This issue, “Best of the Web” focuses on hidden Markov model (HMM)-based speech synthesis, which has recently been demonstrated to be very effective in generating high-quality speech and started dominating speech synthesis research. The attractive point of this approach is that the synthesized speech can easily be modified by transforming HMM parameters with a small amount of speech data. Thus it is very useful for constructing speech synthesizers with various voice characteristics, speaking styles, and emotions.

This column first reviews the general speech synthesis technology and then describes HMM-based speech synthesis as well as some useful online resources. For the resources presented here, the attributes in square brackets describe the types of information. Unless otherwise noted, the resources are free.

SPEECH SYNTHESIS TECHNOLOGY

The development of computer-based speech synthesis technology has been ongoing for decades. In the early days, rule-based synthesis dominated the speech synthesis research. It generates synthetic speech by manipulating speech segments according to hand-crafted rules.

In 1990s, the speech synthesis technology progressed from the rule-based approach to the data-driven, corpus-based one. High-quality speech synthesizers can be built from sufficiently diverse single-speaker speech databases. We can see progress from fixed inventories, found in diphone synthesis, to the more general techniques of unit-selection synthesis, where appropriate subword units are selected from large databases. Unit-selection techniques evolved to be the dominant approach to speech synthesis. The following Wikipedia article is a good introduction to the history of speech synthesis technologies and related topics: http://en.wikipedia.org/wiki/Speech_synthesis

Although certainly successful, there are always two limitations in unit-selection synthesis: i) when a given sentence requires phonetic and prosodic contexts not covered in a database, the quality of the synthesized speech can be severely degraded, and ii) as few modifications to the selected units are done, this limits the output speech to the same style as that in the original recordings. With the need for more control over speech variations, larger databases containing different styles are required. However, recording large databases with variations is costly.

HMM-BASED SPEECH SYNTHESIS

The idea of HMM-based speech synthesis first appeared in mid-1990s. It has been popular in speech synthesis research since the early 2000s. The basic procedure of HMM-based speech synthesis is as follows. We first extract parametric representations of speech including spectral (filter) and excitation (source) parameters from a speech database and then model them by using a set of subword HMMs. Usually, the maximum likelihood (ML) criterion is used to estimate the HMM parameters as

\[
\hat{\lambda} = \arg\max_{\lambda} p(O \mid W, \lambda)
\]

where \(\lambda\) is a set of HMM parameters, \(O\) is a set of training data, and \(W\) is a set of transcriptions corresponding to \(O\). We then generate most probable speech parameters, \(\hat{o}\), for a given sentence, \(w\), from the set of estimated HMM parameters, \(\hat{\lambda}\), as

\[
\hat{o} = \arg\max_{o} p(o \mid w, \hat{\lambda}).
\]

Finally, a speech waveform is reconstructed from the parametric representations of speech.

The HMM-based synthesis approach might be simply described as generating the average of similarly sounding speech segments. This contrasts with the need in unit-selection synthesis to retain unmodified speech units to synthesize speech waveforms. However, the use of parametric representation and statistical models offers other attractive points. The most attractive point on this approach is that by using only a small amount of speech data, we can easily build text-to-speech synthesis (TTS) systems with the target voice quality. Thus HMM-based synthesis is expected to be useful for constructing TTS systems with various flexibilities: voice characteristics, speaking styles, and emotions. There have been four major techniques to accomplish this, i.e., adaptation, interpolation, eigenvoice, and multiple regression. The following Web sites include speech samples that demonstrate the effects of these techniques.

SPEAKER/STYLE ADAPTATION

http://www.kby.s.i tep.ac.jp/demo/styleadapt/index.html
By using and combining these techniques, we can synthesize speech with various voice characteristics, speaking styles, and emotions without recording large speech databases.

Because of the space limitation, here we omit details of HMM-based synthesis. Please see the following tutorials for additional information:

http://www.sp.nitech.ac.jp/~tokuda/tokuda_icscsp2006.pdf
http://homepages.inf.ed.ac.uk/jyamagis/icassp/Lecture-HTS.pdf
[tutorial slides]

By using and combining these techniques, we can synthesize speech with various voice characteristics, speaking styles, and emotions without recording large speech databases.

Because of the space limitation, here we omit details of HMM-based synthesis. Please see the following tutorials for additional information:

http://www.sp.nitech.ac.jp/~tokuda/tokuda_icscsp2006.pdf
http://homepages.inf.ed.ac.uk/jyamagis/icassp/Lecture-HTS.pdf
[tutorial slides]

By using and combining these techniques, we can synthesize speech with various voice characteristics, speaking styles, and emotions without recording large speech databases.

Because of the space limitation, here we omit details of HMM-based synthesis. Please see the following tutorials for additional information:

http://www.sp.nitech.ac.jp/~tokuda/tokuda_icscsp2006.pdf
http://homepages.inf.ed.ac.uk/jyamagis/icassp/Lecture-HTS.pdf
[tutorial slides]
reconstruct a speech waveform from the spectral and excitation parameters generated from HMMs.

STRAIGHT is the high-quality analysis/synthesis method that can enhance the quality of HMM-based speech synthesis. The MATLAB p-code released on this site provides powerful fundamental frequency (F_0) extraction, F_0-adaptive spectral analysis, and aperiodicity measure extraction functions as well as waveform reconstruction function from extracted parameters. In the HTS recipes, the extracted parameters are converted to low-dimensional forms using SPTK and modeled by HMMs.

The Edinburgh Speech Tools is a collection of APIs and programs for speech processing including waveform manipulation, feature extraction, and conversion. It also includes a pitch tracker, a labeling system, a classification and regression tree (CART), and support for linguistic type objects. This tool is used in the Festival Speech Synthesis System.

Robust F_0 extraction is essential in building a high-quality HMM-based speech synthesizer. The Snack Sound Toolkit is a Tcl/Tk or Python-based speech processing engine that provides two types of F_0 extraction functionalities based on the average magnitude difference function (AMDF) and the robust algorithm for pitch tracking (RAPT, also known as get$_{f0}$). ESPS software is a suite of signal processing programs that can be used for the analysis, manipulation, and labeling of speech. It also includes the stand-alone version of get$_{f0}$.

DATABASE

http://festvox.org/cmu_arctic/ [speech synthesis corpus]

The CMU ARCTIC databases are phonetically balanced, U.S. English, single-speaker databases designed for speech synthesis research. The HTS recipes for building state-of-the-art, speaker-dependent and speaker-adaptive HTS voices use these databases.

TRANSCRIPTION EDITOR

http://www.speech.kth.se/wavesurfer/ [open-source, segmentation editor]

The use of manually corrected segmentation labels sometimes improves the quality of synthesized speech. Wavesurfer is an open-source GUI sound manipulation tool based on Snack. It can read and write HTK-style transcription files and provides an intuitive interface to manually edit segmentation labels.

SPEECH SYNTHESIS EVALUATION

http://festvox.org/blizzard

http://www.synsig.org/index.php/Blizzard_Challenge/ [workshop description and papers]

The Blizzard Challenge is an annual large-scale, open-speech synthesis evaluation where common speech databases are provided to participants to build synthetic voices. This page archives the papers presented in the Blizzard Challenge workshops, which is annually held as a satellite workshop of Interspeech. The HMM-based speech synthesis systems have demonstrated its potential to synthesize high-quality speech since the first challenge.

PROJECT

http://www.emime.org/ [EU-funded project]

The EMIME is an EU-funded project focusing on developing a mobile device that can perform speech-to-speech translation with user’s voice characteristics. The HMM-based speech synthesis is used as a core technology in this project.

ONLINE TTS DEMOS

http://festvox.org/voicedemos.html
http://www.cstr.ed.ac.uk/projects/festival/morevoices.html
http://www.sp.nitech.ac.jp/~demo/gtalk/demo.php

The festvox voice-demo page provides online demos of basic HTS voices. The Edinburgh University CSTR online demo page also provides TTS demos of the state-of-the-art HTS voices submitted to the past Blizzard Challenge events. An online Japanese HTS-based TTS demo can be found on the GalateaTalk demo page. Another Edinburgh University demo page provides various speech samples and online demos for the state-of-the-art applications and technologies of HMM-based speech synthesis.

AUTHORS

Heiga Zen (heiga.zen@crl.toshiba.co.uk) is a researcher with the Speech Technology Group at the Toshiba Research Europe Ltd. Cambridge Research Laboratory, U.K.

Keiichi Tokuda (http://www.sp.nitech.ac.jp/~tokuda) is a professor with the Department of Computer Science at the Nagoya Institute of Technology, Japan.

We want to hear from you!

Do you like what you’re reading?

Let us know—send an e-mail to the Editor-in-Chief.

Letters may be published in future issues and edited for style.