Pseudogap Formation in the Intermetallic Compounds (Fe\textsubscript{1-x}V\textsubscript{x})\textsubscript{3}Al

H. Okamura,1 J. Kawahara,1 T. Nanba,1 S. Kimura,1 K. Soda,2 U. Mizutani,2 Y. Nishino,3 M. Kato,3 I. Shimoyama,1,* H. Miura,4 K. Fukui,5 K. Nakagawa,1 H. Nakagawa,4 and T. Kinoshita5,7

1Department of Physics and Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
2Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, Japan
3Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
4Department of Electrical Engineering, Fukui University, Fukui 910-8507, Japan
5UVSOR Facility, Institute for Molecular Science, Okazaki 444-8588, Japan

(Received 19 October 1999)

Optical conductivity data of the intermetallic compounds (Fe\textsubscript{1-x}V\textsubscript{x})\textsubscript{3}Al (0 ≤ x ≤ 0.33) reveal that their density of states around the Fermi energy (E\textsubscript{F}) is strongly reduced as x is increased. In particular, Fe\textsubscript{2}VAl (x = 0.33) has a deep, well-developed pseudogap of 0.1–0.2 eV at E\textsubscript{F} and a small density (∼5 × 1020 cm-3) of carriers, which is highly unusual for intermetallic compounds. It is shown that the pseudogap results from the band structure of Fe\textsubscript{2}VAl, rather than from temperature-dependent correlation effects. Based on the present results, we propose a simple model that consistently explains both the semiconductormike transport and the metallic photoemission results previously observed for Fe\textsubscript{2}VAl.

PACS numbers: 71.20.Lp, 78.40.Kc

In the physics of metals and their alloys, it is commonly regarded that an intermetallic compound, consisting of metal elements only, is also likely to exhibit metallic characters. Recently, however, Nishino et al. [1] have reported that Fe\textsubscript{2}VAl, a Heusler-type intermetallic compound, exhibits anomalous physical properties including semiconductorlike temperature dependence of electrical resistivity. Fe\textsubscript{2}VAl belongs to a series of intermetallic compounds (Fe\textsubscript{1-x}V\textsubscript{x})\textsubscript{3}Al, which crystallize into the cubic, D\textsubscript{0\textsubscript{3}} structure in a wide range of V composition x.

Fe\textsubscript{3}Al (x = 0) is a ferromagnetic metal with the Curie temperature T\textsubscript{c} ∼ 780 K. With increasing x, T\textsubscript{c} is lowered rapidly and the resistivity (ρ) becomes larger, with a negative temperature (T) dependence appearing above T\textsubscript{c}. Fe\textsubscript{2}VAl (x = 0.33) remains paramagnetic down to 2 K, and ρ(T) shows a negative slope in the range 2 ≤ T ≤ 1200 K, reaching ∼3 × 104 μΩ cm at 2 K. This value is 2 to 3 orders of magnitude greater than those seen for usual metals and their alloys. ρ(T) of Fe\textsubscript{2}VAl above 400 K fits to a thermally activated form, suggesting an energy gap of 0.1 eV. In striking contrast to the semiconductorlike transport property, the photoemission spectrum of Fe\textsubscript{2}VAl at 40 K has shown a clear Fermi edge [1], indicating metallic electronic structures around the Fermi energy (E\textsubscript{F}). In addition, Fe\textsubscript{2}VAl has shown an enhancement in the electronic specific heat at low temperatures, which is reminiscent of those observed for the f-electron heavy fermion compounds [1].

These anomalous properties of Fe\textsubscript{2}VAl have attracted much interest. Band calculations [2–4] have predicted that Fe\textsubscript{2}VAl should be a compensated semimetal having a strong pseudogap at E\textsubscript{F} and a small density (∼1020 cm-3) of carriers. These works considered effects of spin fluctuations and electron correlations to account for the observed unusual properties. An NMR study [5] of Fe\textsubscript{2}VAl has suggested the existence of an energy gap of ∼0.2 eV and a small density of states (DOS) at E\textsubscript{F}. A Hall effect study [6] has found excess holes in Fe\textsubscript{2}VAl, with a density of ∼5 × 1020 cm-3 at 300 K. More detailed photoemission experiments have been performed on Fe\textsubscript{2}VAl and Fe\textsubscript{3}Al [7].

The purpose of this work is to examine the electronic structures of (Fe\textsubscript{1-x}V\textsubscript{x})\textsubscript{3}Al based on their optical conductivity spectra, (σ(ω)), obtained from their reflectivity spectra, R(ω), measured in the photon energy range 0.008 ≤ hω ≤ 30 eV at temperatures 9 ≤ T ≤ 295 K. The σ(ω) spectra clearly show that Fe\textsubscript{2}VAl indeed has a well-developed pseudogap of 0.1–0.2 eV throughout the measured temperature range. Although a (pseudo)gap in Fe\textsubscript{2}VAl has been suggested by transport [1] and NMR [5] experiments and has been predicted by band calculations [2–4], this is the first apparent demonstration of a pseudogap as a function of energy. Based on the present results, we propose a simple model for the electronic structures of Fe\textsubscript{2}VAl that accounts well for both the semiconducting transport and metallic photoemission data observed previously.

The (Fe\textsubscript{1-x}V\textsubscript{x})\textsubscript{3}Al samples (x = 0, 0.1, 0.2, 0.3, 0.33) were produced by arc melting the constituent metals with appropriate molar ratio, followed by heat treatments for the D\textsubscript{0\textsubscript{3}} ordering [1]. Samples of approximately 5 × 5 × 1 mm3 were cut from the ingots, and their surfaces were mechanically polished. Near-normal incidence reflectivity measurements were made using a Fourier interferometer and conventional sources for hω ≤ 2.5 eV, and using synchrotron radiation source at the beam line BL7B of the UVSOR Facility, Institute for Molecular Science, for hω ≤ 30 eV [8]. To complete R(ω), the Hagen-Rubens extrapolation was used for the lower-energy end, and the ω-4 extrapolation for the higher-energy end [9]. The σ(ω) spectra were obtained from the measured R(ω) spectra using the Kramers-Kronig relations [9].
FIG. 1. Optical reflectivity \((R)\) spectra of \((\text{Fe}_{1-x} \text{V}_x)_3\text{Al}\) at 295 K.

Figures 1 and 2 show \(R(\omega)\) and \(\sigma(\omega)\), respectively, of \((\text{Fe}_{1-x} \text{V}_x)_3\text{Al}\) at 295 K. The spectra for \(x = 0\) (\(\text{Fe}_3\text{Al}\)) are metallic, with a high \(R\) in the infrared region that approaches 1 toward \(\omega = 0\) and a sharp rise of \(\sigma(\omega)\). These features are due to a large amount of free carriers in metallic \(\text{Fe}_3\text{Al}\). With increasing \(x\), \(R(\omega)\) shows systematic decreases below 1 eV, and \(\sigma(\omega)\) shows a rapid decrease of spectral weight below \(-0.5\) eV. For \(x = 0.33\) (\(\text{Fe}_2\text{VAI}\)), \(\sigma(\omega)\) is strongly depleted below 0.5 eV, with the onset of conductivity at \(-0.1\) eV as indicated by the arrow in Fig. 2 (b). Below the onset energy, a weak, Drude-like continuum is observed together with two sharp peaks, which we attribute to optical phonons [10]. The continuum indicates the presence of a small amount of free carriers. These spectral features show that the carrier density and the DOS around \(E_F\) are strongly reduced as more \(V\) substitute for \(\text{Fe}\), and that \(\text{Fe}_2\text{VAI}\) has a deep pseudogap of about \(0.1–0.2\) eV with a small density of carriers. Since \((\text{Fe}_{1-x} \text{V}_x)_3\text{Al}\) maintain the \(D_03\) structure in the measured range of \(x\), the increasing intensity of the phonon peaks for larger \(x\) is likely to result from weaker screening caused by the decreasing density of carriers. In addition to the pseudogap, a broad absorption band, centered at \(-1\) eV, is formed as \(x\) becomes larger. This band corresponds to optical excitations across the pseudogap, or gap excitations. The \(\sigma(\omega)\) spectra for \(x = 0.3\) and 0.33 are qualitatively similar, and the pseudogap appears well developed also for \(x = 0.3\), although it is slightly narrower than that for \(x = 0.33\).

To roughly estimate the carrier density giving rise to the continuum, we fit the low-energy part of the \(\sigma(\omega)\) spectrum for \(\text{Fe}_2\text{VAI}\) according to

\[
\sigma(\omega) = \frac{\sigma_0}{1 + \omega^2/\Gamma^2} + \sum_{i=1,2} \frac{\gamma_i \omega_i^2}{\omega^2 - \omega_i^2} + \frac{\gamma_i \omega_i^2}{\omega^2 - \omega_i^2},
\]

where the first term is the Drude model for the free carrier continuum and the second term is the Lorentz oscillator model for the phonon peaks [9]. For simplicity, we assume only one kind of free carrier. The fitted results are shown in Fig. 3 (a). The effective carrier density \(N_{\text{eff}}\) contributing to the continuum can be expressed as [9]

\[
N_{\text{eff}} = \frac{n}{m^*} = \frac{2m_0}{\pi e^2} \int \sigma_D(\omega) d\omega.
\]

FIG. 2. (a) Optical conductivity \((\sigma)\) spectra of \((\text{Fe}_{1-x} \text{V}_x)_3\text{Al}\) at 295 K. (b) \(\sigma\) of \((\text{Fe}_{1-x} \text{V}_x)_3\text{Al}\) at 295 K below 1.8 eV. The arrow indicates the onset of \(\sigma\) discussed in the text. The circles on the vertical axis show the measured dc conductivity for each \(x\).

Here, \(n\) is the carrier density, \(m^*\) is the effective mass in units of the rest electron mass \(m_0\), and \(\sigma_D(\omega)\) is the Drude term in (1). Using the fitted Drude function \(\sigma_D(\omega)\) in (2), we obtain \(N_{\text{eff}} = n/m^* = 3.7 \times 10^{20}\) cm\(^{-3}\), or 0.018 per formula unit. Band calculations for \(\text{Fe}_2\text{VAI}\) have given effective masses of \(m^*_e \sim 0.5\) and \(m^*_h \sim 1.0\) [3,4]. Using these \(m^*\) values and the obtained \(N_{\text{eff}}, n = (4-7) \times 10^{20}\) cm\(^{-3}\) is obtained. This value agrees well with the carrier density measured by Hall effect experiment, \(n_H = 4.8 \times 10^{20}\) cm\(^{-3}\) at 300 K [6]. This simple fitting procedure is difficult for \(x \leq 0.3\), since the free-carrier and the interband contributions have a large overlap.

In Fig. 3 (b) we show the temperature dependence of \(\sigma(\omega)\) for \(\text{Fe}_2\text{VAI}\) (\(x = 0.33\)) in the range \(9 \leq T \leq 295\) K. With decreasing \(T\), the free-carrier continuum becomes weaker, showing that \(N_{\text{eff}}\) is reduced at low \(T\). Fitting procedures the same as above show that \(N_{\text{eff}}\) is reduced from \(3.7 \times 10^{20}\) cm\(^{-3}\) at 295 K to \(1.8 \times 10^{20}\) cm\(^{-3}\) at 9 K. Since \(m^*\) is unlikely to change substantially in this \(T\) range [11], the decrease in \(N_{\text{eff}}\) should be due to that in \(n\). This decrease is much smaller than that expected for a semiconductor with an energy gap of 0.1 eV, which will be discussed later. The onset
position, on the other hand, shows only minor shifts with decreasing\nT; i.e., the magnitude of the pseudogap is basically unchanged throughout the measured temperature range. This result is in striking contrast to those of correlation-related energy gaps in, e.g., the Kondo semiconductors such as FeSi [12] and YbB$_2$ [13], where the energy gap in $\sigma(\omega)$ is strongly T dependent.

Band calculations [2–4] have predicted that Fe$_2$VAI is a compensated semimetal having a deep pseudogap in the DOS at E_F, with a minimum direct gap of 0.1–0.15 eV and a carrier density of $(1-5) \times 10^{20}$ cm$^{-3}$. The calculated band structures are schematically sketched in Fig. 4 (where E_F is marked as E_F^0). The DOS around E_F is very small, but it rises steeply at ~ 0.2 eV below E_F. Three hole pockets are located around Γ point and an electron pocket at the X point. Since optical excitations can occur between k-conserving states only in the dipole approximation [9], we cannot simply compare the observed $\sigma(\omega)$ with the calculated DOS, which has been summed over all k states. Nevertheless, it is apparent that the pseudogap and the gap excitation band observed in $\sigma(\omega)$, together with the n value estimated from $\sigma(\omega)$, are qualitatively very consistent with the results of band calculations in Fig. 4. The small T dependence of the pseudogap in $\sigma(\omega)$ strongly suggests that it is a hybridization (pseudo)gap in the band structure of Fe$_2$VAI, as predicted in the band calculations, rather than that induced by T-dependent correlation effects. Various aspects of a (pseudo)gap formation in the band structure of intermetallic Fe$_2$VAI have been analyzed theoretically [2–4].

As mentioned before, $\rho(T)$ of Fe$_2$VAI above ~ 400 K shows a thermally activated form indicating an energy gap of $E_g = 0.1$ eV [1]. If Fe$_2$VAI is an intrinsic semiconductor with $E_g = 0.1$ eV, the onset in the photoemission spectrum (PES) would be observed at 50 meV below E_F. However, the measured PES of Fe$_2$VAI at 40 K does not show such a shift, showing instead a metallic, clear Fermi edge exactly at E_F [1]. A Hall effect study of Fe$_2$VAI [6], on the other hand, has found excess holes in Fe$_2$VAI, with a density of $n_H = 4.8 \times 10^{20} \times 10^{20} \text{ cm}^{-3}$ at 300 K (78 K). While n_H is very close to the total carrier density from the band calculations, the presence of excess holes is in contrast to the prediction of compensated carriers in the band calculations [2–4].

These contrasting results and the present optical data can be understood consistently if one assumes that E_F in Fe$_2$VAI is located at the sharply rising portion of the valence band DOS, rather than at the center of the pseudogap as in the band calculations. In Fig. 4, the proposed position of E_F is indicated by E_F^0, and that from the band calculations by E_F^0. This lowering of E_F is consistent with the Hall effect observation of excess holes, and also with the metallic Fermi edge in PES since the DOS rises sharply at E_F^0. Since optical transitions give the energy difference between occupied and unoccupied states, the gap magnitude in $\sigma(\omega)$ is not sensitive to the lowering of E_F. Hence the situation in Fig. 4 with E_F^0 is still consistent with the observed pseudogap in $\sigma(\omega)$. In addition, the hole density in the proposed situation (where $E_F = E_F^0$) can be close to the total carrier density in the band calculations (where $E_F = E_F^0$), since the lowering of E_F reduces the electron density while it increases the hole density. Indeed, the observed value of n_H agrees well.
with the total density from the band calculations as mentioned before, and also with the estimated value in this work, \(n \sim (3.5-7) \times 10^{20} \text{ cm}^{-3} \).

It has been pointed out by Weht and Pickett [4] that removing Al from Fe\(_2\)VAI is analogous to removing three valence electrons from the cell without removing bands. The estimated deviation from the ideal Fe\(_2\)VAI composition in our samples is less than 0.3% [1]. Assuming an Al vacancy removes three valence electrons, a deficiency of \(\sim 0.3\% \) from the ideal Al content will lead to a decrease of valence electrons by \(\pm 1.9 \times 10^{20} \text{ cm}^{-3} \). This value is well comparable to the observed \(n_H \) mentioned above [6]. Recently, Nishigori \textit{et al.} [14] have found that a deviation of a few percent in the Al content of Fe\(_2\)VAI varies \(\rho \) by a few orders of magnitude. Their results are likely to result from the predicted relation between the Al content and the valence electron density. Given the observed small DOS within the pseudogap, the position of \(E_F \) should be sensitive to even a small deviation in the density of valence electrons. Hence the presence of excess holes and the relaxation time of the carriers rather than the pseudogap. In this situation the small DOS within the pseudogap is unimportant and the \(T \)-dependence than a thermally activated form with a negative slope in \(E_g \) behaviors like that of a semiconductor with \(E_g = 0.1 \text{ eV} \). At low \(T \) where \(k_BT \ll E_g \), thermal excitations of carriers are inhibited, and the relaxation time of the carriers rather than their population determines \(\rho(T) \). In this regime, spin-dependent scatterings probably give rise to the observed negative slope in \(\rho(T) \), as discussed in Ref. [1].

We have reported an unusual pseudogap formation in \(\sigma(\omega) \) spectra of the intermetallic compounds (Fe\(_{1-x}\)V\(_x\))\(_2\)Al, in particular in Fe\(_2\)VAI. The magnitude of the pseudogap \((0.1-0.2 \text{ eV}) \) and the small density of carriers revealed in \(\sigma(\omega) \) are consistent with the results of previous band calculations. We have proposed a model of electronic structures that accounts consistently for the semiconducting transport and the metallic photoemission data observed previously for Fe\(_2\)VAI. Although the energy gap has been explained as a band gap based on our data, this does not mean that all the physical properties can be understood by simple Fermi liquid theory. The anomalous properties at lower temperatures reported in Ref. [1], which are not addressed in this Letter, are indeed likely to result from many-body electron correlation. In this respect, these compounds deserve further studies, including optical experiments at lower temperatures.

We thank S. Nishigori for showing us his results on Fe\(_2\)VAI prior to publication.

Note added.—After the submission of this work, we became aware of another band calculation study on Fe\(_2\)VAI [15] and the optical observation of a clear energy gap in intermetallic RuAl\(_2\) [16].

*Present address: Japan Atomic Energy Research Institute, Ibaragi 319-1195, Japan.
†Present address: Institute for Solid State Physics, University of Tokyo, Roppongi, Tokyo 109-8666, Japan.
[10] A factor group analysis for the \(D0_3 \) structure (point group \(O_h \)) gives the irreducible representation for the infrared-active phonon modes as \(\Gamma_{IR} = 3T_{uu} \), i.e., three phonon modes are allowed. In the measured spectra for \(x \simeq 0.1 \), only two phonon peaks are observed, presumably because two of the three modes are degenerate, or one of them is very weak.
[11] Note that the anomalous increase in the effective mass reported in Ref. [1] was observed only at \(T \lesssim 4 \text{ K} \).