order-
h10. Detail of the local CG iteration has been explained [13, 14, 21, 22, 23].

As for the step (ii), the communicator (or the group of compute-nodes) for
inter-domain communication is prepared for the MPI standard [50], in addi-
tion to the communicator for each domain for intra-domain communication.
For a given cutoff depth dc, the buffer ions are selected and then the maxi-
mum radius rmax for the spherical grid points is determined for each domain.
The overlaps of the spheres are pre-computed and saved for transferring of
data on the overlapping grid points between the domains. To compute the
Hartree potential relating to ρtot(r⃗), the Poisson equation for the weighted
density WI(r⃗)ρI(r⃗) is solved for each domain. If a grid point of a domain
overlaps to the point of a neighboring domain, the Hartree potential on the
point obtained by the Poisson solution for the domain is transferred to the
overlapping domain. To the non-overlapping (or far) domains, the multi-
pole data (up to the 8th order in the spherical harmonics) [51, 52] of the
weighted density are transferred instead of the Hartree potentials on the grid
points. The total Hartree potential is thereby constructed by summing those
contributions in each domain.

In the step (iii), the set of densities {ρI(r⃗)} is updated all together by the
Pulay method [48, 49]. The maximum of ten previous sets are used to get the
updated densities. For the next iteration, the eigen orbitals relating to the
updated density are evaluated in the subspace spanned by the orbitals ob-
tained at the last iteration. Thereafter the local iteration using the updated
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potentials in the KS-type equations repeats. Such a SCF iteration continues
for about 20-40 times until convergence that is judged using the residuals
for orbitals or the change of total energy. If the residuals are not sufficiently
small, we have the option to fix the {Ne,I} and the Hartree potential due to
the other domains to the averaged values in each domain, and to perform ad-
ditional several times iterations until sufficiently small residuals are obtained
in each domain.

3.2. Accuracy tests of DC-RGDFT method

To test the accuracy of the DC-RGDFT method for various materials
with different electronic characters, we consider three charge-neutral sys-
tems: semiconductor Si, metallic Al, and ceramic alumina. All the three
systems, rectangular in shape, are placed in vacuum. In the case of the Si,
the dimensions are (Lx, Ly, Lz) = (14.8 Å, 9.5 Å, 9.5 Å) and the total of 96
ions are arranged in the diamond crystalline structure. In the case of the Al,
(Lx, Ly, Lz) = (15.2 Å, 10.1 Å, 6.0 Å), the total of 96 ions in the fcc structure.
In the case of the alumina, (Lx, Ly, Lz) = (12.5 Å, 8.1 Å, 4.2 Å), the total
of 60 ions in the α-Al2O3 structure. As shown in Fig. 3, two basic domains
with equal size are set for each system; the boundary surface S⃗bdry is located
at Lx/2. The cutoff depth for the buffer ions is dc = {5.0 aB, 7.0 aB, 9.0 aB}
to see the dependence of the accuracy in atomic force on dc. In the case of
the Si, the numbers of buffer ions are 16, 24, and 32 for dc = 5.0 aB, 7.0 aB,
and 9.0 aB, respectively; 12, 24, and 36, in the case of the Al; 12, 18, and 22,
in the case of the alumina. The grid size h = 0.55 aB. For the O ions only, a
finer grid of h/3 is used to describe the local and non-local pseudopotentials.
The parameter α for the density-template potential in Eq. (15) is determined
heuristically as α = 0.033 in the atomic unit for all three systems. We note
that the calculated density and forces are not sensitive to the value of α. The
cutoff radii for the Coulomb potentials of the external ions [see, Fig. 1(b)]
are set also as: rc

L = 1.4 aB, 1.8 aB, and 1.5 aB, for Si, Al, and O ions,
respectively.

Figure 4 shows the ρ0(r⃗) of domain-0 in the Si system for dc = 5.0 aB. The
3D isosurface at 0.07 a−3

B is shown in Fig. 4(a); the 2D intensity map on Lz/2,
in Fig. 4(b). Besides, to see the effects of the density-template and embedding
potentials separately, the ρ0(r⃗) if only the density-template potential is used
is depicted in Figs. 4(c) and (d); the ρ0(r⃗), if only the embedding potential,
in Figs. 4(e) and (f). The ρ0(r⃗) in basic domain-0 appears to be unaffected
by changing the potential setting. On the other hand, the ρ0(r⃗) outside
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basic domain-0 (i.e., the shadow density) differs substantially between the
potential settings. If only the density-template potential is used, the shadow
density extends much to the x-direction (i.e., toward the other domain) as
seen in Figs. 4(c) and (d). This is expected because the density-template

potential, which works at around the boundary S⃗bdry in the buffer region,
acts to make ρ0(r⃗) close to ρtot(r⃗) at the region. As seen in Figs. 4(e) and (f),
the embedding potential only is not sufficient to stabilize the shadow density
of ρ0(r⃗). Though the partial shadow-density [1 − W0(r⃗)]|φi(r⃗)|2 of eigen

orbital-i, which exists outside basic domain-0 near the boundary S⃗bdry, gives
no contribution to ρtot(r⃗), variation of the partial shadow-density affects not
only the φi(r⃗) itself but also all the other eigen orbitals in domain-0 through
the orthogonality relation. Stability of the shadow density is essential for
both fast convergence in the SCF iteration and accurate atomic forces.

Similar analyses about the calculated ρ0(r⃗) are performed for both Al and
alumina systems with dc = 5.0 aB as depicted in Figs. 5 and 6, respectively.
For the Al system, the 3D isosurface at 0.02 a−3

B is shown; the 3D isosurface
at 0.04 a−3

B for the alumina system. As has been found for the Si system, the
embedding potential alone cannot produce the shadow density properly for
both Al and alumina systems. Substantial spatial fluctuation of the shadow
density occurs if the embedding potential alone is used for the Al system,
while abrupt decrease of the shadow density at around the distance of dc from
the S⃗bdry is seen for the alumina system. In both Al and alumina systems, the
density-template potential acts to extend ρ0(r⃗) to the x-direction in similar
ways to the case of the Si system.

The total density calculated as ρtot(r⃗) = W0(r⃗)ρ0(r⃗)+W1(r⃗)ρ1(r⃗) is plot-
ted in Figs. 7(a) and (b) for the Si system, in Figs. 7(c) and (d) for the Al
system, and in Figs. 7(e) and (f) for the alumina system. In Figs. 7(a), (c),
and (e), the 3D isosurfaces at the same density values as in Figs. 4–6 are
plotted with the ions drawn by the spheres. Figures 7(b), (d), and (f) are
the corresponding 2D mappings of density on the Lz/2 surfaces. The ρtot(r⃗)
agrees accurately with that obtained separately by the RGDFT method; the
maximum deviation in density is smaller than 10−4a−3

B .
We proceed to analyze the accuracy of atomic forces in the DC-RGDFT

method. We define the deviations of the forces {δFi ≡ |F⃗i − F⃗ref,i|} from the

reference values {F⃗ref,i} calculated by the RGDFT method with the same grid
size h. Table I lists the maximum and average of {δFi} over all the atoms in
the system for various dc = 5.0 aB, 7.0 aB, and 9.0 aB; the Si, Al, and alumina
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systems are considered. For the Si and alumina systems, both maximum and
average of {δFi} decrease significantly as the dc increases. Less significant
decreasing behavior relating to the increase of dc is seen for the Al system.
We guess that it is a result of relatively long nature [53, 54] of the density
correlation in a metallic system as Al. For all the three systems the maximum
of {δFi} is equal or smaller than 0.01 a.u. (1 a.u. of force ≈ 51.4 eV/Å) for
dc = 5.0 aB, which corresponds to a virtual shift of an atom by as small as
0.01–0.02 Å. We may state that the setting of dc = 5.0 aB gives sufficient
accuracy in atomic forces for dynamics simulations of all three systems.

We demonstrate the importance of combining the density-template and
embedding potentials to realize accurate atomic forces in the DC-RGDFT
method. The maxima of {δFi} for the (Si, Al, alumina) systems calculated
for dc = 5.0 aB with neither the density-template nor the embedding potential
are (0.060 a.u., 0.0071 a.u., 0.115 a.u.); (0.242 a.u., 0.025 a.u., 0.32 a.u.) if
only the embedding potential is used; (0.031 a.u., 0.0045 a.u., 0.019 a.u.)
if only the density-template potential is used. Since the maxima of {δFi}
calculated with density-template and embedding potentials are (0.0109 a.u.,
0.0042 a.u., 0.0094 a.u.) as shown in Table I, it is clear that the combination
of both potentials make the maximum of {δFi} small for all three systems.

If we use the existing method in Ref. [36] with the same settings of dc =
5.0 aB and the stepwise weight-functions {WI(r⃗)}, the maximum and average
of {δFi} are respectively, 0.34 a.u. and 0.025 a.u. for the Si system; 0.098 a.u.
and 0.026 a.u. for the Al system; 0.41 a.u. and 0.033 a.u. for the alumina
system. Relatively large errors in atomic forces result.

3.3. Timing tests of DC-RGDFT code on parallel machines

In this subsection, we perform timing tests of the DC-RGDFT code using
two parallel machines with different architectures: one is TSUBAME2.0 at
Tokyo Institute of Technology (Intel Xeon X5670 2.93GHz, InfiniBand QDR)
and the other is Fujitsu FX1 at Nagoya University (SPARC64 VII 2.5GHz,
InfiniBand DDR). For the target systems, we consider charge-neutral Al crys-
talline systems in vacuum. The numbers of Al ions Nion are 48, 384, 1296,
3072, 3840, and 6000, which are treated by the DC-RGDFT method with
Nd ≡ Nd,xNd,yNd,z domains arranged in 3D as (Nd,x, Nd,y, Nd,z) = (1, 1, 1),
(2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 4, 4), and (5, 5, 5), respectively. Each basic do-
main is a collection of the same numbers (Ncell,x, Ncell,y, Ncell,z) = (3, 2, 2) of
cells of the fcc unit composed of four ions, which therefore contains 48 real
ions with varying number of buffer ions depending on both location of the
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domain and Nd. The cutoff depth for the buffer ions is set as dc = 5.0 aB.
Each domain that contains the real and buffer ions is treated with twelve
compute-nodes (or CPU cores) of a parallel machine by spatially dividing
the spherical grid points into three, two, and two in the x, y, and z direc-
tions, respectively. Therefore the computation power increases linearly with
Nion. The number of the SCF iterations is fixed to 25. The vacuum radius,
which is added to the minimum radius of the sphere that encloses the real
and buffer ions, is set to 6.0 aB. The grid size h = 0.85 aB because the error
in atomic force is order 0.01 a.u. Five runs with Nion = 48, 384, 1296, 3072,
and 6000 are performed on TSUBAME2.0, while five runs with Nion = 48,
384, 1296, 3072, and 3840 on FX1.

Figure 8(a) shows the results of the wall-clock time for TSUBAME2.0
required to calculate the eigen orbitals and atomic forces starting with the
random number orbitals, for various cases of Nion. For references, the times
required when the RGDFT method is used with the same number of compute-
nodes for the same target systems are plotted. We find in Fig. 8(a) that the
time for the DC-RGDFT method increases substantially up to Nd = 33. It
is because the maximum number of the buffer ions for the domains, which
corresponds to that for the central domain in the 3D arrangement of domains,
increases up to the case of Nd = 33 and becomes constant for Nd = 43 and
53. The time saturates for Nd ≥ 43, relating to the order-N scaling nature of
the DC-RGDFT method. It is also clear in Fig. 8(a) that the DC-RGDFT
method is much faster the RGDFT method as expected.

Let us consider about the inter-domain communication time that emerges
when the RGDFT method is advanced to the DC-type. Dominant contribu-
tion of the inter-domain communication is the transferring of both weighted
density and corresponding Hartree potential on the overlapping grid points
of two spheres with radii {rmax}. The rmax = 21.2–25.5 aB in the present
systems. The domain centers form a deformed rectangular lattice with the
x, y, and z spacings of 18.7–23.0 aB, 11.1–15.3 aB, and 11.1–15.3 aB, re-
spectively. Therefore the inter-domain communication about the grid point
data grows substantially until (Nd,x, Nd,y, Nd,z) = (5, 5, 5). In the case of
(Nd,x, Nd,y, Nd,z) = (5, 5, 5) the central domain, for instance, communicates
with 100 domains, while the edge domain with 33 domains. Such a inter-
domain communication is performed in parallel between the nodes. The
amount of inter-domain communication data averaged over the nodes is
14.1 MB for (Nd,x, Nd,y, Nd,z) = (2, 2, 2) during the 25 times SCF iterations,
35.5 MB for (Nd,x, Nd,y, Nd,z) = (3, 3, 3), 67.8 MB for (Nd,x, Nd,y, Nd,z) =
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(4, 4, 4), and 72.7 MB for (Nd,x, Nd,y, Nd,z) = (5, 5, 5). Figure 8(b) shows the
inter-domain communication time as well as the total computation time for
FX1. The total computation time for FX1 is about twice of that for TSUB-
AME2.0. We find in Fig. 8(b) that the inter-domain communication time
averaged over the nodes is less than 1% of the total computation time in
all cases for FX1. Similar small fraction of the inter-domain communication
time is expected for TSUBAME2.0 also though we have not measured it in
the present tests.

4. Summary and concluding remarks

In the present paper, we have developed the DC-RGDFT method for
various materials by advancing the existing formulation in Ref. [36]. In the
Kohn-Sham-type equation for a domain, we have introduced the density-
template potential for the density continuity with the simple stepwise weight-
functions. We have also introduced the embedding potential to take into
account all the quantum correlation effects with other domains in addition
to the classical embedding effects of electronic and ionic Coulomb potentials.
We have thereby obtained reasonable accuracies in atomic forces for various
materials including the semiconductor Si, the metallic Al, and the ceramic
alumina with relatively small numbers of buffer ions. The timing tests of
the DC-RGDFT code on parallel machines have demonstrated the order-N
scaling of it with little communication time between the domains.

As stated in §1, we plan to use the DC-RGDFT method as the QM
method in the hybrid QM-CL simulation for various problems. One of the
problems is the Li transport in the Li-ion battery. In the Li-ion battery,
there forms the solid-electrolyte interphase (SEI) [55] on both negative and
positive electrodes by electrochemical reactions. Graphite has been used as
the negative electrode. The SEI is considered to help stabilize the electrodes,
while the Li transport through the SEI is a principal process that determines
the performance of the battery. Understanding the microscopic structure of
the SEI formed on the graphite and the Li transport through that, is crucial
to advance the Li-ion battery. One of the model molecules that form the SEI
on the graphite is the dilithium ethylene dicarbonate (Li2EDC) [56]. We have
started to apply the DC-RGDFT method to simulate the Li2EDC-based SEI
system at around the graphite. Figure 9(a) depicts the QM region composed
of C, H, O, and Li in the hybrid QM-CL simulation of such a system, which is
treated with four domains in the DC-RGDFT method. Figure 9(b) shows the
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isosurfaces at 0.03 a−3
B , 0.1 a−3

B , and 0.3 a−3
B of the calculated total density.

No density discontinuity is observed at the boundary. The calculated density
agrees quite well with that obtained with the RGDFT method. The atomic
forces, whose accuracy is crucial for the dynamics, compare well with that in
the RGDFT method.

Further advancement of the DC-RGDFT code is in progress. It is desir-
able to obtain the total energy in the DC-RGDFT method to calculate, for
instance, the barrier energy of a chemical reaction process. To obtain accu-
rate total energy, we need to minimize the artificial effects from the buffer
region on the total energy. Note that the total energy in the DC-RGDFT
method cannot be decomposed explicitly to the contributions of atomic pairs
unlike in the AO-based approach. Critical examination of the accuracy of
the total energy is in progress. It is also often desirable to obtain the eigen
orbitals that may spread over the total system at around the Fermi level
when one tries to investigate the mechanism of a chemical reaction. A post
calculation will be added to obtain the global eigen orbitals for the calculated
total density without performing the SCF iteration.

Acknowledgements

This research was supported by JST Core Research for Evolutional Sci-
ence and Technology (CREST), JSPS KAKENHI (23310074), and MEXT
Strategic Programs for Innovative Research (SPIRE) and Computational
Materials Science Initiative (CMSI) of Japan. The benchmark tests were
carried out on TSUBAME2.0 at Global Scientific Information and Comput-
ing Center of Tokyo Institute of Technology supported by the MEXT Open
Advanced Research Facilities Initiative, and on Fujitsu FX1 at Information
Technology Center of Nagoya University. The density plots were made using
the visualization package VESTA [57].

References

[1] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.

[2] W. Kohn, L. Sham, Phys. Rev. 140 (1965) A1133.

[3] R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules
(Oxford Sci. Pub., New York, 1994).

18



[4] J.H. Fendler, Ed., Nanoparticles and Nanostructured Films (Wiley-
VCH, New York, 1998).

[5] R. Ghodssi, P. Lin, MEMS Materials and Processes Handbook
(Springer, Berlin, 2011).

[6] A. Nakano, R.K. Kalia, P. Vashishta, Sci. Programming 10 (2002) 263.

[7] A. Nakano, M.E. Bachlechner, P. Branicio, et al., IEEE Trans. Electron
Devices 47 (2000) 1804.

[8] M.C. Payne, M.P. Teter, D.C. Allan, et al., Rev. Mod. Phys. 64 (1992)
1045.

[9] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.

[10] E. Bichoutskaia, Ed., Computational Nanoscience, RSC Pub., Cam-
bridge, 2011.

[11] e.g., W.H. Press, S.A. Teukolsky, W.T. Vetterlin, et al., Numerical Re-
cipies in Fotran77, 2nd Ed. (Cambridge Univ. Press, New York, 1992).

[12] e.g., N. Bernstein, J.R. Kermode, G. Csányi, Rep. Prog. Phys. 72 (2009)
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Table 1: The maximum and average of the deviations of the atomic forces {δFi = |F⃗i −
F⃗ref,i|} obtained by the DC-RGDFT method for various systems depicted in Fig. 3 with
various cutoff depths dc’s for the buffer ions. The reference values {F⃗ref,i} are calculated
by the RGDFT method. (1aB ≈ 0.529 Å, 1 a.u. of force ≈ 51.4 eV/Å).

system dc (aB) (δF )max (a.u.) (δF )ave (a.u.)
Si96 5.0 0.0109 0.0018
Si96 7.0 0.0034 0.0009
Si96 9.0 0.0028 0.0009

Al96 5.0 0.0042 0.0023
Al96 7.0 0.0040 0.0022
Al96 9.0 0.0040 0.0021

Al24O36 5.0 0.0094 0.0022
Al24O36 7.0 0.0037 0.0011
Al24O36 9.0 0.0037 0.0008
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Figure 1: (a) Schematic 2D view of the division of a target system into basic domains
in the DC-RGDFT method. The dots represent the ions. The boundary surfaces S⃗bdry

are indicated with the lines. (b) Identification of all the ions as either the real, buffer,
or external ones for domain-1 in (a). The cutoff depth dc and the maximum radius rmax

of the spherical grid points for domain-1 are depicted with the boundary surfaces. (c)
Contour map of the support function, wDT(r⃗), for domain-1 in (b).
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Figure 6: The same as Fig. 4, but for the Al24O36 system with the isosurfaces at ρ0(r⃗) =
0.04 a−3
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Figure 7: The x-y views of ρtot(r⃗) calculated with two domains by the DC-RGDFT
method. The dc = 5.0 aB. The grid size h = 0.55 aB. (1aB ≈ 0.529 Å). The (a)
and (b) relate to the Si96 system in Fig. 3; (c) and (d), to the Al96 system; (e) and (f), to
the Al24O36 system. The isosurfaces are drawn at ρ0(r⃗) = 0.07 a−3

B with blue dots for the
Si ions in (a), at 0.02 a−3

B with blue dots for the Al ions in (c), and at 0.02 a−3
B with blue

(red) dots for the Al (O) ions in (e). The (b), (d) and (f) depict the 2D intensity maps on
the middle surfaces perpendicular to the z-direction.
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Figure 8: The wall-clock times to calculate the atomic forces of the charge-neutral crys-
talline Al systems in vacuum composed of Nion Al ions and electrons by the DC-RGDFT
method using Ncore CPU-cores of either (a) TSUBAME2.0 or (b) Fujitsu FX1. The grid
size h = 0.85 aB. (1aB ≈ 0.529 Å). The number of SCF iteration is fixed to 25. A
domain contains 48 real ions and a varying number of buffer ions, which is treated with
12 CPU-cores. The inter-domain communication times averaged over the CPU-cores are
plotted also in (b). For references, the corresponding results for the RGDFT method are
plotted by the dashed curve in (a).
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Figure 9: (a) A typical QM region selected in the hybrid QM-CL simulation of the solid-
electrolyte interphase (SEI) of the graphite (negative) electrode of the Li-ion battery. The
SEI is made of a model molecule, the dilithium ethylene dicarbonate. The QM region is
treated with four domains by the DC-RGDFT method. (b) The isosurfaces at 0.03 a−3

B ,
0.1 a−3

B , and 0.3 a−3
B of the total density of the system in (a) calculated by the DC-RGDFT

method. (1aB ≈ 0.529 Å).
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