Stimulated spin-flip Raman scattering in a Pb$_{0.88}$Sn$_{0.12}$Te single crystal

Kazuhito Yasuda, Junji Shirafuji

APPLIED PHYSICS LETTERS

Volume 34, Issue 10, pp. 661-663, 1979

URL: http://link.aip.org/link/?apl/34/661

doi: 10.1063/1.90628 (http://dx.doi.org/10.1063/1.90628)
Stimulated spin-flip Raman scattering in a Pb$_{0.88}$Sn$_{0.12}$Te single crystal

K. Yasuda and J. Shirafuji

Department of Electrical Engineering, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan (Received 12 June 1978; accepted for publication 23 February 1979)

Stimulated spin-flip Raman emission assisted by resonance enhancement has been observed in an n-type Pb$_{0.88}$Sn$_{0.12}$Te single crystal pumped by a TE CO$_2$ laser. The wavelength of the Stokes emission can be tuned in a range from 10.8 to 11.8 µm for the pumping wavelength at 10.54 µm in the magnetic field range between 8 and 40 kG. The effective g value, when a magnetic field is applied along the <100> axis, is from 50 to 64, depending on the magnetic field. The intensity of the Stokes emission is strongly dependent upon the magnetic field.

PACS numbers: 42.65.Cq, 42.55.Px, 78.45. + k

A spin-flip Raman (SFR) laser1,2 has been first realized in an InSb cavity pumped by a Q-switched CO$_2$ laser. CW operation of the InSb SFR laser1 has been achieved in a 5-µm range by a CO laser pumped under the resonant Raman condition. The cw laser action in the 10-µm range (CO$_2$ laser pump) has been predicted in Ref. 2 by using a Hg$_{1-x}$Cd$_x$Te or Pb$_{1-x}$Sn$_x$Te cavity with suitable composition at the energy gap, which corresponds with pump radiation. Recently, the cw SFR laser using Hg$_{0.77}$Cd$_{0.23}$Te cavity$^{3-5}$ has been achieved in the 10-µm range. In this note the first observation of the stimulated SFR emission assisted by resonance enhancement in a Pb$_{1-x}$Sn$_x$Te crystal pumped by a TE CO$_2$ laser is presented.

An n-type Pb$_{0.88}$Sn$_{0.12}$Te single crystal with a carrier density of 1017 cm$^{-3}$ at 77 K was used as the SFR cavity. The energy gap of the crystal is estimated to be 122 meV at 10 K. The typical dimensions of the cavity were 5 X 4 X 3 mm3, where 5 X 4-mm2 faces were mirror polished with 0.3-µm alumina abrasive. The parallelism of these two faces was within 12', which was not satisfactory for good performance of the SFR laser. The cavity crystal was mounted and cooled to 10 K in an optical cryostat with a superconducting solenoid operating up to 50 kG. The optical pumping was made by a pulsed TE CO$_2$ laser operating at a single wavelength selected by an intracavity grating. The wavelength of the pump was varied discretely from 10.54 to 9.6 µm. This wavelength range can cover photon energies to induce the resonant Raman effect in the cavity. The incident CO$_2$ laser beam was focused onto the SFR cavity through a BaF$_2$ window of the cryostat by a KRS-5 lens with a focal length of 15 cm. The focused area of the pumping beam on the cavity surface was about 3 mm2. The incident pumping beam and magnetic field was arranged in the Voigt configuration, and the <100> axis of the crystal was parallel to the magnetic field. The collinear SFR radiation was separated from the pumping light through a conventional grating monochromator and detected by a Ge : Hg photoconductive cell cooled to 30 K. The output signal from the detector was averaged with a boxcar integrator. The lowest detection limit of the present system was about 10 µW/cm2.

The intensity of the stimulated emission was found to be dependent upon the intensity and wavelength of the pumping light, and the magnetic field. When the Raman cavity under the magnetic field of 16 kG was excited by the 10.54-µm light, the Stokes-Raman output became detectable at a pumping intensity of 0.6 MW/cm2 and then steeply increased with increasing pump intensity, as shown in Fig. 1. This rapid increase in the output power with the pump power and, in addition, the sharp directionality of the output light beam indicate the stimulated nature of the SFR emission. However, the conversion efficiency defined as the Stokes power per unit pump power was extremely low at the present stage of the experiment. At a pump power of 7 MW/cm2, the maximum output attained was only 6.6 mW, corresponding to the conversion efficiency of 3 X 10$^{-4}$%. Patel and Shaw2 have estimated the SFR gain for unit incident power density, without a resonance enhancement effect in PbTe, to be about 10$^{-4}$ cm$^{-1}$/W cm$^{-2}$ when the magnetic field is applied parallel to the <100> axis. Assuming a maximum SFR gain in the present Pb$_{0.88}$Sn$_{0.12}$Te cavity to be 10$^{-4}$ cm$^{-1}$/W cm$^{-2}$, the maximum output power may be calculated to be 6.6 mW.

FIG. 1. Stokes output power as a function of pump power for the pump wavelength at 10.54 µm and a magnetic field of 16 kG.
A scattering experiment that the effective g factor of a crystals. In fact, an effective g factor of 69 at the band edge has been experimentally observed in sensitive to magnetic field and electron density. Figure 2

The dependence of spontaneous SFR cross section in InSb, is also shown for comparison. The magnitude of the effective g factor is estimated from the slope of the curve in Fig. 2 varies from 50 to 64 depending on the magnetic field strength and pump wavelength. Because of poor knowledge of the band parameters and magneto-optical properties of Pb$_{0.84}$Sn$_{0.16}$Te, it is very hard to interpret the result of Fig. 3 in a straightforward manner. We would like to attempt a qualitative argument in the following.

The energy gap of the Pb$_{1-x}$Sn$_x$Te crystal is estimated to be 122 meV at 10 K at zero magnetic field. The energy gap of semiconductors is generally sensitive to the application of a magnetic field. However, in the case of Pb$_{1-x}$Sn$_x$Te, the increase of the energy gap defined by the energy separation between the lowest conduction band level and highest valence band level is rather small because of the large effective mass and large effective g factor. For a Pb$_{0.88}$Sn$_{0.12}$Te crystal the energy gap increase is to be at most only 1 meV at 20 K. The pump wavelengths, 10.53 (117.7 meV), 10.49 (118.7 meV), and 10.33 (120.0 meV), is much too close to the energy gap at 20 K of 123 meV; the resonance enhancement of the Raman cross section with decreasing pump wavelength is exceeded by the increase in the loss resulting from band-edge absorption. Thus, the SFR output is decreased as the pump wavelength is decreased, as seen in Fig. 3.

The dependence of SFR output on magnetic field is mainly determined by magnetic field dependence of the scattering coefficient and absorption loss. The scattering co-

![FIG. 2. Wavelength of the Stokes output and frequency shift from the pump wavelength at 10.54 μm as a function of magnetic field.](image.png)

![FIG. 3. Magnetic field dependence of the Stokes output power for different pump wavelengths.](image.png)
efficient includes the Raman cross section and electron population in Zeeman sublevels. In a Pb$_{0.88}$Sn$_{0.12}$Te crystal, the energy gap shifts only by 1 meV at 20 kG; thus, the Raman cross section shows relatively weak dependence on the magnetic field when the pump wavelength is fixed at one CO$_2$ laser line. The scattering coefficient is thus mostly limited by electron population in Zeeman sublevels or the position of the Fermi level. However, due to the complexity and large nonparabolicity of the energy band in Pb$_{1-x}$Sn$_x$Te, the determination of the location of the Fermi level with the changing magnetic field is a hard task at present. Nevertheless, it can be said that the increase in the SFR output with increasing magnetic field from zero in Fig. 3 results from an increase in the scattering coefficient due to the change in the location of the Fermi level with magnetic field. On the other hand, in the region of the magnetic field above the peak output in Fig. 3; further experiments on harmonic absorption of cyclotron resonance and magnet-plasma absorption at cyclotron resonance are necessary and are now proceeding.

The authors wish to thank Professor Y. Inuishi of Osaka University for his valuable discussion and critical reading of the manuscript.

The CdTe/HgTe superlattice could be fabricated by molecular beam epitaxy (MBE). Both HgTe and CdTe crystallize in the zinc–blende structure. They are nearly lattice matched with bulk lattice constants differing by about 0.3% ($a_{\text{HgTe}} = 6.46 \text{ Å}$ and $a_{\text{CdTe}} = 6.48 \text{ Å}$). The MBE process is simplified by the fact that the anion, tellurium, is common to both. Arrangement in a superlattice allows additional flexibility over the Hg$_{1-x}$Cd$_x$Te random alloy in adjusting the band gap for a given Cd-to-Hg ratio. This structure may be more stable than the random alloy, with the structural defects reduced due to the spatial separation of the HgTe and CdTe in distinct bulklike layers.

In this letter we report the results of a theoretical study of this superlattice formed by alternating layers parallel to