Approximability and inapproximability of the minimum certificate dispersal problem

Tomoko Izumi, Taisuke Izumi, Hirotaka Ono, Koichi Wada

journal or publication title: Theoretical Computer Science
volume: 411
number: 31-33
page range: 2773-2783
year: 2010-06-28
URL: http://id.nii.ac.jp/1476/00005500/
doi: 10.1016/j.tcs.2010.03.029

<table>
<thead>
<tr>
<th>著者（英）</th>
<th>Tomoko Izumi, Taisuke Izumi, Hirotaka Ono, Koichi Wada</th>
</tr>
</thead>
<tbody>
<tr>
<td>創刊年</td>
<td>2010-06-28</td>
</tr>
<tr>
<td>出版物</td>
<td>Theoretical Computer Science</td>
</tr>
<tr>
<td>巻</td>
<td>411</td>
</tr>
<tr>
<td>号</td>
<td>31-33</td>
</tr>
<tr>
<td>発行日</td>
<td>2010-06-28</td>
</tr>
<tr>
<td>URL</td>
<td>http://id.nii.ac.jp/1476/00005500/</td>
</tr>
<tr>
<td>doi</td>
<td>10.1016/j.tcs.2010.03.029</td>
</tr>
</tbody>
</table>
Approximability and Inapproximability of the Minimum Certificate Dispersal Problem✩

Tomoko IZUMI✩a, Taisuke IZUMIb, Hirotaka ONOc, Koichi WADAb

aCollege of Information Science and Engineering, Ritsumeikan University,
Kusatsu, 525-8577 Japan.
Tel/Fax: +81-77-561-3445
bGraduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
cGraduate School of Information Science and Electrical Engineering, Kyushu University,
Fukuoka, 819-0395, Japan.

Abstract

Given an n-vertex directed graph $G = (V, E)$ and a set $R \subseteq V \times V$ of requests, we consider to assign a set of edges to each vertex in G so that for every request (u, v) in R the union of the edge sets assigned to u and v contains a path from u to v. The Minimum Certificate Dispersal Problem (MCD) is defined as one to find an assignment that minimizes the sum of the cardinalities of the edge sets assigned to each vertex. This problem has been shown to be NP-hard in general, though it is polynomially solvable for some restricted classes of graphs and restricted request structures, such as bidirectional trees with requests of all pairs of vertices. In this paper, we give an advanced investigation about the difficulty of MCD by focusing on the relationship between its (in)approximability and request structures. We first show that MCD with general R has $\Theta(\log n)$ lower and upper bounds on approximation ratio under the assumption $P \neq NP$. We then assume R forms a clique structure, called Subset-Full, which is a natural setting in the context of the application. Interestingly, under this natural setting, MCD becomes to be 2-approximable, though it has still no polynomial time approximation algorithm whose factor better than 677/676 unless $P = NP$. Finally, we show that this approximation ratio can be improved to 3/2 for undirected variant of MCD with Subset-Full.

Key words: minimum certificate dispersal problem, graph theory, approximation algorithms, combinatorial optimization

Corresponding author.
Email addresses: izumi-t@fc.ritsumei.ac.jp (Tomoko IZUMI),
t-izumi@nitech.ac.jp (Taisuke IZUMI), ono@inf.kyushu-u.ac.jp (Hirotaka ONO),
wada@nitech.ac.jp (Koichi WADA)
1. Introduction

Background and Motivation. Let $G = (V, E)$ be a directed graph and $R \subseteq V \times V$ be a set of ordered pairs of vertices, which represents requests about reachability between two vertices. For given G and R, we consider an assignment of a set of edges to each vertex in G. The assignment satisfies a request (u, v) if the union of the edge sets assigned to u and v contains a path from u to v. The Minimum Certificate Dispersal Problem (MCD) is the one to find the assignment satisfying all requests in R that minimizes the sum of the cardinalities of the edge sets assigned to each vertex.

This problem is motivated by a requirement in public-key based security systems, which are known as a major technique for supporting secure communication in a distributed system [1, 2, 3, 4, 5, 6, 7]. The main problem of the systems is to make each user’s public key available to others in such a way that its authenticity is verifiable. One of well-known approaches to solve this problem is based on public-key certificates. A public-key certificate contains the public key of a user v encrypted by using the private key of a user u. If a user u knows the public key of another user v, user u can issue a certificate from u to v. Any user who knows the public key of u can use it to decrypt the certificate from u to v for obtaining the public key of v. All certificates issued by users in a network can be represented by a certificate graph: Each vertex corresponds to a user and each directed edge corresponds to a certificate. When a user w has communication request to send messages to a user v securely, w needs to know the public key of v to encrypt the messages with it. For satisfying a communication request from a vertex w to v, vertex w needs to get vertex v’s public-key. To compute v’s public-key, w uses a set of certificates stored in w and v in advance. Therefore, in a certificate graph, if a set of certificates stored in w and v contains a path from w to v, then the communication request from w to v is satisfied. In terms of cost to maintain certificates, the total number of certificates stored in all vertices must be minimized for satisfying all communication requests.

While, from the practical aspect, MCD should be handled in the context of distributed computing theory, its inherent difficulty as an optimization problem is not so clear even in centralized settings: Jung et al. discussed MCD with a restriction of available paths in [4] and proved that the problem is NP-hard. In their work, to assign edges to each vertex, only the restricted paths which are given for each request is allowed to be used. MCD, with no restriction of available paths, is first formulated in [7]. In [7], MCD, with no restriction of available paths, is proved to be also NP-hard even if the input graph is strongly connected. Known results about the complexity of MCD are actually only these NP-hardness. This fact yields a theoretical interest of revealing the (in)approximability of MCD. As for the positive side, MCD is polynomially solvable for bidirectional trees, rings and Cartesian products of graphs [7].

This paper also investigates how the request structures affect the difficulty of MCD. As seen above, MCD is doubly structured in a sense: One structure is the graph G itself and the other is the request structure R. We would like to
<table>
<thead>
<tr>
<th>Restriction on request</th>
<th>Arbitrary</th>
<th>Subset-Full</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inapproximability</td>
<td>$\Omega(\log n)$</td>
<td>677/676 (open)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>261/260 (for bidirectional graphs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximation ratio</td>
<td>$O(\log n)$</td>
<td>2</td>
<td>$3/2$ (for undirected graphs)</td>
</tr>
</tbody>
</table>

Table 1: Approximability / Inapproximability bounds shown in this paper

n is the number of vertices.

investigate how the tractability of MCD changes as the topology of R changes. In passing, a typical doubly structured problem in this sense is the H-coloring problem [8]. The H-coloring problem is coloring problem with restrictions of adjacent colors, which are given by a graph H. That is, when the graph H is a complete graph, the H-coloring problem is equivalent to the traditional coloring problem. About H-coloring, so-called dichotomy theorem is well known: H-coloring is solvable in polynomial time if and only if H has a loop or is bipartite graph; otherwise the problem is NP-complete. On MCD, our interest here is to investigate whether the hardness (of approximation) of MCD depends on the restrictions about R. A similar structure is also found in the VPN design problem [14]. It is defined as a certain kind of connection-establishment problems, and allows the optimal solution computable within polynomial time when the request is all-to-all connections (i.e., in the context of MCD, R induces a complete subgraph) [15].

Revealing the relationship between tractability and request structures is a natural problem not only from the theoretical viewpoint but also from the practical viewpoint, because, in public-key based security systems, a set of requests should have a certain type of structures. For example, it is reasonable to consider the situation in which a set of vertices belonging to a certain community should have requests between each other in the community. This situation is interpreted that R forms a clique structure. Thus the following question arises: If R forms a clique, can the approximability of MCD be improved?

Our Contribution. In this paper, we investigate the approximability of MCD from the perspective how the structure of R affects the complexity of MCD. We classify the set R of requests according to the elements of R: R is subset-full if for a subset V' of V, R consists of all reachable pairs of vertices in V', and R is full if the subset V' is equal to V. Note that Subset-Full corresponds to the situation that R forms a clique. Table 1 summarizes the results in this paper.

Here we review our contribution. We first consider the general case: We show that if we have no restriction about R, a lower bound on approximation ratio for MCD is $\Omega(\log n)$ and an upper bound is $O(\log n)$, where n is the number of vertices.
of vertices. Namely, the lower and upper bounds coincide as \(\Theta(\log n) \) in terms of order. Moreover, it is proved that we can still obtain the inapproximability \(\Omega(1) \) of MCD even when the graph class is restricted to bidirectional graphs.

As the second half of the contribution, for subset-full requests, we show that the lower bound of approximation ratio for MCD is 677/676 and the upper bound is 2. The lower bound is obtained by a gap-preserving reduction from VERTEX-COVER. The upper bound is proved by a detailed analysis of the algorithm MinPivot, which is proposed in [7]. While Zheng et al. have shown that MinPivot achieves approximation ratio 2 with full requests, we can obtain the same approximation ratio by a different approach even when the set of requests is subset-full. In addition, by extending the approach, it is also shown that MinPivot guarantees 3/2 approximation ratio for MCD of the undirected variant with subset-full requests.

The remainder of the paper is organized as follows. In Section 2, we define the Minimum Certificate Dispersal Problem (MCD). Section 3 presents inapproximability of MCD with general R and one with Subset-Full. The upper bound of MCD with general R and one with Subset-Full are shown in Sections 4 and 5 respectively. Section 6 concludes the paper.

2. Minimum Certificate Dispersal Problem

Let \(G = (V, E) \) be a directed graph, where \(V \) and \(E \) are the sets of vertices and edges in \(G \) respectively. An edge in \(E \) connects two distinct vertices in \(V \). The edge from vertex \(u \) to \(v \) is denoted by \((u, v)\). The numbers of vertices and edges in \(G \) are denoted by \(n \) and \(m \) respectively (i.e., \(n = |V|, m = |E| \)).

A sequence of edges \(p(v_0, v_k) = (v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k) \) is called a path from \(v_0 \) to \(v_k \) of length \(k \). A path \(p(v_0, v_k) \) can be represented by a sequence of vertices \(p(v_0, v_k) = (v_0, v_1, \ldots, v_k) \). For a path \(p(v_0, v_k) \), \(v_0 \) and \(v_k \) are called the source and destination of the path respectively. The length of a path \(p(v_0, v_k) \) is denoted by \(|p(v_0, v_k)| \). For simplicity, we treat a path as the set of edges on the path when no confusion occurs. A shortest path from \(u \) to \(v \) is the one whose length is the minimum of all paths from \(u \) to \(v \), and the distance from \(u \) to \(v \) is the length of a shortest path from \(u \) to \(v \), denoted by \(d(u, v) \).

A dispersal \(D \) of a directed graph \(G = (V, E) \) is a family of sets of edges indexed by \(V \), that is, \(D = \{D_v \subseteq E | v \in V\} \). We call \(D_v \) a local dispersal of \(v \). A local dispersal \(D_v \) indicates the set of edges assigned to \(v \). The cost of a dispersal \(D \), denoted by \(c(D) \), is the sum of the cardinalities of all local dispersals in \(D \) (i.e., \(c(D) = \Sigma_{v \in V} |D_v| \)). A request is a reachable ordered pair of vertices in \(G \). For a request \((u, v)\), \(u \) and \(v \) are called the source and destination of the request respectively. A set \(R \) of requests is subset-full if there exists a subset \(V' \) of \(V \) such that \(R \) consists of all reachable pairs of vertices in \(V' \) (i.e., \(R = \{(u, v) | u \text{ is reachable to } v \in G, u, v \in V' \subseteq V\} \)), and \(R \) is full if the subset \(V' \) is equal to \(V \). We say a dispersal \(D \) of \(G \) satisfies a set \(R \) of requests if a path from \(u \) to \(v \) is included in \(D_u \cup D_v \) for any request \((u, v) \in R\).

The Minimum Certificate Dispersal Problem (MCD) is defined as follows:
Definition 1 (Minimum Certificate Dispersal Problem (MCD)).

INPUT: A directed graph $G = (V, E)$ and a set R of requests.

OUTPUT: A dispersal D of G satisfying R with minimum cost.

The minimum among costs of dispersals of G that satisfy R is denoted by $c_{\text{min}}(G, R)$. For short, the cost $c_{\text{min}}(G, R)$ is also denoted by $c_{\text{min}}(G)$ when R is full. Let D^{opt} be an optimal dispersal of G which satisfies R (i.e., D^{opt} is one such that $c(D^{\text{opt}}) = c_{\text{min}}(G, R)$).

In this paper, we deal with MCD for undirected graphs in Section 5.3. For an undirected graph G, the edge between vertices u and v is denoted by (u, v) or (v, u). When an edge (u, v) is included in a local dispersal D_v, the vertex v has two paths from u to v and from v to u.

3. Inapproximability

It was shown in [7] that MCD for strongly connected graphs is NP-hard by a reduction from the VERTEX-COVER problem. In this section, we provide another proof of NP-hardness of MCD for strongly connected graphs, which implies a stronger inapproximability. Here, we show a reduction from the SET-COVER problem. For a collection C of subsets of a finite universal set U, $C' \subseteq C$ is called a set cover of U if every element in U belongs to at least one member of C'. Given C and a positive integer k, SET-COVER is the problem of deciding whether a set cover $C' \subseteq C$ of U with $|C'| \leq k$ exists. By considering the graph where each element corresponds to an edge and each subset to a vertex, it becomes equivalent to VERTEX-COVER. Then, from the definition, each element is contained in exactly two subsets.

The reduction from SET-COVER to MCD is as follows: Given a universal set $U = \{1, 2, \ldots, n\}$ and its subsets S_1, S_2, \ldots, S_m and a positive integer k as an instance I of SET-COVER, we construct a graph G_I including gadgets that
mimic (a) elements, (b) subsets, and (c) a special gadget: (a) For each element
i of the universe set $U = \{1, 2, \ldots, n\}$, we prepare an element gadget u_i (it is
just a vertex); let V_U be the set of element vertices, i.e., $V_U = \{u_i \mid i \in U\}$.
(b) For each subset $S_j \in \mathcal{C}$, we prepare a directed path $(v_{j,1}, v_{j,2}, \ldots, v_{j,p})$
of length $p - 1$, where p is a positive integer used as a parameter. The end
vertex $v_{j,p}$ is connected to the element gadgets that correspond to elements
belonging to S_j. For example, if $S_1 = \{2, 4, 5\}$, we have directed edges $(v_{1,p}, u_2)$,
$(v_{1,p}, u_4)$ and $(v_{1,p}, u_5)$. (c) The special gadget just consists of a base vertex
r. This r has directed edges to all $v_{j,1}$’s of $j = 1, 2, \ldots, m$. Also r has an
incoming edge from each u_i. See Figure 1 as an example of the reduction,
where $S_1 = \{1, 2, 3\}$, $S_2 = \{2, 4, 5\}$ and $S_3 = \{3, 5, 6\}$. We can see that G_T
is strongly connected. The set R_T of requests contains the requests from the base
vertex r to all element vertices u_i, i.e., $R = \{(r, u_i) \mid u_i \in V_U\}$.

We can show the following, although we omit the proof because it is straight-
forward: (i) If the answer of instance I of SET-COVER is yes, then $c_{\min}(G_T, R_T) \leq pk + n$. (ii) Otherwise, $c_{\min}(G_T, R_T) \geq p(k + 1) + n$. About the inapproxima-
bility of SET-COVER, it is known that SET-COVER has no polynomial-time
approximation algorithm with factor better than $0.2267 \ln n$, unless $P = NP$ [9].
More precisely, there exists g such that the following decision problem (SET-
COVER GAP problem) is NP-hard: Given a SET-COVER instance, distingui-
shing between (a) there exists a set cover with at most size g, and (b) every
set cover has size at least $0.2267g \ln n$. By the above reduction, we obtain a
gap-preserving reduction [10] as follows:

Lemma 1. The above construction of G_T is a gap-preserving reduction from
SET-COVER to MCD for strongly connected graphs such that

\[
\begin{align*}
(i) \quad & \text{if } OPT_{SC}(I) \leq g, \text{ then } c_{\min}(G_T, R_T) \leq p \cdot g + n, \\
(ii) \quad & \text{if } OPT_{SC}(I) \geq g \cdot c \ln n, \text{ then } c_{\min}(G_T, R_T) \geq (p \cdot g + n) \left(c \ln n - \frac{c \ln n \cdot n}{p \cdot g + n} \right),
\end{align*}
\]

where $OPT_{SC}(I)$ and g denote the optimal value of SET-COVER and a gap
parameter for I respectively, and $c = 0.2267$.

Note that for any positive constant $\alpha \leq 1$, there exists p of polynomial size with
respect to n that satisfies $\left(c \ln n - \frac{c \ln n \cdot n}{p \cdot g + n} \right) \geq (p \cdot g + n) \cdot c \ln n \cdot (1 - \alpha)$. Thus,
from the NP-hardness of SET-COVER GAP problem, for any positive constant
$\alpha < 1$, there exists g' such that it is NP-hard to distinguish between (a) there
exists a dispersal whose cost is at most size g', and (b) every dispersal has size
at least $g' \cdot (c - \alpha) \ln n$. This implies the following theorem.

Theorem 2. There exists no $((0.2267 - \alpha) \ln |V| - \varepsilon)$ factor approximation poly-
nomial time algorithm of MCD for strongly connected graphs unless $P = NP$,
where α and ε are arbitrarily small positive constants.

It might be difficult to directly extend the result to more restricted classes
of strongly connected graphs, e.g., bidirectional graphs, but we can still obtain
some inapproximability result for bidirectional graphs, by slightly modifying the graph G_I, though we omit the details. We use a reduction not from SET-COVER but from VERTEX-COVER. The graph constructed from VERTEX-COVER is similar to G_I, but we replace each (directed) edge by bidirectional edges, and also we delete edges between u_i’s and r. Furthermore, we set $p = 1$. Then we obtain the following lemma:

Lemma 3. There is a gap-preserving reduction from VERTEX-COVER for graphs with degree at most 4 to MCD for bidirectional graphs such that

(i) if $\text{OPT}_{VC}(I) = g$, then $c_{\text{min}}(G_I, R_I) \leq g + n$,

(ii) if $\text{OPT}_{VC}(I) \geq c \cdot g$, then $c_{\text{min}}(G_I, R_I) \geq (g + n) \left(c - \frac{(c-1)n}{g+n} \right)$,

where $\text{OPT}_{VC}(I)$ and g denote the optimal value of VERTEX-COVER and a gap parameter for I, and $c = 53/52$.

In this lemma, $c = 53/52$ represents an inapproximability of VERTEX-COVER for graphs with degree at most 4 under the assumption $P \neq NP$ [11]. Since we can assume $4 \cdot g \geq n$ (otherwise, the answer is clearly “no”), we obtain the following theorem.

Theorem 4. There exists no $(261/260 - \varepsilon)$ factor approximation polynomial time algorithm of MCD for bidirectional graphs unless $P = NP$, where ε is an arbitrarily small positive constant.

Again we consider another reduction from VERTEX-COVER for graphs with degree at most 4, in which we embed an instance to MCD problem with a subset-full request structure. As well as the reduction from SET-COVER, we prepare (a) edge gadgets, (b) vertex gadgets, and (c) special gadgets. The reduction from VERTEX-COVER to MCD with subset-full requests is as follows: Given $G = (V, E)$ with degree at most 4 and a positive integer k as an instance I of VERTEX-COVER, where $V = \{1, 2, \ldots, n\}$ is the vertex set and $E = \{e_1, e_2, \ldots, e_m\}$ is the edge set, we construct an MCD graph G'. (a) For each edge e_i in E, we prepare an m-length directed path $(u_i, u_{i,1}, \ldots, u_{i,m-1}, w)$ and (w, u_i) as an edge gadget, where w is a common vertex among edge gadgets.

(b) For each vertex $j \in V$, we prepare a vertex u_j' as a vertex gadget. If j is connected with edge e_i, we add directed edges (u_j', u_i). For example, if $e_5 = \{2, 3\}$, we have directed edges (u_2', u_3), (u_3', u_5). Note that each u_i has exactly two incoming edges from vertex gadgets.

(c) The special gadgets consist of p base vertices r_1, r_2, \ldots, r_p and one root vertex r. Each r_j and r are connected by path $(r, r_{j,1}, \ldots, r_{j,m-1}, r_j)$ and edge (r_j, r). Also, each r_j has directed edges to all u_j'’s of $j = 1, 2, \ldots, m$. Furthermore, we prepare an m-length directed path from w to r, i.e., $(w, w_1, \ldots, w_{m-1}, r)$. See Figure 2 as an example of the reduction, in which we have $e_2 = \{1, 2\}$, $e_3 = \{1, 3\}$ and $e_5 = \{2, 3\}$. We can see that G' is strongly connected.

The set R' of requests are defined as $R' = R_{a,a} \cup R_{a,c} \cup R_{c,c}$, where $R_{a,a} = \{(u_i, u_j) \mid i, j = 1, 2, \ldots, m, \text{ and } i \neq j\}$, $R_{a,c} = \{(u_i, r_j), (r_j, u_i) \mid i = 1, \ldots, m\}$
and $R_{c,c} = \{(r_i, r_j) \mid i, j = 1, 2, \ldots, p, \text{ and } i \neq j\}$. Let $V^{(a)}$ and $V^{(c)}$ denote $\{u_i \mid i = 1, \ldots, m\}$ and $\{r_j \mid j = 1, 2, \ldots, p\}$, respectively.

Lemma 5. Let $p = m$. The above construction of G'_T and R' is a gap-preserving reduction from VERTEX-COVER with degree at most 4 to MCD with subset-full requests for strongly connected graphs such that:

(i) If $OPT_{VC}(I) = g(I)$, then $c_{min}(G'_T, R') \leq m(g(I) + 3m + 3)$.

(ii) If $OPT_{VC}(I) > c \cdot g(I)$, then $c_{min}(G'_T, R') > m(g(I) + 3m + 3)(c - \frac{(3m+3)(c-1)}{g(I)+3m+3})$.

where $OPT_{VC}(I)$ denotes the optimal value of VERTEX-COVER for I and $c = 53/52$.

Proof. In this proof, we define $k_1 := g(I)$ and $k_2 := c \cdot g(I)$. We first show (i). For a vertex cover C with size k_1, we construct a solution of MCD as follows: Assume edge e_i is covered by a vertex $c(i)$ in C, and let $D_{u_i} = \{(u_i, w), (w, u_i), (u'_i, u_i), (w, r)\}$ for $i = 1, 2, \ldots, m$, where $\{(u_i, w) = \{(u_i, u_{i,1}, u_{i,2}, \ldots, u_{i,m-2}, u_{i,m-1}, w)\}$ and $\{(w, r) = \{(w, u_1), (w_1, u_2), \ldots, (w_{m-2}, w_{m-1}, w)\}$. Also let $D_{r_j} = \{(r_j, r_j)\}$. In this notation, the costs of $\{(w, r) \mid j = 1, 2, \ldots, p\}$, where $\{(r, r_j) = \{(r, r_j, 1), (r_j, 1), r_j, 2), \ldots, (r_j, m-2, r_j, m-1), (r_j, m-1, r_j)\}$. Then we have $c(D) = m(3m+3+k_1) = m(3m+3+k_1)$, which shows (i).

We next show (ii) by contradiction. We assume that there exists an instance I of VERTEX-COVER whose optimal solution size is more than k_2, but $c_{min}(G'_T, R') \leq m(3m+3+k_2)$. Suppose that D^{Opt} (for simplicity, we denote by D in this proof) is an optimal solution of MCD instance G'_T and R'. We can treat directed paths $p(u_i, w) = (u_i, u_{i,1}, \ldots, w)$, for $i = 1, \ldots, m$, $p(w, r) = (w, w_1, \ldots, w_{m-1}, r)$ and $p(r, r_j) = (r, r_j, 1), \ldots, r_j, m-1, r_j)$, where $\{(r, r_j) = \{(r, r_j, 1), (r_j, 1), r_j, 2), \ldots, (r_j, m-2, r_j, m-1), (r_j, m-1, r_j)\}$. This implies that $c(D) = m(3m+3+k_1) = m(3m+3+k_1)$, which shows (ii).

Thus from now on, we denote $p(u_i, w), p(w, r)$ and $p(r, r_j)$ simply by (u_i, w), (w, r) and (r, r_j), for each i and j. In this notation, the costs of (u_i, w), (w, r) and (r, r_j) are all m. We first claim that $(u_i, w) \in D_{u_i}$ and $(r, r_j) \in D_{r_j}$ for every $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, p$. Otherwise, $\nexists (i \mid u_i, w) \notin D_{u_i}$ or $\exists (j \mid r, r_j) \notin D_{r_j}$. Let $A = \{i \mid u_i, w) \notin D_{u_i}\}$ and $B = \{j \mid (r, r_j) \notin D_{r_j}\}$. Since $(u_i, r_j) \in R'$ for any pair of i and j, we have $\forall (u_i, w), (w, r), (r, r_j) \in D_{u_i} \cup D_{r_j}$ for any i and j. This implies that $\forall (u_i, w) \mid i \in A \subseteq D_{u_i}$ for any i, and $\forall (r, r_j) \mid j \in B \subseteq D_{r_j}$ for any i. Also, if $(w, r) \notin D_{u_i}$, then $(w, r) \in D_{r_j}$ for every j, and if $(w, r) \notin D_{r_j}$, then $(w, r) \in D_{r_j}$ for every i. Thus, we can solve the original vertex cover problem in polynomial time by an exhaustive search, we have $c(D) \geq m^2 + m(|A| + |B|)(m-1) \geq m^2 + m(m-1)$. Since we can assume $k_2 < m - 4$ (otherwise, we can solve the original vertex cover problem in polynomial time by an exhaustive search), we have $c(D) \geq m^2 + m(m-1) = m^2 + m(m-1)$.
of satisfices \((u, w) \in D_{u_i} \) and \((r, r_j) \in D_{r_i}\), for every \(i\) and \(j\), and either \((w, r) \in D_{u_i}\) for every \(i\) or \((w, r) \in D_{r_j}\) for every \(j\). For these, we should allocate cost \(3m^2\) in \(c(D)\).

Let us now consider \(R_{a,e}\). We first consider the reachability from \(r_i\) to \(u_j\). In order to make \(u_j\)'s reachable from \(r_i\), we can have the following two strategies: One is that \(r_i\) takes a route via some \(u_{i'}\) and \(w\), and then reaches other \(u_j\)’s. The other is that \(r_i\) takes a route to every \(u_j\) via a \(u\) vertex (not via another \(u_{i'}\)). We call the former strategy \((s1)\) and the latter \((s2)\). To realize \((s1)\), \(D_{r_i}\) or \(D_{u_i}\)’s should contain \((u, w)\). If \(D_{r_i}\) does not contain \((u_{i'}, w)\), then \((m - 1)\) \(D_{u_i}\)’s contain \((u_{i'}, w)\), but it contradicts the size of \(c(D)\). Thus, for any \(r_i\) in this strategy \((s1)\), there exists \(i'\) such that \((u_{i'}, w) \in D_{r_i}\). If \(p - 1(= m - 1)\) \(r_i\)'s take \((s1)\), we need extra costs \(m(m - 1)\) for \(c(D)\), which contradicts the size of \(c(D)\) again; there are at least two \(r_i\)'s taking the other strategy \((s2)\). From the above argument, we can assume that if \(r_i\) takes \((s2)\), \((u, j) \notin D_i\) holds for any \(i\). Paths between \(r_i\)'s and \(u_j\)'s form a directed acyclic graph that ends at \(u_j\)’s; \(w\) is not reachable from \(u_i\)'s in \(D_{r_i}\) and \(D_{u_i}\), where both \(r_a\) and \(r_b\) take \((s2)\). For any \(r_a\) taking \((s2)\), there exists \(C_a \subseteq V\) of \(G\) such that for any \(u_i\) some \(i \in C_a\) satisfies \((u_i^*, u_j) \in D_{r_a} \cup D_{u_i}\) (this condition implies that \(C_a\) is a vertex cover of \(G\)), and for any \(i \in C_a\) \((r_a, u_i^*) \in D_{r_a} \cup D_{u_i}\).

The cost allocated at this point is evaluated as follows. Let \(\alpha\) be the ratio of \(r_i\)'s taking strategy \((s1)\). (Consecutively, the ratio of \(r_i\)'s taking strategy \((s2)\) is \(1 - \alpha\). The numbers of \(r_i\)'s taking \((s1)\) and \((s2)\) are \(po = m\alpha\) and \(p(1 - \alpha) = m(1 - \alpha)\), respectively.) For each \(r_i\) taking strategy \((s1)\), we should have \((u_{i'}, w) \in D_{r_i}\) and \((r_i, u_j) \in D_{r_i} \cup \bigcup_{j} D_{u_i}\) for some \(i'\) and \(j'\), whose cost is at least \(m + 1\) for each; in total, \(m\alpha(m + 1)\). For \(m(1 - \alpha)\) \(r_i\)'s taking strategy \((s2)\), it costs at least \(m(1 - \alpha)k^* + 1\), where \(k^*\) denotes the size of minimum vertex covers of \(G\). Thus the total cost newly booked by the previous paragraph is \(m\alpha(m + 1) + m(1 - \alpha)k^* + 1\).

Next we consider \(R_{a,e}\). By the above argument, we have \((r, r_j) \in D_{r_j}\) for every \(i\). To make \(r_i\) reachable from \(r_j\), there are two ways: one is \((r_j, r) \in D_{r_j} \cup D_{r_j}\), and the other is that \(D_{r_j} \cup D_{r_j}\) includes a path from \(r_j\) to \(r\) via \(w\). The former costs at least 1 per \(r_i\). In the latter case, the cost may be absorbed by other paths. In fact, if \(r_j\) takes strategy \((s2)\) stated above, \(r_i\) may have a path from \(r_j\) to \(w\); the cost for connecting \(r_j\) and \(r\) can be 0 (in case strategy \((s2)\), we cannot include any \((u_i, w)\), it should take cost 1). Thus the total cost allocated here is at least \(m(1 - \alpha)\).

Finally, we consider \(R_{e,e}\). Similarly as above, we have \((u_i, w) \in D_{u_i}\) for every \(i\). To make \(u_i\) reachable from \(u_j\), there are two ways: one is \((w, u_i) \in D_{u_i} \cup D_{u_i}\), and the other is that \(D_{u_i} \cup D_{u_i}\) includes a path from \(w\) to \(u_i\) via \(r\). The former costs at least 1 per \(u_i\). In the latter case, the cost may be absorbed by other paths. However, in the previous argument, any \((r, r_a)\) are not in \(D_{u_i}\) but some \((r, r_a)\) should be included in \(D_{u_i}\); the cost of \((r, r_a)\), \(m\), is newly added. That is, the total cost allocated here is at least \(m\).

Summing them up, we have cost at least \((3 + \alpha)m^2 + m(3 + k^*(1 - \alpha)) \leq c_{min}(G^*_T, R') \leq m(3m + 3 + k_2)\). This yields \(k_2 - k^* = \alpha(m - k^*) \geq 0\), which
contradicts the assumption that $k_2 < k^*$. \hfill \qed

The constant $c = 53/52$ represents an inapproximability bound for VERTEX-COVER with degree at most 4 under the assumption $P \neq NP$ [11]. From this lemma and $4g(I) \geq m$, we obtain the following theorem:

Theorem 6. There exists no $(677/676 - \varepsilon)$ factor approximation polynomial time algorithm of MCD with subset-full requests for strongly connected graphs unless $P = NP$, where ε is an arbitrarily small positive constant.

Remark 1. Some readers may consider that it might be possible to get much stronger inapproximability bounds (e.g., $\Omega(\log n)$) from SET-COVER, by tuning the value of p. However, it is actually not possible. If we let p be larger value, e.g., n^2, then the structure of optimal solutions drastically changes; by letting each of u_i's have larger D_{u_i}, we can keep D_r with a smaller size, which is no longer a gap-preserving reduction. In fact, in the following section, we present a 2-approximation polynomial time algorithm, which implies that there does not exist any gap-preserving polynomial time reduction from SET-COVER.

4. Approximability

In the previous section, we show that it is difficult to design a polynomial time approximation algorithm of MCD whose factor is better than $(0.2267(1 + \alpha)^{-1} \ln n - \varepsilon)$, even if we require that the input graph is strongly connected. In this section, in contrast, we show that MCD has a polynomial time approximation algorithm whose factor is $O(\log n)$, which is applicable for general graphs. This implies that we clarify an optimal approximability / inapproximability bound in terms of order under the assumption $P \neq NP$.

The idea of $O(\log n)$-approximation algorithm is based on formulating MCD as a submodular set cover problem [12]: Let us consider a finite set N, a nonnegative cost function c_j associated with each element $j \in N$, and non-decreasing submodular function $f : 2^N \rightarrow \mathbb{Z}^+$. A function f is called non-decreasing if $f(S) \leq f(T)$ for $S \subseteq T \subseteq N$, and is called submodular if $f(S) + f(T) \geq f(S \cap T) + f(S \cup T)$ for $S, T \subseteq N$. For a subset $S \subseteq N$, the cost of S, say $c(S)$, is $\sum_{j \in S} c_j$.

By these f, c and N, the submodular set cover problem is formulated as follows:

[Minimum Submodular Set Cover (SSC)]

$$\min \left\{ \sum_{j \in S} c_j : f(S) = f(N) \right\}.$$

It is known that the greedy algorithm of SSC has approximation ratio $H(\max_{j \in N} f(j))$ where $H(i)$ is the i-th harmonic number if f is integer-valued and $f(\emptyset) = 0$ [12]. Note that $H(i) < \ln i + 1$.

We here claim that our problem can be cast as a submodular set cover problem. Let $N = \bigcup_{u \in V} \{x_{e,u} \mid e \in E\}$. Intuitively, $x_{e,u} \in S \subseteq N$ represents
that the local dispersal of u contains $e \in E$ in S, i.e., $e \in D_u$. For $S \subseteq N$, we define $d_S(u, v)$ as the distance from u to v under the setting that each edge $e \in D_u \cup D_v$ of S has length 0 otherwise 1. That is, if all edges are included in $D_u \cup D_v$ of S, then $d_S(u, v)$ is the length of a shortest path from u to v of G. Let $f(S) = \sum_{(u,v) \in E}(d(u,v) - d_S(u,v))$. This f is integer-valued and $f(\emptyset) = 0$.

In the problem setting of MCD, we can assume that for any $(u,v) \in R$, G has a (directed) path from u to v. Otherwise, we have no solution. Then the condition $f(N) = f(S)$ means that all the requests are satisfied. Also cost c reflects the cost of MCD.

Then we have the following lemma:

Lemma 7. Function f defined as above is a non-decreasing submodular function.

Proof. Since it is obvious that f is non-decreasing, we only show the submodularity of f. By the inductive property, it is sufficient to show that $f(S \cup \{x_{e,u}\}) + f(S \cup \{x_{e',v}\}) \geq f(S) + f(S \cup \{x_{e,u}, x_{e',v}\})$.

$$f(S \cup \{x_{e,u}\}) - f(S) = \sum_{(i,j) \in R}(d_S(i,j) - d_{S \cup \{x_{e,u}\}}(i,j)) = \sum_{(i,j) \in R}(d_S(i,j) - d_{S \cup \{x_{e',v}\}}(i,j))$$

(1)

$$f(S \cup \{x_{e',v}\}) - f(S) = \sum_{(i,j) \in R}(d_{S \cup \{x_{e,u}, x_{e',v}\}}(i,j) - d_{S \cup \{x_{e',v}\}}(i,j))$$

By summing (1) and (2) up, we obtain $f(S \cup \{x_{e,u}\}) + f(S \cup \{x_{e',v}\}) \geq f(S) + f(S \cup \{x_{e,u}, x_{e',v}\})$. Since d_S's are defined by shortest path lengths, we can see that $d_S(u,v) - 2 \leq d_{S \cup \{x_{e,u}, x_{e',v}\}}(u,v) \leq d_S(u,v)$ and $d_S(u,v) - 1 \leq d_{S \cup \{x_{e,u}, x_{e',v}\}}(u,v) \leq d_S(u,v)$. If $d_{S \cup \{x_{e,u}, x_{e',v}\}}(u,v) = d_S(u,v) - 2$, then both $d_{S \cup \{x_{e,u}\}}(u,v)$ and $d_{S \cup \{x_{e',v}\}}(u,v)$ are $d_S(u,v) - 1$. Also, if $d_{S \cup \{x_{e,u}, x_{e',v}\}}(u,v) = d_S(u,v) - 1$, then $d_{S \cup \{x_{e,u}\}}(u,v)$ or $d_{S \cup \{x_{e',v}\}}(u,v)$ is $d_S(u,v) - 1$. In any case, we have $d_{S \cup \{x_{e,u}, x_{e',v}\}}(u,v) - d_{S \cup \{x_{e',v}\}}(u,v) + d_S(u,v) \geq 0$. Since we similarly have $d_{S \cup \{x_{e,u}, x_{e',v}\}}(v,u) - d_{S \cup \{x_{e',v}\}}(v,u) + d_S(v,u) \geq 0$, $f(S \cup \{x_{e,u}\}) + f(S \cup \{x_{e',v}\}) \geq f(S) + f(S \cup \{x_{e,u}, x_{e',v}\})$ holds.

Notice that f can be computed in polynomial time.

By these, MCD is formulated as a submodular set cover problem. Since we have $\max_{x_{e,u} \in N} f(\{x_{e,u}\}) \leq |R| \max_{u,v} d_S(u,v) \leq n^3$, the approximation ratio of the greedy algorithm is $O(\log n)$. We obtain the following.
Theorem 8. There is a polynomial time algorithm with approximation factor $O(\log n)$ for MCD.

5. Approximation Algorithm for Subset-Full

Zheng et al. have proposed a polynomial-time algorithm for MCD, called MinPivot, which achieves approximation ratio 2 for strongly connected graphs when a set R of requests is full. In this section, we show that even when R is subset-full, MinPivot achieves approximation ratio 2 for strongly connected graphs. Moreover, we show that MinPivot is a 3/2-approximation algorithm for MCD of the undirected variant with subset-full requests.

5.1. Algorithm MinPivot

A pseudo-code of the algorithm MinPivot is shown in Algorithm 1. For the explanation of the algorithm, we define $P(u, v)$ as the minimum-cardinality set of edges that constitute a round-trip path between u and v on G.

In a dispersal returned by MinPivot, one vertex is selected as a pivot. Each request is satisfied by a path via the selected pivot. The algorithm works as follows: It picks up a vertex u as a candidate of the pivot. Then, for vertices v, w in each request $(v, w) \in R$, MinPivot stores a round-trip path between v and the pivot u in D_v such that the sum of edges included in the round-trip path is minimum. For the vertex w, the round-trip path between w and the pivot u is also stored in D_w in the same way. Since there is a path from v to w via the pivot u in $D_v \cup D_w$ for each request (v, w), the dispersal satisfies R. For every pivot candidate, the algorithm MinPivot computes the corresponding dispersal as stated above. Finally, the minimum-cost one among all computed dispersals is chosen and returned.

In [7], the following theorem is proved.

Theorem 9. For a strongly connected graph G, MinPivot is a 2-approximation algorithm for MCD on G with the full request. It completes in $O(n^7)$ time \(^1\) for a strongly connected graph and in $O(nm)$ time for an undirected graph.

5.2. Proof of 2-approximation for Strongly Connected Graphs

In this subsection, we prove the following theorem.

Theorem 10. For a strongly connected graph G and a subset-full request R, MinPivot is a 2-approximation algorithm.

\(^1\)Although the original MinPivot is designed to work for any set of requests, we here show a simplified one because we focus on the case when R is subset-full.

\(^2\)Since for directed graphs, $|P(u, v)| \leq d(u, v) + d(v, w)$ holds in general, it is insufficient to simply compute the shortest paths.
Algorithm 1 MinPivot \((G = (V, E), R)\)

1: \(V_R := \{v, w \in V \mid (v, w) \in R\}\)
2: for all \(u \in V\) do
3: for all \(v \in V\) do
4: if \(v \in V_R\) then
5: \(D_v := \mathcal{P}(u, v)\)
6: else
7: \(D_v := \emptyset\)
8: end if
9: end for
10: \(D(u) := \{D_v \mid v \in V\}\)
11: end for
12: output \(D(u)\) such that \(c(D(u)) = \min_{u \in V} \{c(D(u))\}\).

We first introduce several notations used in the proof: The set of vertices included in requests in \(R\) is denoted by \(V_R\), that is, \(V_R = \{u, v \mid (u, v) \in R\}\). Let \(x\) be a vertex in \(V_R\) with the minimum local dispersal in \(D_{\text{Opt}}\) (i.e., \(|D_{\text{Opt}}^x| = \min\{|D_{\text{Opt}}^v| \mid v \in V_R\}\)). When there is more than one vertex with the minimum local dispersal, \(x\) is defined as one of them chosen arbitrarily. In the following argument, it is sufficient to consider only the case of \(|D_{\text{Opt}}^x| > 0\): If \(|D_{\text{Opt}}^x|\) is zero, any vertex in \(V_R\) must have two paths from/to \(x\) in its local dispersal to satisfy the requests for \(x\). Then, the optimal solution is equivalent to that computed by MinPivot whose pivot candidate is \(x\), which implies that MinPivot returns an optimal solution. Let \(D_{\text{MP}}\) denote an output of the algorithm MinPivot. The following proposition clearly holds.

Proposition 11. For a dispersal \(D\), if there exists a vertex \(u\) such that the local dispersal \(D_v\) of any vertex \(v\) in \(V_R\) contains a round-trip path between \(v\) and \(u\), then \(c(D_{\text{MP}}) \leq 2 \cdot c(D)\).

The idea of the proof is that we construct a feasible dispersal \(D\) with cost at most \(2 \cdot c(D_{\text{Opt}})\), which satisfies the condition shown in Proposition 11. It follows that the cost of the solution by MinPivot is bounded by \(2 \cdot c(D_{\text{Opt}})\). We construct the dispersal \(D\) from \(D_{\text{Opt}}\) by additionally giving the minimum-size local dispersal to all vertices in \(V_R\). More precisely, the local dispersal \(D_v\) of every vertex \(v \in V_R\) is the union of \(D_{\text{Opt}}^v\) and \(D_{\text{Opt}}^x\) (i.e., \(D_v = D_{\text{Opt}}^v \cup D_{\text{Opt}}^x\)).

Theorem 10 is easily proved from the following lemma and Proposition 11.

Lemma 12. In the dispersal \(D\) constructed in the above way, every vertex \(v\) in \(V_R\) has a round-trip path between \(v\) and \(x\) in its local dispersal \(D_v\). In addition, \(c(D) \leq 2 \cdot c(D_{\text{Opt}})\) is satisfied.

Proof. Every local dispersal \(D_v\) contains paths from \(v\) to \(x\) and from \(x\) to \(v\) since \(D_{\text{Opt}}^v \cup D_{\text{Opt}}^x\) contains the paths to satisfy the requests \((x, v)\) and \((v, x)\).

From the construction of the dispersal \(D\), we obtain \(c(D) \leq c(D_{\text{Opt}}) + |D_{\text{Opt}}^x|\).
For an undirected graph \(G \), \(D^{opt} \) is the minimum of all local dispersals in \(D^{opt} \), and the local dispersal of the vertex not included in \(V_R \) is empty in \(D^{opt} \). Therefore, we obtain \(|D^{opt}_x| \cdot |V_R| \leq c(D^{opt}) \). It implies that \(c(D) \leq 2 \cdot c(D^{opt}) \).

5.3. Proof of 3/2-approximation for Undirected Graphs

In this subsection, we prove that the approximation ratio of MinPivot is improved for MCD of the undirected variant. That is, we prove the following theorem.

Theorem 13. For an undirected graph \(G \) and a subset-full request \(R \), MinPivot is a 3/2-approximation algorithm.

In the proof, we take the same approach as the one of Theorem 10: We construct a dispersal \(D \) with cost at most \(\frac{3}{2} \cdot c(D^{opt}) \), which satisfies the condition in Proposition 11. Since Proposition 11 also clearly holds in undirected graphs, it follows that the cost of the solution by MinPivot is bounded by \(\frac{3}{2} \cdot c(D^{opt}) \).

In the proof of Theorem 10, we show that when all the edges in \(D^{opt}_x \) are added to the local dispersal of every vertex in \(V_R \), the cost of the dispersal \(D \) is at most twice as much as that of the optimal dispersal. Our proof of Theorem 13 is based on the idea that we construct a dispersal \(D \) by adding each edge in \(D^{opt}_x \) to at most \(|V_R|/2 \) local dispersals.

In what follows, we show the construction of \(D \). We define a rooted tree \(T \) from an optimal dispersal \(D^{opt} \). To define \(T \), we first assign a weight to each edge: To any edge in \(D^{opt} \), the weight zero is assigned. All the other edges are assigned the weight one. A rooted tree \(T = (V, E_T) \) (\(E_T \subseteq E \)) is defined as a shortest path tree with root \(x \) (in terms of weighted graphs) that spans all the vertices in \(V_R \). Let \(p_T(u, v) \) be the shortest path from a vertex \(u \) to \(v \) on the tree \(T \). The weight of a path \(p(u, v) \) is defined by the total weight of the edges on the path and denoted by \(w(p(u, v)) \). For each vertex \(v \), let \(p_T(v, v) = \emptyset \) and \(w(p_T(v, v)) = 0 \).

Lemma 14. On \(T = (V, E_T) \) for an optimal dispersal \(D^{opt} \), \(\sum_{v \in V_R} w(p_T(x, v)) \leq c(D^{opt}) \).

Proof. For the vertex \(x \), \(w(p_T(x, x)) < |D^{opt}_x| \) clearly holds, since \(|D^{opt}_x| > 0 \). For any other vertex \(v \) in \(V_R \), the set \(R \) of requests necessarily includes \((x, v) \) (remind that \(R \) is subset-full). To satisfy \((x, v) \), in the optimal dispersal, \(D^{opt}_x \cup D^{opt}_v \) includes a path \(p(x, v) \), and thus, \(p(x, v) \setminus D^{opt}_v \subseteq D^{opt}_x \). This implies \(|p(x, v) \setminus D^{opt}_x| \leq |D^{opt}_x| \). Since any edge in \(D^{opt}_x \) has weight zero and all other edges have weight one, the weight of \(p(x, v) \) is equal to \(|p(x, v) \setminus D^{opt}_x| \). From the definition of \(p_T(x, v) \), we obtain \(w(p_T(x, v)) \leq w(p(x, v)) \leq |D^{opt}_x| \).

In an optimal dispersal \(D^{opt} \), the local dispersal \(D^{opt}_v \) of each vertex \(v \) in \(V \setminus V_R \) has no edges since there is no request for \(v \) in \(R \). Thus, it follows \(\sum_{v \in V_R} w(p_T(x, v)) < \sum_{v \in V_R} |D^{opt}_v| = c(D^{opt}) \).
For each edge e in D^*_x, let $C(e)$ be the number of vertices from which path to the vertex x on T includes the edge e: $C(e) = |\{v \in V_R \mid e \in p_T(x, v)\}|$. The construction of the desired dispersal depends on whether any edge e in D^*_x satisfies $C(e) \leq |V_R|/2$ or not.

In the case that $C(e) \leq |V_R|/2$ holds for any edge e in D^*_x, the dispersal D' is constructed in the following way: $D' = \{D'_v \mid v \in V\}$, where

- for the vertex v in V_R, $D'_v = p_T(x, v)$,
- for the vertex v in $V \setminus V_R$, $D'_v = \emptyset$.

Figure 3(a) shows one example of the dispersal D'. In the figure, the dotted edges represent edges included in D^*_x and the thick curves represent the local dispersal of each vertex.

Lemma 15. $c(D_{MP}) \leq c(D') \leq \frac{3}{2} \cdot c(D^*_x)$

Proof. From the definitions of T and $C(e)$, we obtain $|p_T(x, v)| = w(p_T(x, v)) + |p_T(x, v) \cap D^*_x|$ and $\sum_{v \in V_R} |p_T(x, v) \cap D^*_x| = \sum_{e \in D^*_x} C(e)$. Thus, $c(D') = \sum_{v \in V_R} w(p_T(x, v)) + \sum_{e \in D^*_x} C(e)$. From Lemma 14 and the assumption that $C(e) \leq |V_R|/2$, it follows that $c(D') \leq c(D^*_x) + |D^*_x| \cdot |V_R|/2$. Since $|D^*_x| \cdot |V_R| \leq c(D^*_x)$ holds, we obtain $c(D') \leq \frac{3}{2} \cdot c(D^*_x)$. The local dispersal D'_v of v in V_R includes a path from x to v, thus, $c(D_{MP}) \leq c(D')$ holds by Proposition 11.

We consider the case that there is an edge such that $C(e) > |V_R|/2$. Let T_v be the subtree of T induced by vertex v and all of v's descendants, and $V(T_v)$ be the set of vertices in T_v. The set of edges in D^*_x such that $C(e) > |V_R|/2$ is denoted by \hat{D}_x^*. Let y be the vertex farthest from x of those adjacent to some edge in \hat{D}_x^*.

Lemma 16. All edges in \hat{D}_x^* are on the path $p_T(x, y)$.
Proof. If a path $p_T(x,w)$ from x to a vertex $w \in V_R$ contains an edge (u,v), then vertex w is a descendant of u and v. That is, $w \in V(T_u) \cap V_R$ holds. Thus, from the definition of $C(e)$, we have $C((u,v)) = |V(T_u) \cap V_R|$ for each edge $(u,v) \in D_{opt}$ where u is the parent of v. Therefore, the edge (u,v) satisfies $C((u,v)) > |V_R|/2$ if $|V(T_u) \cap V_R| > |V_R|/2$.

We prove the lemma by contradiction. Suppose for contradiction that there is an edge (u,v) such that $(u,v) \in D_{opt}$ and $(u,v) \notin p_T(x,y)$. Let v be a child of u on T. From $(u,v) \notin p_T(x,y)$, it follows that vertex v is not an ancestor of the vertex y on T. Since vertex y is the farthest vertex from x, from which the edge to its parent is contained in D_{opt}, vertex v is not a descendant of y. Thus, we obtain $V(T_u) \cap V(T_y) = \emptyset$. In addition, $C((u,v)) = |V(T_u) \cap V_R| > |V_R|/2$ holds. From $V(T_u) \cap V(T_y) = \emptyset$ and $|V(T_u) \cap V_R| > |V_R|/2$, we obtain $|V(T_y) \cap V_R| \leq |V_R|/2$. It contradicts the definition of the vertex y. \[\square \]

In the case that there is an edge such that $C(e) > |V_R|/2$, a dispersal D'' is constructed so that every vertex in V_R has the path from itself to vertex y on T: $D'' = \{ D''_v \mid v \in V \}$, where

- for the vertex v in $V_R \cap V(T_y)$, $D''_v = p_T(y,v)$,
- for the vertex v in $V_R \setminus V(T_y)$, $D''_v = p_T(x,v) \cup p_T(x,y)$, and
- for the vertex v in $V \setminus V_R$, $D''_v = \emptyset$.

Figure 3(b) shows one example of the dispersal D''. The heavy dotted edges represent edges included in D_{opt}. We can see that local dispersal of each vertex contains a path from itself to the vertex y.

Lemma 17. $c(D^{MP}) \leq c(D'') \leq \frac{3}{2} \cdot c(D_{opt})$

Proof. From the definition of the dispersal D'', we obtain $c(D'') \leq \sum_{v \in V_R \cap V(T_y)} |p_T(y,v)| + \sum_{v \in V_R \setminus V(T_y)} (|p_T(x,v)| + |p_T(x,y)|)$. Lemma 16 implies that the edge in D_{opt} is contained by only vertices in $V_R \setminus V(T_y)$. Moreover, it implies that for each edge $e \in D_{opt}$ that is not on $p_T(x,y)$, $e \in D_{opt} \setminus \hat{D}_{opt}$ and $C(e) \leq |V_R|/2$ hold. Since $|V_R \setminus V(T_y)| \leq |V_R|/2 < |V_R \cap V(T_y)|$, the following inequalities can be obtained in the same way as the proof of Lemma 15:

$$
\begin{align*}
 c(D'') & \leq \sum_{v \in V_R \cap V(T_y)} |p_T(y,v)| + \sum_{v \in V_R \setminus V(T_y)} (|p_T(x,v)| + |p_T(x,y)|) \\
 & \leq \sum_{v \in V_R \cap V(T_y)} w(p_T(y,v)) + \sum_{v \in V_R \setminus V(T_y)} \left(w(p_T(x,v)) + w(p_T(x,y)) \right) \\
 & + \sum_{e \in \hat{D}_{opt}} C(e) + \sum_{e \in D_{opt} \setminus \hat{D}_{opt}} |V_R \setminus V(T_y)| \\
 & \leq \sum_{v \in V_R \cap V(T_y)} w(p_T(y,v)) + |V_R \setminus V(T_y)| \cdot w(p_T(x,y))
\end{align*}
$$

16
\[
\sum_{v \in V_R \setminus V(T_y)} w(pT(x, v)) + \frac{|V_R|}{2} \cdot |D_{x}^{OPT} \setminus D_{x}^{OPT}| + \frac{|V_R|}{2} \cdot |D_{x}^{OPT}|
\leq \sum_{v \in V_R \cap V(T_y)} (w(pT(y, v)) + w(pT(x, y))) + \sum_{v \in V_R \setminus V(T_y)} w(pT(x, v))
\]
\[
+ \frac{|V_R|}{2} \cdot |D_{x}^{OPT}|
= \sum_{v \in V_R} w(pT(x, v)) + \frac{1}{2} \cdot c(D^{OPT}) \leq \frac{3}{2} \cdot c(D^{OPT})
\]

Since the local dispersal \(D''_v\) of every vertex \(v\) in \(V_R\) includes a path from \(v\) to \(y\), \(c(D^{MP}) \leq c(D'')\) holds by Proposition 11. \(\Box\)

From Lemmas 15 and 17, Theorem 13 is proved.

6. Concluding remarks

In this paper, we investigate the (in)approximability of MCD from a perspective of how topological structures of \(R\) affect the complexity of MCD. While the approximability bound of MCD for a general setting of \(R\) is evaluated as \(\Theta(\log n)\) under the assumption \(P \neq NP\), MCD for Subset-Full is 2-approximable though it is still inapproximable within a small constant factor unless \(P = NP\). Moreover, in the undirected version of MCD, MCD for Subset-Full is \(3/2\)-approximable.

The complexity of MCD for Full, which is a special case of Subset-Full, is still open. We have shown that MCD for Subset-Full is NP-hard, but it does not imply the hardness of MCD for Full. Recall that the Minimum Steiner Tree problem is NP-hard whereas the Minimum Spanning Tree has a polynomial time algorithm [13]. Since the relationship between the Minimum Steiner Tree and the Minimum Spanning Tree is similar to the one between MCD for Subset-Full and MCD for Full, it is not strange that MCD for Full is to be polynomially solvable. We actually conjecture that MinPivot returns an optimal solution for MCD with Full; if it is correct, we will obtain an interesting contrast similar to the relation between Minimum Steiner Tree and Minimum Spanning Tree.

Another open issue is the consideration of fault-tolerant property for MCD problem, which can be defined as the problem of establishing multipath connection between sources and destinations. This problem can be related to the minimum k-connected spanning subgraph problem, and several approaches can be imported from its previous literature[16].

Acknowledgments

This work is supported in part by KAKENHI no. 19700058, 21500013 and 21680001, Asahi-glass Foundation, Inamori Foundation and Hori Information Science Promotion Foundation.
References

