・名古屋工業大学学術機関リポジトリは、名古屋工業大学内で生産された学術情報を電子的に収集・保存・発信するシステムです。 ・論文の著作権は、著者または出版社が保持しています。著作権法で定める権利制限規定を超える利用については、著作権者に許諾を得てください。 ・著者版フラグに「author」と記載された論文は、著者原稿となります。実際の出版社版とは、レイアウト、字句校正レベルの異同がある場合もあります。 ・Nagoya Institute of Technology Repository Sytem is built to collect, archive and offer electronically the academic information produced by Nagoya Institute of Technology. ・The copyright and related rights of the article are held by authors or publishers. The copyright owners' consents must be required to use it over the curtailment of copyrights. ・Textversion "Author " means the article is author's version. Author version may have some difference in layouts and wordings form publisher version.
A Speed-Up Technique for an Auto-Memoization Processor by Collectively Reusing Continuous Iterations
利用統計を見る
File / Name
License
本文_fulltext
(c)2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
We have proposed an auto-memoization processor based on computation reuse, and merged it with speculative multithreading based on value prediction into a parallel early computation. In the past model, the parallel early computation detects each iteration of loops as a reusable block. This paper proposes a new parallel early computation model, which integrates multiple continuous iterations into a reusable block automatically and dynamically without modifing executable binaries. We also propose a model for automatically detecting how many iterations should be integrated into one reusable block. Our model reduces the overhead of computation reuse, and further exploits reuse tables. The result of the experiment with SPEC CPU95 FP suite benchmarks shows that the new model improves the maximum speedup from 40.5% to 57.6%, and the average speedup from 15.0% to 26.0%.