Contents

Chapter 1	: Introduction	1
1-1.	Background	1
1-2.	Epitaxial growth of GaAs on Si	3
1-3.	Application to devices	7
1-4.	The purpose and organization of this	9
	dissertation	
	References	11
Chapter 2	: Waveguide properties of GaAs on Si	15
2-1.	Introduction	15
2-2.	Sample preparation	15
	2-2-1. Design of the waveguide	17
	2-2-2. Sample structure	19
2-3.	Near field patterns	24
	2-3-1. Measurement method	24
	2-3-2. Near field pattern of the slab	
	waveguide	24
	2-3-3. Near field pattern of the ridged	
	waveguide	27
2-4.	Propagation loss	28
2-5.	Conclusion	33
	References	35
Chapter 3	: Quantum well properties of GaAs on Si	36
3-1.	Introduction	36
3-2.	Observation of the QW of GaAs on Si	37
	3-2-1. TEM observation	37

	3-2-2. Photo-Luminescence (PL) spectra	
	observation	37
3-3.	The absorption energy at the room temperature	41
	3-3-1. Calculation of the electron-hole	
	energy	41
	3-3-2. Photocurrent spectra measurement	42
3-4.	QCSE of GaAs/AlGaAs on Si	47
	3-4-1. Quantum confined Stark-Effect (QCSE)	47
	3-4-2. Measurement	51
	3-4-3. Obtained properties	51
3-5.	Conclusion	55
	References	59
Chapter 4	: Application to the optical switch	62
4-1.	Introduction	62
4-2.	Sample preparation	63
	4-2-1. Structure of the sample	63
	4-2-2. Propagation loss	66
4-3.	Properties of the switch	69
	4-3-1. I-V characteristics	69
	4-3-2. Applied voltage and the light	
	transmission	71
4-4.	Application to the switch for 850nm	
	wavelength	76
4-5.	Integration of InGaAs laser with optical	
	switch	82
4-6.	Conclusion	89
	References	92

Chapter 5	: Application to the phase modulator	93
5-1.	Introduction	93
5-2.	Refractive index	93
5-3.	Sample preparation and measurement	96
5-4.	Results	98
5-5.	Conclusion	101
	References	106
Chapter 6	: Summary	107
Selected Papers		113