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Abstract.

In transcranial magnetic stimulation (TMS), the distribution of the induced
electric field, and the affected brain areas, depend on the position of the
stimulation coil and the individual geometry of the head and brain. The
distribution of the induced electric field in realistic anatomies can be modelled
using computational methods. However, existing computational methods for
accurately determining the induced electric field in realistic anatomical models
have suffered from long computation times, typically in the range of tens of
minutes or longer. This paper presents a matrix-free implementation of the finite-
element method with geometric multigrid method that can potentially reduce
the computation time to several seconds or less even when using an ordinary
computer. The performance of the method is studied by computing the induced
electric field in two anatomically realistic models. An idealized two-loop coil is
used as the stimulating coil. Multiple computational grid resolutions ranging from
2 to 0.25 mm are used. The results show that, for macroscopic modelling of the
electric field in an anatomically realistic model, computational grid resolutions of
1 mm or 2 mm appear to provide good numerical accuracy compared to higher
resolutions. The multigrid iteration typically converges in less than ten iterations
independent of the grid resolution. Even without parallelization, each iteration
takes about 1.0 s or 0.1 s for the 1 mm and 2 mm resolutions, respectively. This
suggests that calculating the electric field with sufficient accuracy in real time is
feasible.

PACS numbers: 87.10.Kn, 87.50.C-, 87.19.L-, 87.80.-y

Submitted to: Phys. Med. Biol.

1. Introduction

Transcranial magnetic stimulation (TMS) is a noninvasive technique for exciting the
cortex or disturbing its function. In TMS, a strong pulse of electric current is passed
through a coil that is placed over the scalp. The coil produces a time-varying magnetic
field that penetrates into the head. The magnetic field induces an electric field that
can depolarize cell membranes in the brain.

The distribution of the induced electric field, and the affected brain areas, depend
not only on the positioning and orientation of the coil but also on the individual
geometry of the head. The geometry of the head is heterogeneous, featuring various
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tissue types with highly variable electrical properties. For instance, the electric field
can be greatly affected by the distance between the scalp and cortex, distribution
of the cerebrospinal fluid (CSF), and orientation of the gyri. Several recent studies
have investigated the induced electric field in realistic models of the head and brain
using computational techniques (Chen and Mogul 2010, Opitz et al 2011, Thielscher
et al 2011, Sekino et al 2006, Salinas et al 2009, De Geeter et al 2011, Bijsterbosch
et al 2012). However, high-resolution computer simulations may require restrictively
long computation times in the range of tens of minutes to hours (De Geeter
et al 2011, Windhoff et al 2012, Chen et al 2012). This limits the applicability of
computational modelling towards personalized optimization of TMS coil positioning
or real-time analysis of the induced electric field.

Computational methods for determining the induced electric field in heteroge-
neous anatomical models are based on the quasi-static approximation of Maxwell’s
equations. Under the quasitatic approximation, the TMS induced electric field can
be represented in terms of the electric scalar potential which satisfies an elliptic
partial-differential equation. The equation is discretized using finite-element or finite-
difference methods and the resulting large linear equation system is solved numerically.
One of the most efficient methods for solving such equation systems is the geometric
multigrid method (Yavneh 2006), which has not yet been widely adopted in compu-
tational electromagnetics. The computational complexity of the geometric multigrid
method is linear and it can be parallelized efficiently, making it superior to other
methods for problems with a very large number of unknowns. The disadvantage of
the geometric multigrid method is that, unlike for the case of generic matrix equation
solvers, the implementation needs to be customized for each individual application, as
the method exploits the structure of the underlying differential equation and geometry.

This paper presents a matrix-free implementation of the geometric multigrid
method for the finite-element method (FEM) discretization of the electric scalar
potential equation. Theory of multigrid methods has been studied extensively and is
available elsewhere (see e.g. Yavneh (2006) for textbook references), so this paper will
focus on how the method can be applied to electric field calculations in anatomically
realistic models. The effectiveness of the method is demonstrated by computing the
induced electric field in two anatomically based models. Particularly, we investigate
the effects of computational voxel size and a sufficient convergence criterion that
minimizes the computation time while providing good accuracy in computed electric
field.

2. Computational methods

2.1. Finite element method for the scalar-potential equation

At low frequencies where the quasistatic approximation is valid, the electric scalar
potential can be solved from (Wang and Eisenberg 1994)

∇ · σ∇φ = −∇ · σA′

0, (1)

where φ is the induced electric scalar potential, σ is the conductivity and A′

0 is the
time derivative of the magnetic vector potential. The induced electric field can be
calculated from the gradient of the scalar potential by E = −∇φ−A′

0.
Equation (1) can be discretized in various ways using finite-difference methods

(Dawson et al 1996, Dawson and Stuchly 1998) or the FEM. The discretization in this
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Figure 1. Eight voxels with the unknown nodal values at the corners. The voxels
are labelled from 1 to 8. The subscripts of each nodal value denote the voxels
that are adjacent to the node.

study employs the Galerkin FEM with trilinear node-based basis functions in cubical
elements that correspond to the cubical voxels of the anatomical models, similarly to
(Ilvonen and Laakso 2009). Because the elements form a regular grid, the elements of
the FEM system matrix can be calculated analytically. Each row (corresponding to
one node in the grid) of the resulting equation system is of the form

1

h2




8

3
σ12345678φ−

1

6
(σ12φ12 + . . .+ σ78φ78)
︸ ︷︷ ︸

12 terms

−
1

12
(σ1φ1 + . . .+ σ8φ8)
︸ ︷︷ ︸

8 terms



 (2)

=

∫

σA′

0 · ∇ψdV = f. (3)

where h is the voxel side length, φ is the unknown nodal value of the potential, φ with
subscripts are the potentials at the neighbouring nodes (figure 1), σ with subscript is
the arithmetic average of the conductivity over the specified voxels in figure 1, and ψ is
the piecewise trilinear basis function corresponding to the nodal value φ. The integral
f on the right-hand side can be calculated using numerical integration rules. In this
work, the mid-ordinate integration rule (first-order Gaussian quadrature) is applied
in the centre of each voxel. The boundary condition of zero normal component for
the induced current on the surface of the body follows from (2) automatically, and
does not need to be taken into account explicitly. The equation system consisting
of equations of the form (2) is underdetermined up to a constant but still converges
without problems because neither the residual of the solution nor the electric field
depend on the constant term in the potential.

2.2. Geometric multigrid method

The geometric multigrid method is a method for solving linear equation systems that
result from the discretization of elliptic partial difference equations, such as the scalar
potential equation (1). The basic principle of the geometric multigrid method is to use
multiple numerical grid sizes to speed up the convergence of the numerical solution.
The following presents the outline of implementing the geometric multigrid method
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Algorithm 1 Geometric multigrid method for solving the FEM discretization of the
scalar potential equation. The number of multigrid levels is L. SOR stands for the
successive over-relaxation.

1: create 3D conductivity table σh from anatomical data

2: create the coarse grid conductivity tables σ2h, . . . , σ2
L−1h, from σh

3: calculate source fh from vector potential by (3)
4: φh = 0 (initial guess for the potential)
5: repeat

6: φh = V-cycle(φh, σh, fh, h)
7: until converged

8: procedure φh = V-cycle(φh,σh,fh,h)
9: φh = SOR(φh, σh, fh, h, ν = 3) ⊲ Do ν = 3 steps of SOR.

10: rh = Residual(φh, σh, fh, h) ⊲ Calculate residual
11: f2h = Restrict(rh) ⊲ Transfer the residual to coarse grid
12: φ2h = 0 ⊲ Initial guess for the coarse grid correction
13: if σ2h is the coarsest grid then

14: φ2h = SOR(φ2h, σ2h, f2h, 2h, ν = 100) ⊲ Coarsest grid level
15: else

16: φ2h = V-cycle(φ2h, σ2h, f2h, 2h) ⊲ Solve coarse-grid correction recursively
17: end if

18: φh = φh + Prolongate(φ2h) ⊲ Transfer the correction to fine grid
19: φh = SOR(φh, σh, fh, h, ν = 1) ⊲ Do ν = 1 steps of SOR.
20: end procedure

for solving the FEM discretization of the scalar potential equation in anatomically
realistic voxel models. For more detailed theory and implementation, see e.g. Yavneh
(2006), Hülsemann et al (2006), and the references therein.

In the following, the computational domain is assumed to be rectangular with
dimensions lx × ly × lz. The domain is divided evenly into cubical voxels with a

side length of h. Table σh ∈ R
lx
h
×

ly

h
×

lz
h contains the conductivity values of each

voxel. Likewise, tables φh, rh, fh ∈ R
lx+h

h
×

ly+h

h
×

lz+h

h contain the nodal values of the
potential, residual, and source term, respectively.

Algorithm 1 shows the flow of the geometric multigrid method for solving the
scalar potential equation. The main part of the method is the V-cycle loop that
consists of multiple progressive calls to successive over-relaxation (SOR), residual
calculation, restriction, and prolongation operations. These operations and the
generation of the coarse grids are briefly outlined in the following subsections. Note
that, except for minor modifications described below, the principal structure of the
V-cycle is practically unchanged from its textbook form (Yavneh 2006, Hülsemann
et al 2006). In the usual implementation of the geometric multigrid method, the
problem for the coarsest grid level on line 14 is solved exactly. In this work, this step
was replaced by 100 steps of the SOR, which was observed to provide almost equally
fast convergence with the benefit of slightly simpler implementation. Line 19 was
skipped for the finest grid as it is directly followed by line 9 of the next iteration.
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2.2.1. Creating the coarse grids In this work, it is assumed that anatomical data
is represented in a regular grid of cubical voxels. Such a grid can be obtained by
segmentation of anatomical images or from available ready-made anatomical models.
Each voxel is assigned an electrical conductivity value that depends on the tissue type
of the voxel. The resulting 3D table is the conductivity σh of the finest grid level for
the geometric multigrid method. For implementation, it is useful to add empty layers
around σh so that the grid size in each direction is divisible by 2L−1, where L is the
number of multigrid levels.

The coarse-grid conductivity tables are constructed from the fine-grid
conductivity such that each voxel in the coarse grid (voxel side length 2h) consists
of eight fine-grid voxels (h). The coarse conductivity σ2h in each coarse-grid voxel is
set to an arithmetic average

σ2h =
1

8

8∑

i=1

σh
i ,

where σh
i are the conductivity values of the eight fine-grid voxels that constitute one

coarse grid voxel.

2.2.2. SOR One step of the elementary SOR iteration for the equation (2) is of the
form: Visit all nodes in succession, and at each node do

φ = (1 − ω)φ+ ω
h2f + 1

6
(σ12φ12 + . . .+ σ78φ78) +

1

12
(σ1φ1 + . . .+ σ8φ8)

8

3
σ12345678

, (4)

where the notation is similar to (2) and over-relaxation parameter ω = 1.4. This value
was found to provide good performance for a head-sized model.

2.2.3. Residual The residual is calculated by visiting all nodes in succession, and at
each node residual r is set to

r = f −
1

h2

(
8

3
σ12345678φ−

1

6
(σ12φ12 + . . .+ σ78φ78)−

1

12
(σ1φ1 + . . .+ σ8φ8)

)

, (5)

where the notation is similar to (2).

2.2.4. Restriction Because of the node-based basis functions, the restriction
operation that is used for transferring the residual from the fine grid to the coarse
grid is full weighting, i.e., each nodal value in the coarse grid is an integral average
of the fine-grid residual over eight voxels in the fine grid. Because the residual is
piecewise trilinear, the residual everywhere over the eight voxels is determined by its
values at the 27 nodes that correspond to the corners of the eight voxels. Hence, the
integral average can be written as a weighted average of a total of 27 nodal values

f2h =
27∑

i=1

Cir
h
i ,

where f2h is the coarse grid source term. Terms rhi and Ci are the fine grid residual
and the weighting factors at the 27 fine-grid nodes (figure 2).
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Figure 2. Weighting factors for the restriction operation in one octant of a
cubical voxel (the centre of the voxel is lower right).

2.2.5. Prolongation The potential in the coarse grid is assumed to be node-based
and piecewise trilinear, so the prolongation operation for transferring the potential
from the coarse grid to the fine grid is (tri)linear interpolation

φh = Interpolate(φ2h).

Consequently, the fine grid potential φh at each node is an arithmetic average over
either one, two, four, or eight nodal values of the coarse grid potential φ2h, depending
on the node.

2.2.6. Memory requirements In the presented implementation, four large 3-D floating
point tables are required: the conductivity (or multiple conductivity tables if tissue
anisotropy is modelled), the unknown potential, the right-hand side source vector,
and the residual. The same four tables are also required for all of the coarse grids
which results in approximately 14% (1/8+1/64+ . . .) increased memory requirements.
In the case of anatomical head models, as much as 60% of the tables may be filled
with air, which is not used in calculations, but takes up memory. Note that storing
one vector field (such as the electric field or the vector potential) in the same grid
would require three 3-D floating point tables. Therefore, if there is enough memory
for processing the final electric field, then there should be no problems with memory
during the simulation. With double-precision floating point numbers, a model of
the head with 0.5 mm resolution requires at least 2.5 GB memory. Whenever the
resolution is doubled (halved), the required memory is multiplied (divided) by eight.

2.3. Convergence analysis

In the following, the convergence of the numerical solution is reported in terms of the
relative residual, which is defined as the Euclidean vector norm of the residual divided
by the norm of the source term

relative residual =
‖rh‖2
‖fh‖2

.

The relative residual is a measure for the algebraic (or truncation) error of the solution
of the equation system (2). The algebraic error is separate from the discretization
error that results when the scalar potential equation (1) is replaced by its discrete
counterpart using the FEM.
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The final result, the induced electric field, is the gradient of the potential, so it
is more sensitive to numerical error than the potential. The algebraic error of the
electric field is investigated in terms of the maximum norm

electric field error =
max |E−Eref |

E99

,

where the maximum is taken over the whole head. The reference electric field Eref and
the 99th percentile of its absolute value E99 (taken over the whole head) have been
calculated from the potential converged to the machine precision. In practice, the error
in the electric field can not be calculated during the iteration, as the reference electric
field is not available. In this study, all simulations were performed two times: first,
the reference electric field was determined and then, the convergence of the electric
field was investigated.

2.4. Measuring computation time

The computation time is reported in terms of the elapsed real time (‘wall time’),
not including any preprocessing steps (lines 1–4 in algorithm 1). In this work all
simulations were run on the same workstation with a 12-core Intel Xeon X5690
processor running Ubuntu Linux. The presented simulation times are for the case
when the code is run without parallelization using only single thread. The SOR,
restriction and prolongation operations were implemented as MATLAB mex functions
which were written in the C programming language and compiled using gcc version
4.6.3 with the -Ofast optimization flag. The main V-cycle loop, from which the mex

functions were called, was implemented using MATLAB (version R2011b, MathWorks,
Inc.). Double-precision floating point numbers were used.

3. Models

3.1. TMS coil model

Several types of coil designs have been used for TMS (Deng et al 2012). Realistic
TMS coils can be modelled using combinations of hundreds of infinitesimally short
magnetic dipoles (Ravazzani et al 1996, Thielscher and Kammer 2002, Thielscher and
Kammer 2004) or 3D models of coil wires (Salinas et al 2007, Bijsterbosch et al 2012).

Since the purpose of this work is not to investigate the effects of coil design, we
have used an idealized figure-8 coil that consists of two circular current loops with
a diameter of 5 cm. Each current loop has been modelled as a combination of 314
short magnetic dipoles, similarly to the study of Thielscher and Kammer (2004). More
realistic coils could be modelled similarly (Thielscher and Kammer 2004, Thielscher
et al 2011). Calculating the magnetic vector potential from the dipoles needs to be
done only once for a single coil model, after which the vector potential for different
coil positions can be obtained quickly by shifts and rotations. The figure-8 coil is
positioned over the left hemisphere, roughly 3 cm left from the mid-sagittal plane at
a height of 5 mm from the scalp. The position of the coil corresponds to no specific
coil position in clinical or research applications. The coil current is assumed to vary
sinusoidally at a frequency of 3 kHz.
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Figure 3. Position of the ideal figure-8 coil for the DUKE (left) and ELLA (right)
models. The dots show the location of the dipoles that comprise the coil model.

3.2. Anatomical models

The TMS induced electric fields are determined in Caucasian male (DUKE) and
female (ELLA) models (Christ et al 2010). Originally, the models comprise surface
representation of tissues that has been constructed from MR images of a 34-year-old
Caucasian male and 26-year-old Caucasian female. The same models have been used
earlier for simulations of the TMS in the study of Bijsterbosch et al (2012). The
original resolution of the MR images was 0.5 mm×0.5 mm×1 mm (Christ et al 2010).
For this work, three uniform rectangular grids of cubical voxels with side lengths 2 mm,
1 mm, and 0.5 mm have been extracted from the surface data. For investigating the
effect of voxel size on the computation speed, an additional 0.25 mm resolution model
has been created from the 0.5 mm model by dividing each voxel evenly into eight new
voxels.

The models contain no information about possible anisotropy inside the voxels,
so each voxel is assigned an isotropic conductivity value. The conductivities of tissue
types at 3 kHz have been obtained from Gabriel’s four Cole-Cole model (Gabriel
et al 1996). If the anisotropy of, for example, white matter were modelled, the overall
structure of the method would stay unchanged, but minor modifications would be
needed in discretization of the scalar-potential equation and coarse-grid generation.

A weakness of a rectilinear grid compared to a conformal tetrahedral mesh is that
curved boundaries generally need to be modelled using staircase approximation. This
results in spurious hotspots in the calculated electric field at tissue boundaries (Dawson
et al 2002, Laakso and Hirata 2012b). In the study of Bijsterbosch et al (2012), the
spurious electric field hotspots were removed by postprocessing. In this work, to
prevent the generation of hotspots, the conductivity of the voxels was preprocessed
similarly to our previous studies (Laakso and Hirata 2012b, Laakso and Hirata 2012a).
The conductivity was smoothed by averaging it over a small sphere-like volume. For
the resolutions of 2 mm, 1 mm, 0.5 mm, and 0.25 mm, the smoothing volumes were
a star (seven voxels), a 3×3×3 cube (27 voxels), a 5×5×5 cube with rounded corners
(93 voxels), and an approximately spherical volume (895 voxels), respectively. The
smoothing was performed after line 1 in the multigrid algorithm (algorithm 1).
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Figure 4. Normalized amplitude of the electric field on the surface of the cortex
of the DUKE model for voxel sizes of 0.5 mm (left), 1 mm (middle), and 2 mm
(right). Streamlines show the direction of the induced electric field in the head.
The amplitude has been normalized such that the volume of brain tissue where
the electric field is higher than 1.00 is 0.04 cm3 for the 0.5 mm voxel size.

Figure 5. Normalized amplitude and direction of the induced electric field on
the cortex of the ELLA model for voxel sizes of 0.5 mm (left), 1 mm (middle),
and 2 mm (right).

4. Results

The performance of the implemented code was verified by comparison with the analytic
solution in a layered sphere exposed to the magnetic field of a short magnetic dipole.
The results were exactly (to the machine precision) similar to those reported in our
previous study (Laakso and Hirata 2012b).

Figures 4 and 5 show the electric field induced by the magnetic field of the figure-8
coil for voxel sizes of 0.5 mm, 1 mm, and 2 mm for the DUKE and ELLA models,
respectively. At a glance, the distribution and direction of the induced electric field
are similar for all voxel sizes. Compared to 0.5 mm and 1 mm voxel sizes, the 2 mm
voxel size provides clearly coarser looking result, yet the locations of the peak electric
fields and the direction of the induced current match closely those calculated with
the finer voxel sizes. The highest cortical electric field occurs in the grey matter
regions located under the centre of the stimulating figure-8 coil. The induced current
primarily tends to flow in the CSF which has a much higher conductivity than grey
or white matters. In locations where the orientation of the gyri is perpendicular to
the direction of induced current, part of the current is forced to flow through the gyri.
Due to the discontinuity of the normal component of the electric field on the CSF–
cortex boundary, this results in several isolated regions with relatively high electric
fields at some distance from the centre. This is in line with observations in earlier
studies (Bijsterbosch et al 2012).

The focality of the electric field distribution for different voxel sizes is studied by
selecting a small volume, e.g. 1 cm3, and then determining a threshold value such



Fast multigrid based computation of induced electric field for transcranial magnetic stimulation10

Table 1. Normalized electric field for both models with four voxel sizes. The
electric field has been normalized such that, for a coil current of 1 A at a frequency
of 3 kHz, the value of 1.00 corresponds to an electric field of 7.1 mVm−1 for the
DUKE model and 6.0 mVm−1 for the ELLA model. The presented values are
the threshold electric fields for volumes of 0.04, 0.2, 1.0, or 5.0 cm3. This means
that the electric field is higher than the threshold in a volume of 0.04, 0.2, 1.0, or
5.0 cm3 of brain tissue, and lower than the threshold elsewhere in the brain.

Voxel size Normalized threshold electric field
Model (mm) 0.04 cm3 0.2 cm3 1.0 cm3 5.0 cm3

DUKE 2 0.91 0.73 0.48 0.32
1 0.95 0.70 0.49 0.32
0.5 1.00 0.72 0.49 0.32
0.25 0.99 0.71 0.49 0.32

ELLA 2 1.02 0.73 0.48 0.33
1 0.96 0.71 0.49 0.33
0.5 1.00 0.72 0.49 0.33
0.25 1.00 0.72 0.49 0.33

that the electric field is greater than or equal to the threshold in a volume of 1 cm3

of brain tissue, and lower than the threshold elsewhere in the brain. If the threshold
decreases rapidly when the volume is increased, then the electric field distribution is
concentrated in a small brain region. Table 1 shows the calculated threshold electric
fields for volumes of 0.04, 0.2, 1.0, or 5.0 cm3 for both models and all four voxel sizes.
As seen in the table, there are no significant differences in the electric field values
between the voxel sizes. This, together with the results in figures 4 and 5, suggests
that both the intensity and focality of the electric field distribution are relatively
unaffected by the voxel size.

The convergence of the iteration in terms of the relative residual is shown in
figure 6(left) and the truncation error of the electric field as a function of the relative
residual is shown in figure 6(right). When allowing for a truncation error of 1% in the
electric field, a sufficient stopping criterion for the iteration in terms of the relative
residual seems to be in the order of 10−5. Probably due to geometrical artefacts, the
electric field converges slower for the 1-mm DUKE model than for other voxel sizes
or for the ELLA model. Other than that, the speed of convergence does not depend
significantly on the voxel size, which is characteristic for multigrid methods. Although
not presented here, we have studied multiple coil positions, and it seems that the speed
of convergence does not depend significantly on the position of the stimulating coil.

Table 2 shows the number of unknowns and an efficient number of multigrid
levels for both models and all four voxel sizes. The table also shows the number of
multigrid V-cycles after which the truncation error in the electric field is less than
1% along with the computation time required for each V-cycle. For all voxel sizes,
sufficient convergence is typically obtained in less than ten V-cycles. When using a
single-threaded code, this means that a 2 mm head model can be solved in about
1 s, a 1 mm model in about 10 s, or a 0.5 mm model in about 1 min. Most of the
computation time is spent for the SOR and calculation of the residual for the finest
grid level. In practice, these operations could be made faster easily by parallelization
or multithreading; the computation time was reduced to about one third when the
SOR and calculation of the residual were multithreaded using OpenMP (2011).
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Figure 6. Convergence of the relative residual as the function of the number
of iterations (left) and the error in the induced electric field as a function of the
relative residual (right). Each curve represents a single case from a total of eight
cases (two models with four voxel sizes). The only curve that differs significantly
from the rest is the one for the DUKE model with the 1 mm voxel size.

Table 2. Number of unknowns, number of multigrid levels, and number V-cycle
iterations after which the error in the electric field is less than 1%, along with the
computation time required for one V-cycle.

Voxel size Unknowns Number of Number of Time per
Model (mm) (million) multigrid levels iterations iteration (s)

DUKE 2 0.66 4 4 0.13
1 5.1 4 9 0.95
0.5 40 5 5 6.89
0.25 322 6 5 56.9

ELLA 2 0.56 4 6 0.11
1 4.3 4 5 0.82
0.5 34 5 6 5.93
0.25 273 6 5 47.3

5. Discussion and conclusions

Implementation of the geometric multigrid method for solving the FEM discretization
of the electromagnetic scalar potential equation was presented. The efficiency of
the method was demonstrated by determining the TMS induced electric field in the
head and brain in two anatomically realistic head models. Sufficient voxel size and
convergence criterion were investigated.

The computation results showed that the coarse resolution of 2 mm provided
a good approximation of the distribution and direction of the induced electric field.
Regardless of the voxel size, sufficient convergence was typically obtained in less than
ten V-cycle iterations. As the required time for one iteration was about 0.1 s or 1.0 s
for the 2 mm and 1 mm voxel sizes, it is clear that computation of the electric field
is fast enough for real time calculations on any modern computer, especially if the
computational code were to be optimized further. Specifically, the multigrid method
can be parallelized readily and efficiently (Hülsemann et al 2006, Schäfer 2006, Bergen
et al 2006). Since the effectiveness of the multigrid method does not deteriorate when
the number of unknowns increases, the method makes it possible to determine the
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electric field with resolutions finer than currently available anatomical images. For
example, calculating the electric field in a model of the whole head with a 250 µm
resolution took about 10 min, which could be further improved by parallelization.

Any potential applications of the method, such as planning or guiding the
TMS coil placement and orientation, require numerical models of individual patient
anatomies. There are automatic algorithms that can generate a patient-specific
tetrahedral computational mesh from anatomical images in about 24 h (Windhoff
et al 2012). Such kind of a mesh could be easily voxellized for use with the present
code. However, as discussed byWindhoff et al (2012), it would be more straightforward
to construct high-resolution rectilinear computational grid directly from imaging data,
as done in e.g. Güllmar et al (2010). Note that the presented method is not limited to
TMS: By altering the source term in (3), the method can be used for calculating the
electric field during, for instance, transcranial direct or alternating current stimulation,
deep brain stimulation, or stimulation of the spinal cord or peripheral nerves.
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Güllmar D, Haueisen J and Reichenbach J R 2010 Influence of anisotropic electrical conductivity in
white matter tissue on the EEG/MEG forward and inverse solution. a high-resolution whole
head simulation study NeuroImage 51(1) 145–63
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