Periodic harmonic functions on lattices and Chebyshev polynomials

<table>
<thead>
<tr>
<th>authors</th>
<th>Masakazu Yamagishi</th>
</tr>
</thead>
<tbody>
<tr>
<td>journal</td>
<td>Linear algebra and its applications</td>
</tr>
<tr>
<td>volume</td>
<td>476</td>
</tr>
<tr>
<td>page range</td>
<td>1-15</td>
</tr>
<tr>
<td>year</td>
<td>2015-07-01</td>
</tr>
<tr>
<td>doi</td>
<td>10.1016/j.laa.2015.03.004</td>
</tr>
</tbody>
</table>
Periodic harmonic functions on lattices and Chebyshev polynomials

Masakazu Yamagishi
Department of Mathematics,
Nagoya Institute of Technology,
Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
e-mail: yamagishi.masakazu@nitech.ac.jp

Abstract
We shall give an explicit expression of the dimension of the space of harmonic functions on the Cartesian product of path (resp. cycle) graphs in terms of Chebyshev polynomials of the second (resp. first) kind. As an application, we obtain several identities among the dimensions, some are new and some are known but obtained previously by other methods. Our motivation for this study is the “Lights Out” puzzle.

Keywords: graph Laplacian; Cartesian product; Lights Out puzzle; Chebyshev polynomial.
MSC2010: 05C50, 31C20, 91A46.

1 Introduction
Let $G = (V, E)$ be a finite undirected simple graph and K an arbitrary field. A function on V with values in K is called a configuration. Let $C_{G,K}$ denote the set of all configurations. It is regarded as a vector space over K. For $a \in K$, we define the endomorphism $\Delta_{G,K,a}$ of $C_{G,K}$, which we call the a-Laplacian, by

$$\Delta_{G,K,a}(f)(v) := af(v) + \sum_{(u,v) \in E} f(u).$$

In the case where G is r-regular, the ordinary Laplacian is $-\Delta_{G,K,-r}$. We are interested in the dimension of the space of “a-harmonic functions”

$$d(G, K, a) := \dim_K \ker \Delta_{G,K,a}.$$

Let P_n denote the path graph with n vertices ($n \geq 2$) and C_n the cycle graph with n vertices ($n \geq 3$). Let $G \times H$ denote the Cartesian product of graphs G and H. The number $d(P_n \times P_n, \mathbb{F}_2, 1)$ (resp. $d(C_n \times C_n, \mathbb{F}_2, 1)$) has attracted special attention in
connection with the “Lights Out” puzzle (resp. the torus version of this puzzle); see the references [1],[2], [3], [4], [8], [9], [10], [11], [12], [13]. The behavior of these numbers is rather mysterious; see [3, Table 1] for the values of \(d(C_n \times C_n, \mathbb{F}_2, 1), n \leq 300. \)

In this paper we shall give an explicit expression of \(d(P_m \times P_n, K, a) \) and \(d(C_m \times C_n, K, a) \) in terms of Chebyshev polynomials of the second and first kind, respectively. A configuration for \(C_m \times C_n \) is naturally identified with a function on \(\mathbb{Z}^2 \) which is \((m, n)\)-periodic, hence the title of this paper. The normalized Chebyshev polynomials of the first and the second kind are defined by

\[
C_0(x) = 2, \quad C_1(x) = x, \quad C_n(x) = xC_{n-1}(x) - C_{n-2}(x) \quad (n \geq 2),
\]

\[
S_0(x) = 1, \quad S_1(x) = x, \quad S_n(x) = xS_{n-1}(x) - S_{n-2}(x) \quad (n \geq 2),
\]

respectively. We put \(\tilde{C}_n(x) := C_n(x) - 2. \) Let \(\text{ord}_p(n) \) denote the \(p \)-adic additive valuation of \(n. \) The main result is the following.

Theorem 1.1.

(i) \(d(P_m \times P_n, K, a) = \deg \gcd_K(S_m(x), S_n(-x - a)). \)

(ii) \(d(C_m \times C_n, K, a) = 2 \deg \gcd_K(\tilde{C}_m(x), \tilde{C}_n(-x - a)) - \varepsilon, \) where

- \(\varepsilon = 2 \) if \(\text{char} K = p \geq 3, a = 0, \text{ord}_p(m) = \text{ord}_p(n), \) and both \(m, n \) are even,
- \(\varepsilon = 1 \) if either
 - \(\text{char} K = 2, a = 0, \) and both \(m, n \) are odd,
 - \(\text{char} K = p \geq 3, a = -4, \text{ord}_p(m) = \text{ord}_p(n), \)
 - \(\text{char} K = p \geq 3, a = 4, \text{ord}_p(m) = \text{ord}_p(n), \) and both \(m, n \) are even,
 or
 - \(\text{char} K = p \geq 3, a = 0, \text{ord}_p(m) = \text{ord}_p(n), \) and either \(m \) or \(n \) is even,
- \(\varepsilon = 0 \) otherwise.

Theorem 1.1 (i) was essentially known in the case \(\text{char} K = 2, a = 0 \) (cf. Remark 4.2). In the case \(a = 1, \) (i) was proved in [10] (see also [4]). The equality (ii) for \(a = 1 \) was conjectured in [3] in the case \(\text{char} K = 2 \) and in [11] in the case \(\text{char} K = p > 0. \)

The organization of this paper is as follows. Basic properties of Chebyshev polynomials are gathered in Section 2. It should be pointed out that Chebyshev polynomials of the (somewhat minor) third and fourth kind will be proved to be useful for our purposes. In Section 3 we prove Theorem 1.1. Using Theorem 1.1, we obtain various identities concerning \(d(P_m \times P_n, K, a) \) and \(d(C_m \times C_n, K, a) \) in Section 4. Some of them are already known but proved by different methods. We can give a unified proof using Theorem 1.1 and basic properties of Chebyshev polynomials.

We use the following notation. \(\mathbb{F}_q \) denotes the finite field with \(q \) elements, \(I_n \) the identity matrix of degree \(n, \) \(\text{char} K \) the characteristic of a field \(K, \) and \(A \otimes B \) the Kronecker product of matrices \(A \) and \(B. \)
2 Chebyshev polynomials

The Chebyshev polynomials \(T_n, U_n, V_n, \) and \(W_n \) of the first, second, third, and fourth kind, respectively, are characterized by

\[
T_n(\cos \theta) = \cos n\theta, \quad U_n(\cos \theta) = \frac{\sin(n+1)\theta}{\sin \theta},
\]

\[
V_n(\cos \theta) = \frac{\cos(n+1)\theta}{\cos \theta/2}, \quad W_n(\cos \theta) = \frac{\sin(n+1/2)\theta}{\sin \theta/2},
\]

where \(n \) is an integer (cf.[5],[6]). Note that \(C_n(x) = 2T_n(x/2) \), \(S_n(x) = U_n(x/2) \). We adopt Schur’s notation \(\mathcal{V}(x) := S_{n-1}(x) \). For odd \(n \) we define

\[
\mathcal{V}_n(x) := V_{(n-1)/2}(x/2), \quad \mathcal{W}_n(x) := W_{(n-1)/2}(x/2),
\]

which we propose to call the normalized Chebyshev polynomials of the third and fourth kind, respectively. We always assume odd indices for \(\mathcal{V} \) and \(\mathcal{W} \). The polynomials \(C_n(x), \mathcal{V}_n(x), \mathcal{V}_n(x), \mathcal{W}_n(x) \) have integral coefficients and are monic except for \(C_0(x) = 2 \) and \(\mathcal{V}_0(x) = 0 \). The following properties of Chebyshev polynomials are well known and easily verified. Some of them will not be used in the following, but are here for the sake of completeness.

Lemma 2.1.

(i) We have

\[
C_n(z + z^{-1}) = z^n + z^{-n}, \quad \mathcal{V}_n(z + z^{-1}) = \frac{z^n - z^{-n}}{z - z^{-1}} = z^{n-1} + z^{n-3} + \cdots + z^{-(n-3)} + z^{-(n-1)},
\]

\[
\mathcal{V}_n(z + z^{-1}) = \frac{z^{n/2} + z^{-n/2}}{z^{1/2} + z^{-1/2}} = z^{(n-1)/2} - z^{(n-3)/2} + \cdots + z^{-(n-3)/2} + z^{-(n-1)/2},
\]

\[
\mathcal{W}_n(z + z^{-1}) = \frac{z^{n/2} - z^{-n/2}}{z^{1/2} - z^{-1/2}} = z^{(n-1)/2} + z^{(n-3)/2} + \cdots + z^{-(n-3)/2} + z^{-(n-1)/2}.
\]

(ii) \(C_n(2) = 2, \mathcal{V}_n(2) = n, \mathcal{V}_n(2) = 1, \mathcal{W}_n(2) = n \).

(iii) \(C_n(-x) = (-1)^n C_n(x), S_n(-x) = (-1)^n S_n(x), \mathcal{V}_n(-x) = (-1)^{(n-1)/2} \mathcal{V}_n(x) \).

(iv) \(C_{-n}(x) = C_n(x), \mathcal{V}_{-n}(x) = -\mathcal{V}_n(x), \mathcal{V}_{-n}(x) = \mathcal{V}_n(x), \mathcal{W}_{-n}(x) = -\mathcal{W}_n(x) \).

(v) We have

\[
C_n(x)^2 - C_{n+1}(x)C_{n-1}(x) = 4 - x^2,
\]

\[
\mathcal{V}_n(x)^2 - \mathcal{V}_{n+1}(x)\mathcal{V}_{n-1}(x) = 1,
\]

\[
\mathcal{V}_n(x)^2 - \mathcal{V}_{n+2}(x)\mathcal{V}_{n-2}(x) = 2 - x,
\]

\[
\mathcal{W}_n(x)^2 - \mathcal{W}_{n+2}(x)\mathcal{W}_{n-2}(x) = 2 + x.
\]
(vi) We have

\[C_m(x)C_n(x) = C_{m+n}(x) + C_{m-n}(x), \]
\[(x^2 - 4)J_m(x)J_n(x) = C_{m+n}(x) - C_{m-n}(x), \]
\[(x + 2)J_m(x)J_n(x) = C_{(m+n)/2}(x) + C_{(m-n)/2}(x), \]
\[(x - 2)W_m(x)W_n(x) = C_{(m+n)/2}(x) - C_{(m-n)/2}(x), \]

\[C_m(x)J_n(x) = J_{m+n}(x) - J_{m-n}(x), \]
\[C_m(x)J_n(x) = J_{2m+n}(x) + J_{2m-n}(x), \]
\[C_m(x)W_n(x) = W_{2m+n}(x) - W_{2m-n}(x), \]
\[(x + 2)J_m(x)W_n(x) = W_{2m+n}(x) + W_{2m-n}(x), \]
\[(x - 2)J_m(x)W_n(x) = W_{(m+n)/2}(x) - W_{(m-n)/2}(x). \]

(vii) We have

\[C_n(x) + 2 = \begin{cases} C_{n/2}(x)^2 & (n: \text{even}), \\ (x + 2)J_n(x)^2 & (n: \text{odd}), \end{cases} \]
\[C_n(x) - 2 = \begin{cases} (x^2 - 4)J_n(x)^2 & (n: \text{even}), \\ (x - 2)W_n(x)^2 & (n: \text{odd}), \end{cases} \]
(1)

\[J_n(x) = \begin{cases} J_{n/2}(x)C_{n/2}(x) & (n: \text{even}), \\ J_n(x)W_n(x) & (n: \text{odd}), \end{cases} \]
(2)

\[J_n(x) + 1 = \begin{cases} J_{(n+1)/2}(x)C_{(n-1)/2}(x) & (n: \text{odd}), \\ J_{n-1}(x)W_{n+1}(x) & (n: \text{even}), \end{cases} \]
\[J_n(x) - 1 = \begin{cases} J_{(n-1)/2}(x)C_{(n+1)/2}(x) & (n: \text{odd}), \\ J_{n+1}(x)W_{n-1}(x) & (n: \text{even}), \end{cases} \]

(viii) We have

\[C_{mn}(x) = C_m(C_n(x)), \]
\[J_{mn}(x) = J_m(C_n(x))J_n(x), \]
\[J_{mn}(x) = J_m(C_n(x))J_n(x), \]
\[W_{mn}(x) = W_m(C_n(x))W_n(x). \]

(ix) Let \(p \) be a prime number and \(e \geq 0. \) We have the following polynomial congru-
ences modulo p:

\[C_{p^e}(x) \equiv x^{p^e}, \]
\[\mathcal{S}_{p^e}(x) \equiv (x^2 - 4)^{\left\lfloor p^e \right\rfloor /2}, \]
\[\mathcal{Y}_{p^e}(x) \equiv (x + 2)^{\left\lfloor p^e \right\rfloor /2}, \]
\[\mathcal{W}_{p^e}(x) \equiv (x - 2)^{\left\lfloor p^e \right\rfloor /2}. \]

Note that the second congruence makes sense even if $p = 2$, and we assume that p is odd in the third and the fourth congruences.

(x) $C_n(x) \equiv x \mathcal{S}_n(x) \pmod{2}$.

(xi) The solution of the linear recurrence equation $x_n = ax_{n-1} - x_{n-2}$ is given by

\[x_n = \mathcal{S}_n(a)x_1 - \mathcal{S}_{n-1}(a)x_0. \]

Since the normalized Chebyshev polynomials have integral coefficients, they can be considered over any field. Recall that we put $\tilde{C}_n(x) = C_n(x) - 2$.

Lemma 2.2. Let m, n be positive integers and $g = \gcd(m, n)$. Over an arbitrary field K, we have the following. (We assume odd indices for \mathcal{V} and \mathcal{W}.)

\[
\begin{align*}
gcd(\tilde{C}_m(x), \tilde{C}_n(x)) &= \tilde{C}_g(x), \quad (3) \\
gcd(\mathcal{S}_m(x), \mathcal{S}_n(x)) &= \mathcal{S}_g(x), \quad (4) \\
gcd(\mathcal{V}_m(x), \mathcal{V}_n(x)) &= \mathcal{V}_g(x), \quad (5) \\
gcd(\mathcal{W}_m(x), \mathcal{W}_n(x)) &= \mathcal{W}_g(x). \quad (6)
\end{align*}
\]

Proof. In this proof we abbreviate $\tilde{C}_n(x)$ as \tilde{C}_n etc.

First we prove (4), following [6, Section 5.3] (see also [7, Section 7]). It suffices to show that $(\mathcal{S}_m, \mathcal{S}_n) = (\mathcal{S}_g)$ as ideals of $K[x]$. By Lemma 2.1 (viii) we have $(\mathcal{S}_m, \mathcal{S}_n) \subseteq (\mathcal{S}_g)$. Let a, b be integers such that $am + bn = g$. By Lemma 2.1 (vi) we have

\[\mathcal{S}_g = \begin{vmatrix} \mathcal{S}_am & -\mathcal{S}_bn \\ \mathcal{S}_am+1 & \mathcal{S}_bn+1 \end{vmatrix} \in (\mathcal{S}_am, \mathcal{S}_bn) \subseteq (\mathcal{S}_m, \mathcal{S}_n), \]

as desired.

Next we prove (5). We have $(\mathcal{V}_m, \mathcal{V}_n) \subseteq (\mathcal{V}_g)$ similarly. Since n is odd, there exist odd integers a and b such that $2am + bn = g$. Then by Lemma 2.1 (vi) we have

\[\mathcal{V}_g = C_{(am+bn)/2} \mathcal{V}_am - \mathcal{V}_bn \in (\mathcal{V}_am, \mathcal{V}_bn) \subset (\mathcal{V}_m, \mathcal{V}_n), \]

as desired.

Changing the sign of x in (5) and using Lemma 2.1 (iii), we obtain (6).

Before proving (3), we show that $(\mathcal{S}_m, \mathcal{W}_n) = (\mathcal{W}_g)$. Since $(\mathcal{S}_g) \subseteq (\mathcal{W}_g)$ by (2), we have $(\mathcal{S}_m, \mathcal{W}_n) \subseteq (\mathcal{W}_g)$. Since n is odd, there exist integers a and b such that b is odd and $4am + bn = g$. Then by Lemma 2.1 (vi) we have

\[\mathcal{W}_g = (x + 2) \mathcal{S}_am \mathcal{V}_{(bn+g)/2} - \mathcal{W}_{bn} \in (\mathcal{S}_am, \mathcal{W}_{bn}) \subset (\mathcal{S}_m, \mathcal{W}_n), \]

as desired.

Before proving (3), we show that $(\mathcal{S}_m, \mathcal{W}_n) = (\mathcal{W}_g)$. Since $(\mathcal{S}_g) \subseteq (\mathcal{W}_g)$ by (2), we have $(\mathcal{S}_m, \mathcal{W}_n) \subseteq (\mathcal{W}_g)$.
as desired. Now we prove (3) using the factorization (1). If m, n are even, then
\[
(\tilde{C}_m, \tilde{C}_n) = ((x^2 - 4)(\mathcal{S}_{m/2}, \mathcal{S}_{n/2})^2) = ((x^2 - 4)\mathcal{S}_{g/2}^2) = (\tilde{C}_g).
\]
If m, n are odd, then
\[
(\tilde{C}_m, \tilde{C}_n) = ((x - 2)(\mathcal{W}_{m}, \mathcal{W}_{n})^2) = ((x - 2)\mathcal{W}_g^2) = (\tilde{C}_g).
\]
Finally if m is even and n is odd, then noting that $\mathcal{W}_n(-2) \neq 0$, we have
\[
(\tilde{C}_m, \tilde{C}_n) = ((x - 2)(\mathcal{S}_{m/2}, \mathcal{W}_{n})^2) = ((x - 2)\mathcal{W}_g^2) = (\tilde{C}_g).
\]

3 Proof of Theorem 1.1

The a-Laplacian $\Delta_{G,K,a}$ is represented by the matrix $aI_n + A(G)$, where n is the number of vertices of G and $A(G)$ denotes the adjacency matrix of G, so $d(G, K, a)$ is the dimension of the eigenspace of $A(G)$ for the value $-a$. Since $d(G, K, a)$ is stable under scalar extension, we may and do assume that K is algebraically closed.

For a square matrix A of degree n, let $A(x) := \det(xI_n - A)$ denote the characteristic polynomial.

Lemma 3.1.
(i) We have $A(P_n)(x) = S_n(x)$. Every eigenspace of $A(P_n)$ is one-dimensional. The minimal polynomial of $A(P_n)$ over K is $S_n(x)$.

(ii) We have $A(C_n)(x) = \tilde{C}_n(x)$. The eigenspace of $A(C_n)$ for an eigenvalue λ is one-dimensional if $\text{char } K \nmid n$ and $\lambda \in \{\pm 2\}$. It is two-dimensional in other cases. The minimal polynomial of $A(C_n)$ over K is

\[
\begin{cases}
 x\mathcal{S}_{n/2}(x) & (n : \text{even}, \text{char } K = 2), \\
 (x - 2)(x + 2)\mathcal{S}_{n/2}(x) & (n : \text{even}, \text{char } K \neq 2), \\
 (x - 2)\mathcal{W}_n(x) & (n : \text{odd}).
\end{cases}
\]

Proof. These may be well known. See for example [10, Lemma 4.1] for (i). Since we have not been able to find an appropriate reference for (ii), we give a proof for completeness.

(i) We introduce an order in the vertex set of P_n so that we have

\[
A(P_n) = \begin{pmatrix}
 1 \\
 1 & 1 \\
 1 & 1 \\
 \vdots & \ddots & \ddots & \ddots \\
 1 & \cdots & \cdots & \cdots & 1
\end{pmatrix}.
\]
Then $t(x_0, x_1, \ldots, x_{n-1})$ is an eigenvector for an eigenvalue λ if and only if $t(x_0, x_1, \ldots, x_{n-1}) = t(S_0(\lambda), S_1(\lambda), \ldots, S_{n-1}(\lambda))x_0$ and $S_\lambda x_0 = 0$. This proves the assertions.

(ii) Similarly, we have

$$A(C_n) = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}. $$

Then $t(x_0, x_1, \ldots, x_{n-1})$ is an eigenvector for an eigenvalue λ if and only if, introducing two more variables,

$$x_j = \lambda x_{j-1} - x_{j-2} \ (2 \leq j \leq n + 1), \ x_n = x_0, \ x_{n+1} = x_1.$$

By Lemma 2.1 (xi), this is equivalent to

$$\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix} = \begin{pmatrix} \mathcal{S}_0(\lambda) & 0 & \cdots & 0 \\ \mathcal{S}_1(\lambda) & \mathcal{S}_0(\lambda) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{S}_{n-1}(\lambda) & \mathcal{S}_{n-2}(\lambda) & \cdots & \mathcal{S}_0(\lambda) \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_1 \end{pmatrix}$$

and

$$B(\lambda) \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

where we put

$$B(\lambda) := \begin{pmatrix} \mathcal{S}_{n-1}(\lambda) + 1 & -\mathcal{S}_n(\lambda) \\ -\mathcal{S}_n(\lambda) & \mathcal{S}_{n+1}(\lambda) - 1 \end{pmatrix}.$$

Thus we see that $\chi_{A(C_n)}(x) = \det B(x)$ and the dimension of the eigenspace of $A(C_n)$ for λ is equal to $2 - \operatorname{rank}_K B(\lambda)$. By Lemma 2.1 (vii) we have

$$B(\lambda) = \begin{cases} \mathcal{S}_{n/2}(\lambda) \begin{pmatrix} C_{n/2-1}(\lambda) & -C_{n/2}(\lambda) \\ -C_{n/2}(\lambda) & C_{n/2+1}(\lambda) \end{pmatrix} & (n: \text{even}), \\
\mathcal{V}_n(\lambda) \begin{pmatrix} \mathcal{V}_{n-2}(\lambda) & -\mathcal{V}_n(\lambda) \\ -\mathcal{V}_n(\lambda) & \mathcal{V}_{n+2}(\lambda) \end{pmatrix} & (n: \text{odd}), \end{cases}$$

so that $\chi_{A(C_n)}(x) = \tilde{C}_n(x)$ by Lemma 2.1 (v) and (1). Moreover, we can give a complete description of the value of $\operatorname{rank}_K B(\lambda)$ by using Lemma 2.1 (ii), (iii), and (1).
Put $A := A(C_n)$ and let $q(x)$ denote the claimed minimal polynomial of A over K. We note that $A = X + X^{-1}$, where

$$X = \begin{pmatrix}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{pmatrix}.$$

Using Lemma 2.1 (i), we show that $q(A) = O$ as follows.

If n is even and $\text{char} K = 2$, then

$$q(A) = (X + X^{-1}) \left(X^{\frac{n}{2} - 1} + X^{\frac{n}{2} - 3} + \cdots + X^{-\frac{n}{2} + 3} + X^{-\frac{n}{2} + 1} \right)$$

$$= (X^n + I_n) X^{\frac{n}{2}} + 2 \left(X^{\frac{n}{2} - 2} + X^{\frac{n}{2} - 4} + \cdots + X^{-\frac{n}{2} + 4} + X^{-\frac{n}{2} + 2} \right).$$

If n is even and $\text{char} K \neq 2$, then

$$q(A) = (X^2 + X^{-2} - 2I_n) \left(X^{\frac{n}{2} - 1} + X^{\frac{n}{2} - 3} + \cdots + X^{-\frac{n}{2} + 3} + X^{-\frac{n}{2} + 1} \right)$$

$$= (X^n - I_n) \left(X^{-\frac{n}{2} + 1} - X^{-\frac{n}{2}} \right).$$

If n is odd, then

$$q(A) = (X + X^{-1} - 2I_n) \left(X^{\frac{n-1}{2}} + X^{\frac{n-3}{2}} + \cdots + X^{-\frac{n-3}{2}} + X^{-\frac{n-1}{2}} \right)$$

$$= (X^n - I_n) \left(X^{-\frac{n-1}{2}} - X^{-\frac{n+1}{2}} \right).$$

In any case we have $q(A) = O$ since $X^n = I_n$.

Finally, we show that $f(A) \neq O$ for any monic polynomial $f \in K[x]$ with $d := \deg f < \deg q$. The following idea coming from the theory of cellular automata is borrowed from [10, Lemma 4.1]. Let $M(i, j)$ denote the (i, j)-entry of a matrix M. Note that

$$A^k(1, k + 1) = A^k(1, n + 1 - k) = 1,$$

$$A^k(1, k + 2) = \cdots = A^k(1, n - k) = 0$$

holds for $0 \leq k < n/2$. If $d < n/2$, then it follows that $f(A)(1, d + 1) = 1$, so that $f(A) \neq O$. In the remaining case, i.e., n is even, $d = n/2$, and $\text{char} K \neq 2$, we have $A^{n/2}(1, n/2 + 1) = 2$, hence $f(A)(1, n/2 + 1) = 2$, so that $f(A) \neq O$.

This completes the proof.

Let $J_n(\lambda)$ denote the Jordan block of eigenvalue λ and of size n:

$$J_n(\lambda) := \begin{pmatrix}
\lambda & 1 & & \\
& \lambda & 1 & \\
& & \ddots & \ddots \\
& & & \lambda & 1 \\
& & & & \lambda
\end{pmatrix}.$$
For matrices A and B, let
\[A \oplus B := \begin{pmatrix} A & O \\ O & B \end{pmatrix} \]
denote the block sum.

Lemma 3.2.
(i) The Jordan canonical form of $A(P_n)$ is of the form $\bigoplus_{j=1}^{r} J_{m_j}(\lambda_j)$ where λ_j's are distinct from each other.

(ii) The Jordan canonical form of $A(C_n)$ is of the form
\[
\begin{cases}
J_1(2) \oplus \bigoplus_{j=1}^{r} J_{m_j/2}(\lambda_j)^{\oplus 2} & (n : \text{odd}, \text{char } K \nmid n), \\
J_1(2) \oplus J_1(-2) \oplus \bigoplus_{j=1}^{r} J_{m_j/2}(\lambda_j)^{\oplus 2} & (n : \text{even}, \text{char } K \nmid n), \\
J_1(2) \oplus J_{k+1}(2) \oplus \bigoplus_{j=1}^{r} J_{m_j/2}(\lambda_j)^{\oplus 2} & (n : \text{odd}, \text{char } K \mid n), \\
J_1(2) \oplus J_{k+1}(2) \oplus J_{k+1}(-2) \oplus \bigoplus_{j=1}^{r} J_{m_j/2}(\lambda_j)^{\oplus 2} & (n : \text{even}, 2 \nmid \text{char } K \mid n), \\
J_1(0)^{\oplus 2} \oplus \bigoplus_{j=1}^{r} J_{m_j/2}(\lambda_j)^{\oplus 2} & (2 = \text{char } K \mid n)
\end{cases}
\]
where $k = \lfloor p^e/2 \rfloor$, $p = \text{char } K$, $e = ord_p(n)$, $r \geq 0$, $\lambda_j \notin \{ \pm 2 \}$, and λ_j's are distinct from each other.

Proof. The claim (i) and (ii) in the case $K \nmid n$ is immediate from Lemma 3.1. Suppose n is odd, $p = \text{char } K \mid n$ and put $e = ord_p(n)$, $m = n/p^e$. By Lemma 2.1 (viii) and (ix) we have
\[
\Psi_n(x) = (x - 2)^{(p^e - 1)/2} \Psi_m(x),
\]
\[
\tilde{C}_n(x) = (x - 2)^{p^e} \Psi_m(x)^2
\]
in $K[x]$. Since $\Psi_m(2) \neq 0$ in K, the multiplicity of the eigenvalue 2 in $\chi_{A(C_n)}(x) = \tilde{C}_n(x)$ is p^e and that in the minimal polynomial $(x - 2)\Psi_n(x)$ is $(p^e + 1)/2$. This proves the claim in this case. The remaining cases can be treated similarly. \[
\square
\]

Lemma 3.3. The eigenspace of $J_m(\alpha) \otimes I_n + I_m \otimes J_n(\beta)$ for the eigenvalue $\alpha + \beta$ has dimension $\min\{m, n\}$.

Proof. We may suppose $m \leq n$. Let $\{e_i\}$ and $\{f_j\}$ be the standard bases of K^m and K^n, respectively. Then $\sum_{i,j} c_{ij} (e_i \otimes f_j)$ is an eigenvector of $J_m(\alpha) \otimes I_n + I_m \otimes J_n(\beta)$ for the eigenvalue $\alpha + \beta$ if and only if $c_{i,j+1} + c_{i+1,j} = 0$ holds for all $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$ where we make the convention $c_{m+1,j} = c_{i,n+1} = 0$. Since any choice of $c_{11}, c_{21}, \ldots, c_{m1}$ uniquely determines an eigenvector, the claim follows. \[
\square
\]

Lemma 3.4. Let A and B be square matrices of degree m and n, respectively, and let d be the dimension over K of the eigenspace of $A \otimes I_n + I_m \otimes B$ for $\lambda \in K$.

(i) If both A and B have the property that every eigenspace has dimension 1, then
\[d = \deg \gcd_K (\chi_A(x), \chi_B(\lambda - x)). \]
(ii) If the Jordan canonical forms of A and B are of the forms
\[
\bigoplus_{i=1}^{r} J_i(\alpha_i) \oplus \bigoplus_{j=1}^{s} \left(J_{m_j}(\mu_j) \oplus J_{m_j'}(\mu_j) \right)
\]
and
\[
\bigoplus_{k=1}^{t} J_i(\beta_k) \oplus \bigoplus_{l=1}^{u} \left(J_{n_l}(\nu_l) \oplus J_{n_l'}(\nu_l) \right),
\]
respectively, where $\alpha_1, \ldots, \alpha_r, \mu_1, \ldots, \mu_s$ (resp. $\beta_1, \ldots, \beta_t, \nu_1, \ldots, \nu_u$) are distinct from each other and $m_j \leq m_j' \leq m_j + 1 (1 \leq j \leq s), n_l \leq n_l' \leq n_l + 1 (1 \leq l \leq u)$, then
\[
d = 2 \deg \gcd K(\chi_A(x), \chi_B(\lambda - x)) = \sum_{\alpha_i + \beta_k = \lambda} 1 - \sum_{\mu_j + \nu_l = \lambda} 1,
\]
where
\[
S = \{(j, l) \mid m_j' = m_j + 1, n_l' = n_l + 1, m_j = n_l\}.
\]

Proof.

(i) Let $\chi_A(x) = \prod_{i=1}^{r} (x - \mu_i)^{m_i}, \chi_B(x) = \prod_{j=1}^{s} (x - \nu_j)^{n_j}$ be the factorization over K where $\mu_1, \mu_2, \ldots, \mu_s$ (resp. $\nu_1, \nu_2, \ldots, \nu_u$) are distinct roots. Then the Jordan canonical forms are $\bigoplus_{i=1}^{r} J_{m_i}(\mu_i)$ and $\bigoplus_{j=1}^{s} J_{n_j}(\nu_j)$, respectively, so by Lemma 3.3 we have
\[
d = \sum_{\mu_i + \nu_j = \lambda} \min\{m_i, n_j\},
\]
which is easily seen to be equal to $\deg \gcd K(\chi_A(x), \chi_B(\lambda - x))$.

(ii) By Lemma 3.3 we have
\[
d = \sum_{\alpha_i + \beta_k = \lambda} 1 + \sum_{\alpha_i + \nu_l = \lambda} 2 + \sum_{\mu_j + \beta_k = \lambda} 2 + \sum_{\mu_j + \nu_l = \lambda} \left(\min\{m_j, n_l\} + \min\{m_j, n_l'\} + \min\{m_j', n_l\} + \min\{m_j', n_l'\} \right).
\]
On the other hand, $\gcd K(\chi_A(x), \chi_B(\lambda - x))$ has degree
\[
\sum_{\alpha_i + \beta_k = \lambda} 1 + \sum_{\alpha_i + \nu_l = \lambda} 1 + \sum_{\mu_j + \beta_k = \lambda} 1 + \sum_{\mu_j + \nu_l = \lambda} \min\{m_j + m_j', n_l + n_l'\}.
\]
The claim follows since
\[
\min\{m_i, n_l\} + \min\{m_i, n_l'\} + \min\{m_j', n_l\} + \min\{m_j', n_l'\} - 2 \min\{m_j + m_j', n_l + n_l'\}
\]
is -1 if $m_j' = m_j + 1, n_l' = n_l + 1, m_j = n_l$, and 0 otherwise.
Proof of Theorem 1.1. Recall that \(d(P_m \times P_n, K, a)\) is the dimension of the eigenspace of the adjacency matrix \(A(P_m \times P_n)\) for the value \(-a\). In view of the fact

\[A(G \times H) = A(G) \otimes I_n + I_m \otimes A(H) \]

for graphs \(G, H\) with \(m, n\) vertices, respectively, we can apply Lemma 3.2 (i) and Lemma 3.4 (i) to obtain

\[d(P_m \times P_n, K, a) = \deg \gcd_K(\chi_{A(P_m)}(x), \chi_{A(P_n)}(-x - a)). \]

Now by Lemma 3.1 (i) we complete the proof of Theorem 1.1 (i). The proof of (ii) is similar, though tedious.

4 Application

Applying Theorem 1.1, we obtain some corollaries. Let \(e\) be defined as in Theorem 1.1.

Corollary 4.1. (i) \(d(P_{m-1} \times P_{n-1}, K, 0) = \gcd(m, n) - 1.\)

(ii)

\[d(C_m \times C_n, K, 0) = \begin{cases} 2\gcd(m, n) - e & (\text{char } K = 2 \text{ or } mn: \text{even}), \\ 0 & (\text{char } K \neq 2 \text{ and } mn: \text{odd}). \end{cases} \]

Proof. (i) By Lemma 2.2.

(ii) By Lemma 2.1 (iii) we have \(\tilde{C}_n(-x) = \tilde{C}_n(x)\) if char \(K = 2\) or \(n\) is even. In this case the claim follows from Lemma 2.2. Changing \(m\) and \(n\), we also cover the case where \(m\) is even. Suppose char \(K \neq 2\) and \(mn\) is odd. By Lemma 2.1 (vii), noting that \(\mathcal{W}_m(-2)\mathcal{Y}_n(2) \neq 0\), we have

\[\gcd(C_m(x) - 2, C_n(x) + 2) = \gcd(\mathcal{W}_m(x), \mathcal{Y}_n(x))^2. \]

We show that \((\mathcal{W}_m(x), \mathcal{Y}_n(x)) = (1)\) as ideals of \(K[x]\). Put \(l = mn\). As in the proof of Lemma 2.2, we have \((\mathcal{W}_m(x), \mathcal{Y}_n(x)) \supset (\mathcal{I}_l(x), \mathcal{I}_l(x))\). By Lemma 2.1 (vi) we have

\[\mathcal{I}_l(x) = \mathcal{I}_{l+1/2}(x) - \mathcal{I}_{l-1/2}(x), \]
\[\mathcal{I}_l(x) = \mathcal{I}_{l+1/2}(x) + \mathcal{I}_{l-1/2}(x), \]

so that we have, noting that char \(K \neq 2\),

\[(\mathcal{W}_l(x), \mathcal{I}_l(x)) = (\mathcal{I}_{l+1/2}(x), \mathcal{I}_{l-1/2}(x)) = (\mathcal{I}_l(x)) = (1), \]

as desired. The claim follows from this.
Remark 4.2. In the case char $K = 2$, Corollary 4.1 (i) was proved in [1] and [8]. See also [2].

Corollary 4.3. Suppose char $K = p > 0$.

(i)
\[
d(P_{p^m-1} \times P_{p^n-1}, K, a) = \begin{cases}
p^\min\{m,n\} - 1 & (a = 0), \\
p^\min\{m,n\} - 1)/2 & (p \geq 3, a = \pm 4), \\
0 & \text{(otherwise)}. \end{cases}
\]

(ii)
\[
d(C_{p^m} \times C_{p^n}, K, a) = \begin{cases}
2p^\min\{m,n\} & (p = 2, a = 0), \\
2p^\min\{m,n\} & (p \geq 3, a = -4, m \neq n), \\
2p^m - 1 & (p \geq 3, a = -4, m = n), \\
0 & \text{(otherwise)}. \end{cases}
\]

(iii) \(d(C_{p^m} \times C_{p^n}, K, a) + \varepsilon = p(d(C_m \times C_n, K, a) + \varepsilon)\).

(iv) For any power q of p with $q \geq 4$ and for any $a \in K \cap \mathbb{F}_q$, we have
\[
d(C_{q+1} \times C_{q+1}, K, a) = d(C_{q-1} \times C_{q-1}, K, a) + 4.
\]

Proof.

(i) By Lemma 2.1 (ix).

(ii) By Lemma 2.1 (ix) we have \(\tilde{C}_p^n(x) \equiv x^{p^n} - 2 \equiv (x - 2)^{p^n} \pmod{p}\).

(iii) By Lemma 2.1 (viii) and (ix) we have \(\tilde{C}_{p^m}(x) = C_p(C_m(x)) - 2 \equiv C_m(x)^p - 2 \equiv \tilde{C}_n(x)^p \pmod{p}\).

(iv) By Lemma 2.1 (vi), (viii), and (ix) we obtain \(\tilde{C}_{q+1}(x)\tilde{C}_{q-1}(x) = (C_q(x) - x)^2 \equiv (x^q - x)^2 \pmod{p}\). Since \((x^q - x)^2\) is stable under \(x \mapsto -x - a\), we have
\[
\tilde{C}_{q+1}(x)\tilde{C}_{q-1}(x)\tilde{C}_{q-1}(x(-x - a)) \equiv (x^q - x)^2\tilde{C}_{q-1}(-x - a), \\
\tilde{C}_{q+1}(-x - a)\tilde{C}_{q-1}(-x - a)\tilde{C}_{q-1}(x) \equiv (x^q - x)^2\tilde{C}_{q-1}(x).
\]

By taking “2 deg gcd” of both sides, we obtain the desired formula.

Remark 4.4. In the case $p = 2, a = 1$ (this implies $\varepsilon = 0$), Corollary 4.3 (iii) was first observed in [3] and was proved there by an elementary method. In the same paper, (iv) was also observed for the first time and was proved by using an elliptic curve. Subsequently, in [11], the author applied the same method to prove (iv) in the case where p is general and $a = 1$.

12
Corollary 4.5. Let \(\mu(n, a) \) denote the multiplicity of \(x - a \) in the factorization of \(\mathcal{S}_n(x) \) over \(K \), and introduce the notation

\[
\delta_{m,n}(a) = \begin{cases}
2 & (\text{if } \mu(m, a) > \mu(n, 2)), \\
0 & \text{(otherwise).}
\end{cases}
\]

(i) If \(\text{char } K = 2 \), then

\[
d(C_m \times C_n, K, a) = 2d(P_{m-1} \times P_{n-1}, K, a) + \delta,
\]

where

\[
\delta = \begin{cases}
2 & (a = 0), \\
\delta_{m,n}(a) + \delta_{n,m}(a) & (a \neq 0).
\end{cases}
\]

(ii) If \(\text{char } K \neq 2 \), then

\[
d(C_{2m} \times C_{2n}, K, a) = 4d(P_{m-1} \times P_{n-1}, K, a) + \delta,
\]

where

\[
\delta = \begin{cases}
4 - \varepsilon & (a = 0), \\
2 - \varepsilon + \delta_{m,n}(6) + \delta_{n,m}(6) & (a = \pm 4), \\
\delta_{m,n}(a + 2) + \delta_{m,n}(a - 2) + \delta_{n,m}(a + 2) + \delta_{n,m}(a - 2) & (a \neq 0, \pm 4).
\end{cases}
\]

Proof. (i) By Lemma 2.1 (x) we have

\[
d(C_m \times C_n, K, a) = 2 \deg \gcd_K (x \mathcal{S}_m(x), (-x - a) \mathcal{S}_n(- x - a)) - \varepsilon,
\]

and the claim follows as follows. It is clear for \(a = 0 \). If \(a \neq 0 \), then we have

\[
\begin{align*}
v_0(\mathcal{S}_m(- x - a)) &> v_0(\mathcal{S}_m(x)) \iff \mu(n, -a) > \mu(m, 0), \\
v_{-a}(\mathcal{S}_m(x)) &> v_{-a}(\mathcal{S}_n(- x - a)) \iff \mu(m, -a) > \mu(n, 0),
\end{align*}
\]

where \(v_b(f) \) denotes the order of a polynomial \(f \in K[x] \) at \(x = b \in K \). Also note that \(\varepsilon = 0 \) if \(a \neq 0 \).

(ii) Use \(\mathcal{C}_{2n}(x) = (x^2 - 4) \mathcal{S}_n(x)^2 \) from Lemma 2.1 (vii) (1) instead.

\(\Box \)

Remark 4.6. (i) Consider the case \(a = 1 \). Corollary 4.5 (i) was conjectured in [3], and under the restriction that \(mn \) is prime to \(\text{char } K \), both (i) and (ii) were obtained essentially in [11, Proposition 2.2].

(ii) This result says that there is a relation between usual Lights Out puzzle and the torus version of the puzzle. It would be interesting to find out a combinatorial interpretation of this result.
(iii) Let \(n \geq 1 \) and put \(e = \text{ord}_p(n) \) in the case \(\text{char } K = p > 0 \). Using Lemma 2.1, we can easily verify

\[
\mu(n, 2) = \begin{cases}
0 & (\text{char } K = 0), \\
2^e - 1 & (\text{char } K = 2), \\
(p^e - 1)/2 & (\text{char } K = p \geq 3).
\end{cases}
\]

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 23540014. The author would like to thank the referee for the suggestions for a better presentation of this paper.

References

