Preparation and metal ion-binding properties of gramicidin S derivatives carrying picolinoyl groups on the ornithine side chains

<table>
<thead>
<tr>
<th>著者 (英)</th>
<th>Keiichi Yamada, Hirotaka Ozaki, Naoki Kanda, Hatsuo Yamamura, Shuki Araki, Masao Kawai</th>
</tr>
</thead>
<tbody>
<tr>
<td>卷 (英)</td>
<td>1998</td>
</tr>
<tr>
<td>号 (英)</td>
<td>23</td>
</tr>
<tr>
<td>発行年 (英)</td>
<td>1998-01-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://id.nii.ac.jp/1476/00004532/</td>
</tr>
</tbody>
</table>

doi: 10.1039/A805468A(http://dx.doi.org/10.1039/A805468A)
Derivatives of gramicidin S (GS) in which one or both of the two ornithine side chains were picolinoylated were prepared. The dipicolinoyl derivative [Orn(PyCO)2]2GS yielded a 1:1 complex with Cu2+ and Zn2+ in MeOH, while in the case of the monopicolinoyl derivative [Orn(Boc)2Orn(PyCO)]2GS (2) stepwise formation of 1:1 and 2:1 (2-Cu2+) complexes was observed. The formation constant of the Cu2+-mediated dimeric species of compound 2 was larger than those of the corresponding linear compounds possessing the partial structure of macrocycle 2. The corresponding tetra-N-methyl derivative [MeOrn(Boc)2MeOrn(PyCO)2]2,Me-MePhe4,4]GS 3 also showed lower stability of the 2:1 complex compared with compound 2, which suggested the presence of a β-sheet-type intermolecular H-bonding interaction between the two molecules of macrocycle 2 in the 2:1 complex.

Introduction

A great number of studies on metal ion-induced self-assembly systems have been carried out to construct functional supramolecules with well-defined structures; e.g., metal ion-induced assembly of α-helical peptides which possess a metal ion-binding site at N-termini was reported by Lieberman and Sasaki,14 and Ghadiri et al.15 However, studies using metal-binding peptides with β-structures are quite few. We attempted to incorporate metal ion-binding site(s) into the antibiotic cyclic decapeptide gramicidin S (GS), cyclo(Val-Orn-Leu-α-Phe-Pro)4, whose conformation is established as an antiparallel β-sheet possessing two Orn side chains on the same side of the molecule. Nishino et al. reported the synthesis of the GS analogue possessing S,S'-bipyridylalanine residues in place of the Orn residues, which was shown to bind a divalent metal ion.2 Here, we have prepared analogues of GS possessing one or two picolinoylamido (pyridine-2-carbonylamino, PyCONH) group(s) by chemical modification of the orn residue(s) of natural GS. The PyCONH group is known to coordinate a divalent metal ion such as Cu2+ or Zn2+. In the case of the Cu2+ complex, pyridine N atoms and deprotonated amide N atoms constitute an N4 tetradentate ligand, while in the Zn2+ complex the pyridine N atoms and amide O atoms are considered to coordinate Zn2+ ion.3 The GS analogue containing only one PyCONH group is expected to undergo metal ion-mediated self assembly forming a 2:1 complex with a metal ion such as Cu2+ or Zn2+. The metal ion-binding properties of these analogues are described in comparison with those of the corresponding linear peptides.

Results and discussion

Synthesis

Introduction of a picolinoyl group as an amino-protecting group to afford α-amino acid esters was reported by Koul et al.4 using picolinic acid (pyridine-2-carboxylic acid, PyCO2H) and 1,1’-carbonyldimidazole (CDI). Treatment of GS·2HCl with picolinoylimidazole reagent prepared from PyCO2H and CDI was found to afford only dipicolinoyl derivatives of GS, namely [Orn(PyCO)2]2GS 1, while no formation of monopicolinoyl derivative [Orn(PyCO)2]GS was observed in the reaction mixture. Reaction of GS·2HCl with the acid chloride PyCOCl yielded a mixture of di- and mono-acylated products and unreacted GS, from which [Orn(PyCO)2]GS was isolated in 32% yield by column chromatographic separation. The monopicolinoyl derivative was then treated with Boc2O to afford [Orn-Boc2Orn(PyCO)2]GS 2 as summarized in Scheme 1.

The low yield of the monoacetyl derivative 2 was not unexpected, since modification of one of the two δ-amino groups of the Orn residues in GS is usually quite difficult. For example, 2,4-dinitrophenylation of GS using one equivalent of 1-fluoro-2,4-dinitrobenzene resulted in an equimolar mixture of bis-2,4-dinitrophenyl derivative and unchanged GS, which is quite analogous to the acylation using picolinoylimidazole described above. Very recently, we have found that trifluoroacetylation of GS with trifluoroacetic anhydride (TFAA) afforded a ~70% yield of mono-TFA derivative, a versatile intermediate for the preparation of mono-substituted GS.5 CD spectra of the GS derivatives 1 and 2, possessing one and two PyCONH group(s), respectively, were very similar to that of natural GS·2HCl, indicating that both peptides also adopt the same β-sheet conformation as that of GS.

As a derivative of compound 2 lacking α-NH groups required for intermolecular inter-β-sheet H-bonding interaction, tetra-N-methyl derivative [MeOrn(Boc)2MeOrn(PyCO)2],Me-MePhe4,4]GS 3 was also prepared, in which solvent-exposed α-NH groups of the Orn and δ-Phe residues of structure 2 were methylated. As shown in Scheme 1, preparation of the tetra-N-methylated derivative 3 made use of selective N-methylation with MeI-Ag2O in DMF.6 N-Methylation of the di-Boc derivative [Orn(Boc)2]2GS yielded a tetramethyl derivative [MeOrn(Boc)2]2,Me-MePhe4,4]GS, which was deprotected and picolinoylated in essentially the same manner as the preparation of compound 2 to yield di- and mono-picolinoyl derivatives, [MeOrn(PyCO)2]2,Me-MePhe4,4]GS and [MeOrn(PyCO)2, MeOrn,Me-MePhe4,4]GS, respectively. The latter compound was then treated with Boc2O to furnish [MeOrn-Boc2Orn(PyCO)2, MeOrn(PyCO)2],Me-MePhe4,4]GS 3 possessing four N-methyl groups instead of α-NH groups which could participate in intermolecular H-bonding interaction. Since not only the
BocNH group but also the PyCONH group in the Orn side chain in GS was found to be methylation-resistant.\(^1\) [Orn(Boc)\(^2\),Orn(PyCO)\(^2\)]GS \(2\) was directly subjected to selective N-methylation to yield compound \(3\), which was indistinguishable from the compound prepared from [Orn(Boc)\(^2\)]GS as described above.

Linear peptide derivatives corresponding to partial structures of the picolinoylamide-containing GS, namely Ac-Orn(PyCO)-NHMe \(4\) and Ac-Val-Orn(PyCO)-Leu-NHMe \(5\), were also prepared to compare the dimeric Cu\(^{II}\)-complex-forming ability.

Introduction of a PyCO group to the \(\delta\)-amino group of the Orn residue in these compounds was accomplished by treatment with picolinoylimidazole reagent.\(^4\) Their structures were confirmed by \(^1^H\) NMR, liquid secondary-ion mass (LSIMS) and UV-visible spectroscopy.

Dipicolinoyl GS derivative 1. The pyridine N atoms and amide O atoms of the two PyCONH groups of [Orn(PyCO)\(^2\)]GS \(1\) are assumed to participate in the coordination to a Zn\(^{2+}\) ion forming a 1:1 complex as schematically shown in Fig. 1. Upon addition of ZnCl\(_2\), the absorption maximum of the dipicolinoyl derivative \(1\) at 264 nm (ε 11 200 dm\(^2\) mol\(^{-1}\) cm\(^{-1}\)) showed hypochromic and bathochromic shifts, exhibiting an isosbestic point at 253 nm (Fig. 2). Nonlinear least-squares curve-fitting analysis\(^4\) based on the absorbance change at 272 nm indicated the formation of a 1:1 complex with the log \(K_{1:1}\) value of 5.28. The CD spectrum of compound 1 with a weak positive maximum around 290 nm (δ \(\theta\) 800) and a negative shoulder around 265 nm also changed upon the addition of ZnCl\(_2\) to a distinct negative maximum at 273 nm (δ \(\theta\) 6200) with an isoelectric point at 270 nm (Fig. 3). The log \(K_{1:1}\)-value obtained from the change of ellipticity at 280 nm was in good agreement with that obtained by absorption spectral analysis. No evidence of formation of a 1:2 or 2:1 complex was observed over the range of [1]:[Zn\(^{2+}\)] from 1:0.24 to 1:1.9.

Addition of CuCl\(_2\) to a solution of compound 1 was also
shown to produce a 1:1 complex, but in the presence of an excess of Cu\(^{2+}\) additional spectral change was observed indicating the formation of a 1:2 complex. The formation constants of the 1:1 and 1:2 complexes with Cu\(^{2+}\) were determined similarly by the curve-fitting analysis using equations (1) and (2), and the log \(K_{1:1}\) and log \(K_{1:2}\) values were obtained as 7.64 and 5.72, respectively.

Thus, the dipicolinoyl derivative 1, as expected, formed a 1:1 complex both with Zn\(^{2+}\) and Cu\(^{2+}\), indicating the coordination of the two PyCONH groups to the divalent metal ions. In the case of Cu\(^{2+}\), however, the 1:2 species was also formed in which each of the two picolinoylamido groups of 1 was considered to bind a Cu\(^{2+}\) ion. The pyridine N atom and ionized amide N atom of the picolinoylamide group are assumed to coordinate Cu\(^{2+}\) ion although no structural study of these complexes was undertaken.

Monopicolinoyl GS derivatives 2 and 3. In order to investigate Cu\(^{2+}\)-mediated assembly of the monopicolinoyl derivative [Orn(Boc),Orn(PyCO)]GS 2, the absorption spectral change of the d-d band of Cu\(^{2+}\) ion due to complexation was monitored. Keeping the total concentration of Cu\(^{2+}\) species constant ([CuCl\(_2\)] = 1 mM), aliquots of MeOH solution of compound 2 containing CuCl\(_2\) were added to the solution of CuCl\(_2\). As shown in the difference spectra, complex-formation-induced increase of the absorption around 650 nm was observed upon the addition of compound 2 (Fig. 4a). The plots of the absorbance change (\(\Delta A\)) at 800, 750, 700 and 650 nm vs. [2]/[CuCl\(_2\)] gave an inflection point around [2]/[CuCl\(_2\)] = 1, suggesting the stepwise formation of 1:1 and 2:1 complexes (Fig. 4b). Non-linear least-squares curve-fitting analysis based on equations (1) and (3) yielded the complex-formation constants as log \(K_{1:1}\) = 5.22 and log \(K_{1:2}\) = 3.08.

The reference compounds Ac-Orn(PyCO)-NHMe 4 and Ac-Val-Orn(PyCO)-Leu-NHMe 5, possessing the partial structures of compound 2, were also subjected to the Cu\(^{2+}\) ion-binding analysis, and the results are summarized in Table 1. The \(K_{1:1}\) value of the GS derivative 2 is larger than those of the linear compounds 4 and 5 (log \(K_{1:1}\) = 2.53 and 2.62, respectively). The relative stability of the Cu\(^{2+}\)-mediated dimeric GS species could be attributed to inter-\(\beta\)-sheet H-bonding interaction between the two GS units in the complex. The ‘cross-\(\beta\)’ aggregation tendency of the GS molecule in oriented poly(oxyethylene) was indicated by an IR dichroism study.\(^9\) Seto and Whitesides also reported intermolecular H-bonding-mediated aggregation of the di-Boc derivative [Orn(Boc)\(_2\)]GS in CHCl\(_3\) solution studied by vapour pressure osmometry.\(^9\) The possible structure of the 2:1 complex composed of the antiparallel \(\beta\)-sheet type assembly of four Val-Orn(PyCO)-Leu strands is illustrated in Fig. 5. The structure might also be stabilized by hydrophobic interaction between Pr and \(\beta\)u groups of Val and Leu residues.

In order to study the importance of the intermolecular H-bonding interaction for the formation of the 2:1 complex, the tetra-N-methyl derivative of compound 2, namely [MeOrn(Boc)\(_2\),MeOrn(PyCO)\(_2\),\(\beta\)-MePhe\(_4\)]GS 3, was prepared. Prevention of aggregation of \(\beta\)-strands by the introduction of N-methyl group(s) was reported for a three-stranded \(\beta\)-sheet peptide\(^{10}\) and an interleukin monomer.\(^{11}\) It is known that tetra-N-methylation does not affect the \(\beta\)-sheet conformation of GS.\(^8\) The tetra-N-methyl derivative 3 lacking \(\alpha\)-NH groups of the Orn and \(\beta\)-Phe residues required for intermolecular H-bonding interaction was subjected to the metal ion-binding analysis. As

Table 1 The formation constants of Cu\(^{2+}\) complex with PyCONH-containing peptides in MeOH at 25°C

<table>
<thead>
<tr>
<th>Peptide</th>
<th>log (K_{1:1})</th>
<th>log (K_{1:2})</th>
<th>log (K_{1:3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.64 ± 0.2</td>
<td>5.72 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.22 ± 0.1</td>
<td>3.08 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.18 ± 0.1</td>
<td>2.67 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.15 ± 0.15</td>
<td>2.53 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.06 ± 0.1</td>
<td>2.62 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>
UV-visible and CD spectra were recorded in MeOH solution in progress. Systems using metal ion-binding peptide derivatives which plex is necessary. Studies on the construction of self-assembly 8

expected, compound 3 exhibited lower stability of its 2:1 complex (log $K_{d} = 2.67$) than did analogue 2, which is in agreement with the proposed antiparallel β-sheet type of the two GS units as the two atoms of the GS units.5 Preliminary 1H NMR spectral studies of the synthetic trimethylene-bridged precursor molecules have indicated the presence of β-sheet-type H-bonding interaction between the two cyclic decapetide modules. The dimeric derivatives can be considered as synthetic models of the inter-Orn side chain interaction-mediated assembly of GS molecules validating the proposed structure of the 2:1 complex illustrated in Fig. 5. Detailed studies on the conformational characteristics of these δ-N(Orn)-δ-N(Orn)' covalently linked dimeric compounds are in progress.

In the present study the GS derivative 2 carries a metal ion-binding group on the δ-N atom of an Orn residue while another Orn side chain is protected with a Boc group which can be replaced with different functional groups to construct a functional assembly system. However, although formation of the expected metal ion-mediated dimeric complex was observed for the GS derivative–Cu$^{2+}$ system, the stability of the 2:1 complex was not high enough compared with that of the 1:1 complex. Thus, stepwise formation of the 1:1 and 2:1 complexes was observed when the GS derivative was added to the metal ion solution and the 2:1 complex became prominent only after the addition of more than 1 equivalent of the peptide to Cu$^{2+}$. In order to realize the system in which formation of the dimeric species can be controlled by the addition of a metal ion, a higher tendency to form a metal ion-mediated dimeric complex is necessary. Studies on the construction of self-assembly systems using metal ion-binding peptide derivatives which carry pyridine ring-containing groups other than PyCO are in progress.

Experimental

Mps were determined on a hot-plate apparatus and are uncorrected. Column chromatography was performed using SiO$_2$ (Fuji Sylia, FL60D). Gel filtration chromatography (GFC) was performed using Sephadex LH-20 (Pharmacia Biotech) with MeOH as eluent. Monitoring of reactions and analysis of chromatographic fractions were undertaken by means of TLC with precoated SiO$_2$ plate (Merck, Silica gel 60F$_{254}$). Purity of all of the synthetic compounds was ascertained by HPLC analysis (JASCO, Finepak-SIL, 4.6 x 50 mm, elution with CHCl$_3$–MeOH). 1H NMR spectra were recorded in $^{[1]H}_2$-DMSO solutions at 25 $^\circ$C on a Varian Gemini-200 (200 MHz) or a JEOL α-500 (500 MHz) spectrometer. 1J Values are in Hz. UV-visible and CD spectra were recorded in MeOH solution on a HITACHI U-3500 spectrometer and a JASCO J-600 spectropolarimeter, respectively. SIMS were measured on a Hitachi M-2000 spectrometer. Elemental analyses were done at the Elemental Analysis Center of Kyoto University.

[Orn(PyCO)$_7$]$_2$GS 1

A solution of PyCO$_2$H (372 mg, 3.0 mmol) and 1,1'-carbonyldimidazole (CDI, 467 mg, 3.0 mmol) in dry THF (10 cm3) was stirred at rt under argon for 30 min, to which was added a solution of GS-2HCl (413 mg, 0.5 mmol) in dry THF and reaction mixture was stirred at rt for 2 h. After removal of precipitated imidazole hydrochloride by filtration the filtrate was evaporated in vacuo and the residue was subjected to GFC. The crude product was purified by SiO$_2$ column chromatography using CHCl$_3$–MeOH (95:5 v/v) as eluent to afford title compound 1 (512 mg, 76%) as a powder (lyophilized); λ_{max}(MeOH)/nm 206 (ε/dm3 mol$^{-1}$ cm$^{-1}$) 1.2000; $[\theta]_{20}$ (MeOH)/nm 206 ([l]/deg cm2 dm$^{-1}$ \cdot mol$^{-1}$) 4.40 x 103, 217 (4.3 x 103), 265 (9.5 x 103), 285 (0) and 292 (800) [Found: C, 62.0; H, 7.1; N, 14.0. C$_{36}$H$_{38}$N$_{10}$O$_{12}$,2H$_2$O requires C, 62.3; H, 7.4; N, 14.1%. m/z (SIMS) 1351.7642 (M + H)$^+$; (C$_{18}$H$_{24}$N$_{6}$O$_{12}$ + H$^+$) requires m/z, 1351.7544].

[Orn(Boc)$_3$,Orn(PyCO)$_3$]$_2$GS 2

To a stirred solution of GS-2HCl (242 mg, 0.2 mmol) in DMF were added PyCOCHCl (76 mg, 0.40 mmol), Et$_2$N (0.172 cm3, 1.2 mmol) and DMAP (28 mg, 0.2 mmol) at rt. After being stirred for 2 days at rt the reaction mixture was lyophilized and was subjected to gel filtration chromatography. The crude product was then chromatographed over SiO$_2$ using CHCl$_3$–MeOH (9:1 v/v) as eluent to yield 1 (31 mg, 12%) and [Orn(PyCO)$_3$]$_2$GS (79 mg, 32%). λ_{max}(MeOH)/nm 264 (ε/dm3 mol$^{-1}$ cm$^{-1}$) 6400; m/z (SIMS) 1248.1 (M + H)$^+$. The latter compound (34 mg, 0.027 mmol) was dissolved in CHCl$_3$–MeOH (3:1 v/v) (4 cm3), to which were added (Boc)$_3$O (41 mg, 0.19 mmol) and Et$_2$N (0.027 cm3, 0.19 mmol). After stirring the mixture at rt for 5 h, the solvent was evaporated in vacuo. The crude product was purified by GFC and then SiO$_2$ column chromatography using CHCl$_3$–MeOH (95:5 v/v) as eluent to afford title compound 2 (36 mg, 98%) as a powder (lyophilized); λ_{max}(MeOH)/nm 264 (ε/dm3 mol$^{-1}$ cm$^{-1}$) 7000; $[\theta]_{20}$ (MeOH)/nm 206 ([l]/deg cm2 dm$^{-1}$) \cdot 5.2 x 103, 216 (4.8 x 103) and 265 (2.3 x 103) [Found: C, 61.3; H, 7.7; N, 13.25. C$_{36}$H$_{38}$N$_{10}$O$_{12}$,2H$_2$O requires C, 61.3; H, 7.8; N, 13.1%. m/z (SIMS) 1346.7842 (M + H)$^+$; (C$_{18}$H$_{24}$N$_{6}$O$_{12}$ + H$^+$) requires m/z, 1346.7852].

[MeOrn(Boc)$_3$,MeOrn(PyCO)$_3$]$_2$,d,-MePhe$_{64}$GS 3

Via selective N-methylation of [Orn(Boc)$_3$]$_2$GS. [MeOrn- (Boc)$_3$,d,-MePhe$_{64}$GS]$_2$ was prepared from [Orn(Boc)$_3$]$_2$GS as described in ref. 5. The tetra-N-methylated Boc derivative (104 mg, 0.074 mmol) was treated with TFA (1 cm3) at 0 $^\circ$C for 1 h. TFA was evaporated off in vacuo and the residue was dissolved in 1 M HCl (10 cm3) and lyophilized to give [MeOrn$_{37}$,d,-MePhe$_{64}$GS]-2HCl (112 mg, s100%). Picolinoylation of the tetra-N-methyl derivative (102 mg, 0.080 mmol) using PyCO-CHCl$_3$ (29 mg, 0.16 mmol) in the same manner as described above, followed by chromatographic separation (SiO$_2$; CHCl$_3$–MeOH, 9:1 v/v), yielded [MeOrn(PyCO)$_{27}$,d,-MePhe$_{64}$GS] (20 mg, 23%) [Found: C, 63.6; H, 7.5; N, 13.3. C$_{36}$H$_{38}$N$_{10}$O$_{12}$,1.5H$_2$O requires C, 63.5; H, 7.8; N, 13.6%.] and [MeOrn$_{37}$,d,-MePhe$_{64}$GS] (20 mg, 19%). The monopicolinol derivative (40 mg, 0.030 mmol) was treated with (Boc)$_3$O and Et$_2$N to afford [MeOrn(Boc)$_3$,MeOrn(PyCO)$_2$,d,-MePhe$_{64}$GS] 3 (26 mg, 62%) [Found: C, 63.2; H, 7.8; N, 12.65. C$_{36}$H$_{38}$N$_{10}$O$_{12}$,H$_2$O requires C, 63.4; H, 8.0; N, 12.8%. m/z (SIMS) 1403.4 (M + H)$^+$; (C$_{18}$H$_{24}$N$_{6}$O$_{12}$ + H$^+$) requires m/z, 1403.9].

Via selective N-methylation of compound 2. To a stirred solution of compound 2 (68 mg, 0.050 mmol) in DMF were added
Ag₂O (232 mg, 1.00 mmol) and methyl iodide (2.5 cm³, 40 mmol) at rt. The reaction mixture was stirred for 1 day and lyophilized to remove the solvent. After GFC, the crude product was chromatographed with aminopropyl-modified SiO₂ (Fuji Sylia, Chromatorex NH-DM1020) using CHCl₃–MeOH (98:2 v/v) as eluent to afford compound 3 (48 mg, 68%), which was indistinguishable from the compound prepared from [MeOmn²⁺,0-MePhe⁴⁺]GS-2HCl as described above.

Ac-Orn(PyCO)-NMe₄
A mixture of Boc-Orn(Cbz)-OH (1.43 g, 3.69 mmol), MeNH₂·HCl (621 mg, 9.20 mmol) and HOBt (450 mg, 3.33 mmol) in CH₂Cl₂ (15 cm³) was neutralized by the addition of Et₃N, to which DCC (1.49 g, 7.21 mmol) was added under ice-cooling. After stirring of the reaction mixture at rt for 23 h the solvent was evaporated off in vacuo and to the residue were added AcOEt and 10% aq. citric acid. After removal of pre-cipitated dicyclohexylurea by centrifugation the crude product was washed successively with 10% aq. citric acid, 5% aq. NaHCO₃ and saturated aq. NaCl and was then dried over Na₂SO₄. The solvent was evaporated off and the residue was chromatographed over SiO₂ using CHCl₃–MeOH as eluent to give Boc-Orn(Cbz)-Leu-NHMe as a solid (1.52 g, 69%).

After treatment of the protected dipeptide methylamide (465 mg, 0.945 mmol) with TFA as described above, the resulting H-Orn(Cbz)-Leu-NHMe was subjected to a coupling reaction with Boc-Val-OH (294 mg, 1.35 mmol), using DCC (542 mg, 2.63 mmol) and HOBt (101 mg, 0.75 mmol) in CH₂Cl₂ (2 cm³) in a similar manner to the preparation of Boc-Orn(Cbz)-NHMe. After stirring of the reaction mixture for 4 h it was treated similarly and the crude product was subjected to SiO₂ column chromatography using CHCl₃ as eluent to afford Boc-Orn(Cbz)-NHMe as a solid, mp 142–143.5 °C (1.00 g, 68%).

The N-methylamide (1.00 g, 2.65 mmol) as a solution in MeOH (5 cm³) was hydrogenolyzed under atmospheric H₂ over Pd-black (0.35 g) for 2 h. Filtration, and evaporation of the solvent, yielded crude Boc-Orn-NHMe, which was added to a solution of picolinoylimidazole reagent prepared by stirring PyCO₂H (0.509 g, 4.14 mmol) and CDI (0.559 g, 3.45 mmol) in dry THF (5 cm³) for 1 h. After stirring of the mixture for 15 h at rt the solvent was evaporated off in vacuo and the residue was chromatographed over SiO₂ using CHCl₃–MeOH as eluent to afford Boc-Orn(PyCO)-NMe₄ as a solid, mp 180–181 °C (0.85 g, 68%).

Metal ion-binding analysis
Analyses were repeated several times with varying concentrations of the initial solution and the added solution of the peptide and metal ion. Typical examples are given below.

Dipicolinoyl derivative 1. To a MeOH solution of compound 1 (5.2 × 10⁻³ M; 2.5 cm³) were added aliquots (1.2 × 10⁻⁴ cm³) of a MeOH solution of CuCl₂ (2.8 × 10⁻³ M) containing compound 1 (5.2 × 10⁻³ M) at 25 °C. Thus, while the concentration of I was kept constant, that of CuCl₂ was changed from 0.11 to 1.4 × 10⁻⁴ M. After each addition absorption spectrum was recorded and the absorbance changes at 272 nm were subjected to curve-fitting analysis. Essentially the same method was applied to the analysis of CD spectral changes of compound 1 with the addition of the metal ion.

Monopicolinoyl derivatives 2 and 3. To a MeOH solution of CuCl₂ (1.00 × 10⁻³ M; 2.5 cm³) were added aliquots (7.50 × 10⁻⁴ cm³) of a MeOH solution of a compound 2 or 3 (2.50 × 10⁻² M) containing CuCl₂ (1.00 × 10⁻³ M) at 25 °C. The concentration of the peptide ranged from 0.26 to 4.99 × 10⁻⁴ M. All these data were included for the estimation of the K₁₁⁻ and K₂⁻values.

Acknowledgements
We are grateful to Nikken Kagaku Co., Ltd. for the generous supply of GS-2HCl and to Prof. Ryoichi Katakai and Ms Kyoko Kobayashi (Department of Chemistry, Gunma University) for the measurement of 1H NMR spectra (500 MHz).

References

5 K. Yamada, H. Yamamura, S. Araki and M. Kawai, unpublished data.

