Suppression of Current Collapse of High-Voltage AlGaN/GaN HFETs on Si Substrates by Utilizing a Graded Field-Plate Structure

Tadayoshi DEGUCHI†, Hideshi TOMITA†, Atsushi KAMADA‡, Nonmembers, Manabu ARAI†, Kimiyoshi YAMASAKI‡, Members, and Takashi EGAWA††, Nonmember

SUMMARY Current collapse of AlGaN/GaN heterostructure field-effect transistors (HFETs) formed on qualified epitaxial layers on Si substrates was successfully suppressed using graded field-plate (FP) structures. To improve the reproducibility of the FP structure manufacturing process, a simple process for linearly graded SiO2 profile formation was developed. An HFET with a graded FP structure exhibited a significant decrease in an on-resistance increase ratio of 1.16 even after application of a drain bias of 600 V.

key words: AlGaN/GaN HFETs, current collapse, field plate, on-resistance

1. Introduction

In highly efficient switch-mode power supply systems, it is essential to use high-voltage power-switching devices with low on-resistance (R_on) and high switching speed. An AlGaN/GaN hetero-structure field-effect transistor (HFET) has been studied as a promising candidate for next-generation power devices due to its high carrier mobility in two-dimensional electron gas (2DEG) and high breakdown voltage with a large critical electron field.

One of the most important aspects of developing AlGaN/GaN HFETs is suppressing current collapse, which degrades R_on during high-voltage operation. Current collapse is strongly dependent on the channel-electron acceleration due to the electric field concentration [1] and also on the quality of the epitaxial layers [2].

It is well known that Γ-shaped field-plate (FP) structures effectively suppress current collapse [3], [4]. The effects of these conventional FP structures are, however, insufficient because an electric field still concentrates at the gate and FP electrode edges. Therefore, a linearly graded FP structure is appropriate for HFETs because it disperses the electric field concentration and minimizes peak electric field strength [5]. However, there have been few reports of HFETs with these structures because of difficulties in the manufacturing process [6]. On the other hand, a decrease in yellow luminescence intensity strongly relates to current collapse [2].

We developed a simple and reproducible linearly graded FP manufacturing process and applied it to the fabrication of AlGaN/GaN Schottky barrier diodes (SBDs) and HFETs on Si substrates to investigate the effectiveness of a linearly graded FP structure on breakdown voltage and current collapse.

2. High-Voltage AlGaN/GaN SBDs

2.1 Device Fabrication

To investigate the effects of graded FP structures on breakdown voltage, AlGaN/GaN SBDs with a thick epitaxial layer utilizing anode FP and cathode FP structures were fabricated.

AlGaN/GaN hetero-structures were grown on an n-type 4-inch Si (111) substrate by metal-organic chemical vapor deposition (MOCVD). The epilayer structure consisted of, from top to bottom, a 25-nm-thick undoped Al0.26Ga0.74N layer, 1.0-μm-thick GaN layer, and 4.2-μm-thick buffer layer. Detailed conditions are described elsewhere [7]. The total thickness of the epitaxial layer was 5.2 μm. The sheet resistance, the 2DEG density, and the mobility of the wafer from Hall effect measurement were 823 Ω/sq, 6.3 × 10^{12}/cm², and 1200 cm²/Vs, respectively.

A 3.0-μm-thick SiO2 layer and a 100-nm-thick phosphosilicate-glass (PSG) layer were deposited by plasma-enhanced chemical-vapor deposition (PECVD). We used Trimethyl phosphate (TMP) for doping phosphorus in PSG. After photoresist patterning, the PSG/SiO2 films were dipped in a buffered hydrofluoric acid (BHF) solution and then etched. A linearly graded SiO2 profile for fabricating graded FPs can be formed by exploiting the difference between the etching rates of PSG and SiO2. The gradient angle can be controlled by increasing the etching rate of PSG as phosphorus density increases.

To form cathode ohmic contacts and graded FP electrodes, Ti/Al (30/200 nm) were then deposited by electron beam evaporation and defined using a wet etching technique. Then, the samples were subjected to rapid thermal annealing (RTA) at 500°C 10 min in a N2 ambient. After photoresist patterning and PSG/SiO2 wet etching with the method mentioned above, the Schottky contact metals, consisting of Ni/Mo/Al (20/80/100 nm), were used to form anode Schottky contacts and graded FP electrodes. Finally, contact pads were formed by 1-μm-thick Al electrode deposition and defined by wet etching.

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers
Figure 1 shows a cross-sectional schematic of a fabricated AlGaN/GaN SBD. The diameter of the circular Schottky contact was 90 μm, and the distance between the Schottky and ohmic contacts was 60 μm. The FP lengths of the anode and cathode contacts were both 10 μm.

2.2 Reverse Voltage Characteristics

Figure 2 shows the cumulative probability of breakdown voltage of fabricated AlGaN/GaN SBDs. The breakdown voltage characteristics were measured in fluorinert™ to prevent surface breakdown. We found that the SBDs exhibited extremely high breakdown voltages of more than 2000 V, 2500 V maximum, by utilizing a graded FP structure.

3. Suppression of Current Collapse in AlGaN/GaN HFETs

3.1 Device Fabrication

AlGaN/GaN hetero-structures were grown on an n-type 4-inch Si (111) substrate by MOCVD. The epitaxial structure consisted of, from top to bottom, a 25-nm-thick undoped Al$_{0.25}$Ga$_{0.75}$N layer, 1.0-μm-thick GaN layer, and 2.6-μm-thick buffer layer, as shown in Fig. 3(a). The total thickness of the epitaxial layer was 3.6 μm. The sheet resistance, the 2DEG density, and the mobility of the wafer from Hall effect measurement were 706 Ω/sq, 6.1×10^{12}/cm2, and 1450 cm2/Vs, respectively.

The source and drain ohmic contacts were formed using a lift-off technique. After photoresist patterning, the samples were dipped in a HCl: H$_2$O (1:1) solution to remove native oxide on the AlGaN surface. Ohmic contact metals, consisting of Ti/Al/Ti/Au (10/200/50/300 nm), were de-
posed in sequence by electron beam evaporation. The samples were then subjected to rapid thermal annealing (RTA) at 850°C for 30 sec in a N₂ ambient. After forming the ohmic contacts, device isolation was conducted by B⁺ ion implantation. Next, Ni/Au (20/530 nm) were used to form gate Schottky contacts and graded FP electrodes. Finally, a 5-μm-thick polyimide film was coated and cured at 420°C in a N₂ ambient to act as a protection layer preventing surface breakdown.

Figures 3(a), (b) and (c) show a schematic cross-sectional view, SEM image of a graded gate FP structure, and a photomicrograph of a fabricated AlGaN/GaN HFET, respectively. HFETs with circular gates 120 μm in diameter were fabricated on an epitaxial wafer. The gate length (Lg) was 2 μm, the gate-drain offset length (Lgd) was 10 μm, and the field plate length (LFP) was 7 μm.

To investigate the effects of a graded FP structure and an epitaxial wafer on current collapse, we also used a commercially available epitaxial wafer in fabricating Al₀.₂₅Ga₀.₇₅N/GaN HFETs on conductive Si substrates with or without graded FP structures. The epilayer structure consisted of, from top to bottom, a 30-nm-thick undoped Al₀.₂₅Ga₀.₇₅N layer, 1.5-μm-thick GaN layer, and 2.3-μm-thick buffer layer. The total thickness of the epitaxial layer was 3.8 μm. The sheet resistance, the 2DEG density, and the mobility of the wafer from Hall effect measurement were 496 Ω/sq, 8.9 × 10¹²/cm², and 1414 cm²/Vs, respectively. The Lg, Lgd, and LFP were 10 μm, 10 μm, and 7 or 0 μm (with or without FP), respectively.

3.2 DC I-V Characteristics

Figures 4(a) and (b) show Iₗ − Vₗ₃ and off-state characteristics of a fabricated AlGaN/GaN HFET with a graded FP using our epitaxial wafer. The Iₗ − Vₗ₃ characteristics were measured using an Agilent B1500A semiconductor device analyzer, and the off-state characteristics were measured using a Tektronix 371A curve tracer.

3.3 Current Collapse

The Rᵣₒₙ increase ratio was also evaluated by comparing Rᵣₒₙ before and after high-voltage drain stress. Figure 5 shows the bias conditions used for measuring the Rᵣₒₙ increase ratio. The evaluation steps were as follows. (1) For drain current Iₗ at a drain bias Vₗ₃ of 0.5 V, a gate bias (Vgs) of 0 V was measured \[0.5 (V)/Iₗ (A) = Rᵣₒₙ(before)] (2) Vₗ₃ above 100 V was applied for 10 s to a fabricated HFET while the HFET was in an off state (Vgs = −6 V). (3) The change in Iₗ was measured at a Vₗ₃ of 0.5 V and again at a Vgs of 0 V [Rᵣₒₙ(after)].

Figures 6(a) and (b) show the Rᵣₒₙ increase ratio, defined as \[Rᵣₒₙ(after)/Rᵣₒₙ(before)\], of fabricated AlGaN/GaN HFETs using a commercially available epitaxial wafer and our epitaxial wafer. The HFET with and without FP structures formed on a commercially available epitaxial wafer, of which the Rᵣₒₙ increase ratios were, respectively, 1.56 and 3.39 under an applied drain voltage of 600 V. With the fabricated HFET with a graded FP using our epitaxial wafer, the Rᵣₒₙ increase ratio remained low (i.e., 1.16) even under
an applied drain voltage of 600 V.

To investigate the effects of GaN wafer quality on current collapse, we measured photoluminescence (PL) by using an ultraviolet He-Cd laser (325 nm). Figure 7 shows the PL spectrum of a (a) commercially available wafer and (b) our epitaxial wafer. An intense emission around 365 nm relates to the band-edge luminescence of GaN. A broad band emission around 550 nm is yellow luminescence. This yellow luminescence relates to deep-level electron traps, which cause current collapse. We used a yellow-to-band-edge luminescence intensity ratio (I_{YL}/I_{BE}) as an index of wafer quality because it correlates strongly with current collapse [2]. The I_{YL}/I_{BE} of our epitaxial wafer was 0.75, whereas that for the commercially available epitaxial wafer was 1.20. This result indicates that the GaN epitaxial layer, which shows a low yellow luminescence intensity, suppressed current collapse and had the same tendency as reported in the above report [2].

These results indicate that using a graded gate FP structure and a qualified epitaxial wafer are key for suppressing current collapse in AlGaN/GaN HFETs.

4. Conclusion

We developed a linearly graded SiO$_2$ profile formation pro-

cess with good reproducibility and fabricated AlGaN/GaN SBDs and HFETs on Si substrate by using graded FP structures. The SBDs exhibited a high breakdown voltage of 2500 V. The HFETs exhibited significant decrease in the R_{on} increase ratio by 16% even after an applied drain voltage of 600 V. AlGaN/GaN electron devices with graded FP structures using qualified epitaxial wafers are promising for high-voltage power electronics application.

References

Tadayoshi Deguchi received the B.E. degree in electrical engineering from Hiroshima Institute of Technology in 1993, and the M.E. degree in electronics from Hiroshima University in 1995. In 1995, he joined New Japan Radio Co., Ltd., Saitama, Japan, and was engaged in research and development of millimeter-wave devices. Since 2002, he has been engaged in research and development of GaN-based electronic devices. He is a member of the Japan Society of Applied Physics.

Hideshi Tomita received the B.E. degree in material chemical engineering from Yokohama National University, in 1988, and the M.E. degree in material science from Yokohama National University, in 1991. In 1991, he joined Nissinbo Industries Inc., Tokyo, Japan, and was engaged in development of electronic materials. During 2008–2010, he engaged in research and development of GaN-based electronic devices at New Japan Radio Co., Ltd. He now with Nissinbo Holdings Inc.

Atsushi Kamada received the B.E. and M.E. degrees in electronics from Tokushima University in 1980 and 1982, respectively. In 1996, he joined New Japan Radio Co., Ltd., Saitama, Japan, and was engaged in development of CMOS, Bi-CMOS process integration. Since 2004, he has been engaged in research and development of GaN-based electronic devices. He is a member of the Japan Society of Applied Physics and IEEE.

Manabu Arai received the B.E., M.E. and Ph.D. degrees in electrical engineering from Tohoku University, Sendai, Japan, in 1992, 1994 and 1997, respectively. In 1997, he joined New Japan Radio Co., Ltd., Saitama, Japan. He had been engaged in development of diamond field emitter arrays by using chemical vapor deposition. From 1998 to 2009, he had been engaged in development of SiC-MESFET for radar application. Since 2009, he has been engaged in developing high power devices using wide bandgap materials such as SiC and GaN. He is a member of JSAP and IEEE.

Kimiyoshi Yamasaki received the B.E., M.E., and Ph.D. degrees in electronic engineering from the University of Tokyo, Tokyo in 1975, 1977, and 1980, respectively. In 1980 he joined the Electrical Communication Laboratories of Nippon Telegraph and Telephone Public Corporation (now NTT). From 1980 to 1987, he was engaged in R&D of GaAs high-speed devices and process technologies. From 1987 to 1988, he spent a year at Cornell University, Ithaca, NY, as a Visiting Scientist, where he researched ballistic electronic devices. In 1991–1992, he was engaged in research on ATN switching systems with optical interconnection. From 1993 to 1997, he was responsible for the development of advanced GaAs IC technology for ultrahigh-speed optical fiber communication systems and three-dimensional MMICs. From 1997 to 1999, he was the Executive Manager of the High-Speed Devices and Technology Laboratory at NTT Photonics Laboratories, where he led research on InP-based ultrahigh-speed ICs and photodetectors. From 1999–2003, he worked at NTT Electronics Corporation, where he was responsible for the business of high-speed modules for 10-Gbit/s submarine as well as terrestrial optical fiber communication systems. Then he directed the Product Development Center for optical and electrical components. From 2003 to 2005, he was Chief Producer of the Innovative Device Team and Strategic Business Creation Team at Department III (R&D Strategy Department) of NTT. From 2005–2008, he worked at NTT Electronics Corporation, where he was responsible for the business of optical network modules for WDM core network systems and access network systems. In November 2008, he joined New Japan Radio Co., Ltd. Since then, he has been responsible for R&D of high-power electronic devices made in wide-bandgap semiconductor materials such as SiC and GaN-based alloys. He is a member of IEEE, the Japan Society of Applied Physics.

Takashi Egawa was born in 24th Aug. 1956. He received the B.E. and M.E. degrees in electronics from Nagoya Institute of Technology in 1980 and 1982, respectively. From 1982 to 1988, he was engaged in research on high-speed GaAs LSI in Oki Ltd., Tokyo, Japan. He received D.E. degree in electrical and computer engineering from Nagoya Institute of Technology in 1991. In 1991, he joined Nagoya Institute of Technology as a research associate. He became an associate professor in 1993, a professor in 1999 at the Research Center for Micro-Structure Devices, and a professor in 2004 at the Research Center for Nano-Device and System. He is now a professor and director of this center. Fields of his current interest are heteroepitaxy of GaN and GaAs by MOCVD and its application to electronic and optical devices. He received the Awards from IEE Japan with the Kodaira Memorial Prize in 1991 and from the laser society of Japan in 1996. Dr. Egawa is a member of the Japan Society of Applied Physics and the IEE of Japan.