人間のパターン認知機構とそのシミュレーション

梅野正義・王 景雪・神保孝志 ^{電気情報工学科} (1989年9月1日受理)

The Mechanism and Simulation of Human Pattern Recognition

Masayoshi UMENO, Jing-Xue WANG and Takashi JIMBO

Dept. of Electrical and Computer Eng. (Received September 1, 1989)

In this paper, the mechanism of human pattern recognition is reviewed and, as one application, a recognition model of hand-written numeric characters is discussed. In this model, the input layer is divided into some local fields, which overlap one another. A unit on intermediate layer 1 receives inputs from a local field. With this structure, connections and calculations can be reduced.

1.序 論

電子計算機はノイマンによって提案されてから、四世 代の交替を経過して、今年43年目に入った。この40年ぐ らいの短い間に、計算機は計算の速さや正確さなど一連 の特徴で人間の信頼を得て、社会システムのいたるとこ ろに浸透し活躍してきた。ひところは"電子頭脳"など ともてはやされたが、人間の研究範囲の拡大にしたがっ て、以下のような事実が明らかになった。即ち、そのい わゆる"電子頭脳"であるノイマン型電子計算機が実現 したものはわれわれ人間の能力のごく一部である。例え ば,自然言語の理解・図形識別などの問題に対しては. われわれ人間では子供でもできるが、電子計算機ではと ても困難である。上述の原因で、ここ数年では、脳の情 報処理メカニズムを模倣して、ノイマン型電子計算機が 苦手としてきた図形処理・パターン認識及び自然言語の 理解などができる機械(ニューロン・コンピュータとも 呼ばれる)の開発研究が、世界的な関心になってい る1)~5)。言い換えれば、人間が持つ機能により近い機械の 開発が進んでいる。

このように、生体が持つ優れた能力を工学的に実現す るときに、生物系と工学系の橋渡しをするのが、いわゆ る生体工学といわれるものである。これには"生体機能 の合成"と"生体機能の解析"という二つの立場がある。 "生体機能の合成"とは、生体が長い歴史を経て進化し てきた優れた機能を学び、それをヒントに工学機能を実 現しようという工学側の要求からなるものである。"生体 機能の解析"とは、工学系で発達した理論や方法を生物 系科学に利用することにより、生体の機能を解き明かそ うというものである。

ここでは、生物系の視覚機能を対象として、"生体機能 の合成"の立場から、人間のパターン認識メカニズムに 基づいて、手書き文字を認識できる人工網膜デバイスを 実現するためのモデルを提案し、報告する。

2.人間のパターン認知機能^{6),7)}

2.1 網膜の構造及び視覚系の情報処理

網膜は脳の中で神経回路が極めて複雑な一部で,厚さ は0.1~0.5mmである。Fig.1 は電子顕微鏡による観測を もとにして描いた網膜内神経回路の模式図である。網膜 の細胞は視細胞層・内顆粒層・神経節細胞層の3層に分 かれている。

視細胞層には杆状体 (rod) と錘状体 (cone) がある。 杆状体は暗いところで物を見るのに働き, 錘状体は杆状 体に対して感度が低く,明るいときに働く。杆状体と錘 状体には,光受容の主役をする視物質をたくさん含んで いる。水晶体や角膜などのような生体レンズを通過して 視細胞層に至る外界光信号は,この視物質に当たると, 一連の生体化学反応を引き起こし,電気信号に変換され る。また,ヒトやサルなどの霊長類の視細胞層には,光 スペクトルに対する分光感度の異なった3種類の錘状体 がある。つまり,赤色光に最大感度を持つもの,緑色光 に最大感度を持つもの及び青色光に最大感度を持つもの がある。これはわれわれ人間の色覚の基礎をなしている。

視細胞層から出た電気信号は内顆粒層の双極細胞 (bipolar cell)により一次処理して,網膜の出力細胞で

Fig. 1 Illustation of retinal nerveous tissuse. R: rod C: cone H: horizontal cell B: bipolar cell A: amacrine cell G: ganglion cell

ある神経節細胞 (ganglion cell) に伝えられる。さらに、 神経節細胞はこれをバルス列に変換し、中枢へ送る。な お、この"視細胞→双極細胞→神経節細胞"という縦の 経路は水平細胞 (horizontal cell) とアマクリン細胞 (amacrine cell)という2種類のニューロンによって横 方向に結合されている。視細胞と水平細胞間および双極 細胞とアマクリン細胞間には負のフィードバック回路が 形成されている。

2.2 視覚系の受容野

生理学では、生体の視覚系の途中の一つの神経細胞に 微小電極を挿入し、網膜上の種々の位置にスポット光を 与えたときの反応が調べられている。これによれば、こ の細胞になんらかの反応をひきおこす網膜上の領域があ り、この領域はこの神経細胞の受容野と呼ばれている。 ネコやサルの実験によると、脊椎動物の網膜の出力細胞 (あるいは神経節細胞)では、受容野はほぼ円形をなし ている。受容野にスポット光を当てるときの反応様子を 調べてみると、Fig.2 のような2種類の受容野が発見さ れた。(a)はの中心型受容野と呼ばれる。この種の受 容野では、その中心部に光を当てると出力側にバルスを 発生し(on反応という)、周辺部に光を当てると逆にバ ルスが停止し、光を消した瞬間に多数のパルスを放出す る(off反応という)。(b)には、中心部と周辺部の働き が(a)と全く逆になった off 中心型受容野を示す。こ

Fig. 2 On and off-center receptive fields of retinal genglion cells.

れにおいて, 普通 on 反応及び off 反応の領域はほぼ同 心円状をなしていて, 中心部と周辺部が互いにきっ抗し ている。

大脳皮質視覚領の細胞についても受容野が調べられて いるが、網膜におけるものと全く形を異にしている。こ れらは Hubel らによれば、その働きによって、単純型細 胞・複雑型細胞及び超複雑型細胞などに分類されてい る⁸⁾。単純型細胞は Fig.3 のような形の受容野を持ってい て, 受容野上の on 反応領域(+印)に一致した位置に 直線状の光または白黒エッジが当たると強く反応するが 位置及び角度がずれるとほとんど反応しなくなる。複雑 型細胞は特定方向の直線やエッジが受容野の中にありさ えすれば、その位置に無関係に反応する。また、超複雑 細胞の中には網膜上に与えたパターンの角の部分に強く 反応するものや特定の長さの直線に強く反応するものな どがあり、一般に入力パターンの持っている種々の特徴 の複雑な組合わせに反応を示す。また、視覚領の細胞の 受容野では入力パターンが静止したものよりも特定の方 向へ動く場合に強い反応を示すものが多いことも知られ ている。

網膜から大脳視覚領までの視覚経路は Fig.1 のように いくつもの細胞層が介在し,信号はこれらの細胞層を経

(a) (b)

Fig. 3 Typical arrangements of the receptive fields of simple cortical cells

て伝送されている。ある細胞層の一つの神経細胞は上述 のような受容野を持っているが,この層内には,このよ うな性質の細胞が数多く並んでいて,それぞれの受容野 は Fig.4 のように互いに密にオーバーラップしている。 このため任意の二つの細胞層間の結線は相互に入り組ん でおり,数式表現すると空間積分演算で表わされると考 えられる。すなわち,空間座標(x,y)に対して,入力 側の層の信号を v(x,y),出力側層での反応を z(x,y) として,

$$z (x,y) = \int \int W (x-y',y-y') v (x',y') dx'dy'$$

と表されると考えられる。ここに、W(x,y) は細胞層 間の結合の重みを表わす関数である。

3. 手書き文字認識ニューラルネット・システム

3.1 モデルの構成

ニューラルネットは入力層,中間層1,中間層2及び 出力層からなり,各層内の結合はなく,信号は上層に向 かって一方向に伝達されるフィードフォワード型の階層

Fig. 4 Illustration of interconnection between cell layers in the case of two dimension.

的なネットワークである。ここで、入力層は網膜の視細 胞層に相当し、外界の入力パターンがこの層からネット ワークに入る。中間層1と中間層2は網膜の内顆粒層と 神経細胞層に対応し、入力層から入ってきた信号はこれ らにより一次処理して、ネットワークの出力層へ送られ る。出力層は大脳の視覚領に相当する。なお、各層間の 接続については、出力層と中間層2の各ユニットは、そ れぞれの下層の全てのユニットと接続されているが、中 間層1の各ユニットと入力層のユニットの接続は、2次 元的に結合範囲を限定され、一部の結合範囲は互いに オーバーラップしている。Fig.5 (a) はニューラルネット の層間結合の様子を示す。Fig.5 (b) は Fig.5 (a) の入 力層内の破線部分の拡大図でる。A・B・Cなどの円状 部分は中間層1の結合範囲(受容野)を表す。ここで, 円状に描いてあるのは結合範囲が互いにオーバーラップ することを理解するためだけのものであり、実際に円状 である必要はない。シミュレーション時には正方形の結 合範囲を用いた。例えば、Aの結合範囲は、"・"で塗り つぶしたA円と外接した正方形領域である。同じように、 Bの結合範囲は、Bと外接した正方形領域である。

入力層を除く各層のユニットは、下の層のユニットか らの重み付き入力を受けて、その総和を計算し、それに 適当なしきい値関数で処理した後、その値を上の層へ出 力する。すなわち、Iト、Oトをそれぞれ第k層の第iユ ニットの入力総和、出力とし、 W^{k} , ^{1k}を第K-1層の第j ユニットから第k層の第iユニットへの結合の強さ、 θ を第k層iユニットのしきい値とすると、これらの変数 の間の関係は

$$I_{1}^{k} = \sum_{j} W_{j}^{k-1} O_{j}^{k-1} - \theta_{1}^{k}$$

$$O_{1}^{k} = f(I_{1}^{k})$$
(1)
(2)

となる。ここで,閾値関数 f(x) は,微分可能な関数で ある。

3. 2 ネットワークの学習メカニズム

Fig. 5 に示した階層ネットワークを学習させるには, 入力層の各ユニットに入力データを与え,出力層から出 力された値を望ましい値(教師信号とも呼ばれる)と比 較し,その差を減らすように結合の強さを変えればよい。 ここでは,学習アルゴリズムとして,Rumelhart ら⁹に より提案されたバックプロパゲーション法(Error Back Propagation)を用いた。

パックプロパゲーションでは,評価関数Eとして,階 層ネットワークにある入力パターンを与えたときに,出 力層から出力される値O」と,教師信号として外部から 与えられる望ましい出力の値t」の2乗誤差総和を用い た。

(a) Hierarchical structure of the interconnections between different cell-layers.

(b) Illustration of receptive fields of intermediate layer 1.

Fig. 5 Illustration of the model structure.

$$E = \frac{1}{2} \Sigma_{i} (t_{i} - O_{i})^{2}$$
(3)

ネットワークを学習させる目的は、この2乗誤差総和 を最小化するよう、各層間の結合強さを変更していくこ とである。そこで、結合の修正量 ΔW^{k-1k}_{j1} を求めればよ いわけである。 ϵ を定数として

$$\Delta W_{j}^{k-1k} = -\varepsilon \frac{\partial E}{\partial W_{j}^{k-1k}}$$
(4)

となる。∂E/∂I^kの計算はユニットiが出力層にあるか 中間層にあるかで異なる。

中間層ユニットの場合は

$$\frac{\partial E}{\partial I_{1}^{k}} = \Sigma_{1} \frac{\partial E}{\partial I_{1}^{k+1}} \cdot \frac{\partial I_{1}^{k+1}}{\partial O_{1}^{k}} \cdot \frac{\partial O_{1}^{k}}{\partial I_{1}^{k}}$$
(6)

$$= \Sigma_{i} \frac{\partial E}{\partial \mathbf{I}^{k+1}} \cdot \mathbf{W}_{i}^{kk+1} \mathbf{f}'(\mathbf{I}_{i}^{k})$$
(7)

出力ユニットの場合は

$$\frac{\partial E}{\partial I_{i}^{k}} = \frac{\partial E}{\partial O_{i}^{k}} \cdot \frac{\partial O_{i}^{k}}{\partial I_{i}^{k}}$$
(8)

$$= (\mathbf{t}_i - \mathbf{O}_i^k) \mathbf{f}'(\mathbf{I}_i^k) \tag{9}$$

である。 $\partial E/\partial I_{i}^{k} = d_{i}^{k}$ とおくと、結合の修正量 ΔW^{k-1} は

$$\Delta W_{j}^{k-1k} = -\varepsilon d_{j}^{k} O_{j}^{k-1} \tag{10}$$

$$\begin{split} & d^{out}_{\ i} = - \left(t_i - O^{out}_{\ i} \right) f'(I^{out}_{\ i}) \eqno(11) \\ & d^*_i = (\pmb{\Sigma}_i W^{kk+1}_{\ i} d^{k+1}_{\ i}) f'(I^k_i) \eqno(12) \end{split}$$

という式を満たすものになる。

実際, バックプロパゲーションによる学習では, 振動 を減らし, 学習の収束を早めるために, 結合強度を変更 する際に, 前回の変更量が影響するように変更するのが 一般的である。すなわち

$$\Delta W^{k_j l_k}(t+1) = -\varepsilon d_i^k O^{k_j l_k} + \alpha \Delta W^{k_j l_k}(t) \quad (13)$$

ここで, αは学習の加速度レート, t は学習の回数を表わ

す。

3.3 計算機シミュレーション

上記のようなニューラルネットモデルの計算機シミュ レーションを行った。シミュレーションでは、入力層の 細胞数は24×24個、中間層1の細胞数は40個、中間層2 の細胞数は10個、出力層の細胞数は10個とした。中間層 1と入力層の結合範囲は6×6とした。また、各層間の 結合の初期値は-0.5~0.5のランダム値で、閾値の初期 値は0~1のランダム値である。閾値関数としては、式 (14)のようなシグモイド関数が使われている。学習パ ラメータは α =0.7、 ϵ =0.3を用いた。

$$f(x) = \frac{2}{1 + e^{-x}} - 1 \tag{14}$$

上述のパラメータを用いて、24人分の数字(0~9) を学習させてから、25人分の未学習のデータを認識実験 した結果、認識率は85.3%であった。Fig.6は学習させ た後、この回路がどの程度変更したパターンまで正しく 認識できるかを例示したものである。図に見られるよう に、このシステムは入力パターンの形変に、影響されず に正しく認識できる。

3.4 人工網膜実現への課題

今回作成したモデルは、ハードウェア化を目指すとい うことでかなりシンプルなものにしたが、実際のハード ウェア化に際してはまだ数多くの課題が残っている。そ の中で, 深刻な問題として次の二つがある。一つは, 層 間の結合を学習のために変化させる方法であり, もう一 つは, 多数の細胞ユニットと重み付けを同一チップ上で 結合する配線技術である。確かに, 現在の集積化技術で もかなり多くのユニットを一チップ上に実現できるが, 重み付けにあたる極小の可変結合の抵抗を作製し, それ らを多数にチップ上に実現する技術はまだない。そのた め, 今までに実現されたニューラルネット LSI では, 普 通抵抗値を固定としているが, ニューラルネットの能力 を十分に発揮させるためには結合の可変化がぜひとも必 要である。

最近,可変結合を試みているニューラルネット LSI が いくつか報告されている^{10)~12)} が,方法としては,いずれ も,ニューラルネットチップの内部に可変結合の値を格 納するためのメモリ (RAM) または不揮発的なメモリ (EEPROM)ユニットを開設し,結合の変更は,ホスト コンピュータによって行う。明らかに,この方法では, ニューラルネットの"並列処理"というメリットがほと んどなくなっており,あくまでも一つの実験方法である。 新しい LSI 技術の開発にしたがって,ハードウェアの動 作特性や動作状態を変えてやることによって,結合を変 更させるニューラルネット LSI が実現できるであろう。 一方,ニューラルネットの膨大な配線問題の解決策に ついては、シリコン(Si)基板とIIIーV化合物半導体の組 み合わせることによる新しい配線技術の開発が注目を集 めている^{13)~16)}。具体的に言えば、Si にガリウムひ素

Fig. 6 Examples of the deformed numerals which the model recoginzed correctly.

(GaAs)の発光機能を持たせる光電子集積回路(OEIC) や SiIC 上に GaAsを成長し, GaAs 中にも IC を構成 し, Si の IC と GaAs の IC の間が光で結合された 3 次 元 IC などの開発が期待されている。なお,もしこのよ うな光配線が実現できれば,実配線を設ける必要がない うえ,結合する 2 つの細胞ユニット間の回路上の電位差 を考慮しなくてすむという利点もある。現在のところ, Si 基板上に GaAsを成長するには, Si と GaAsの間 に,格子不整合,熱膨張係数の違い及び有極性/無極性 半導体結晶に伴う逆相領域の発生などの問題があるが, それらの解決は名工大を中心として,鋭意なされていて, 良好な GaAs/Si の結晶成長に成功している。いずれに しても,Si 上に化合物半導体を結晶成長する研究が人工 網膜のハード化,実用化に,将来のカギを握っていると も言えるであろう。

4. ま と め

本論文では、人間のパターン認知機構及びこれに基づ いた手書き文字認識ニューラルネットシステムモデルに ついて述べた。本モデルの特徴は、中間層1の各ユニッ トに接続される入力層の範囲は入力層全体でなく、部分 的な範囲であること、および各受容範囲が互いにオー バーラップしていることである。これによると、システ ム全体の配線数や計算量などが従来の多層パーセプトロ ンよりかなり減少するうえ、システムの働きが生体の視 覚系にさらに近づいてくる。実際、人工網膜デバイスを 実現するためには、高認識率及びシンプルさがモデルの 一番重要な目標である。現在、新しいモデルとその光電 子デバイス化を検討している。

参考文献

- 1)輝きを見せはじめたニューロ・コンピュータ≪日経 コンピュータ≫1988, 3, 14 pp. 87-105.
- David E. Rumelhart et al.: <PARALLEL DIS-TRIBUTED PROCESSING> MIT Press 1986.
- 3) 梅野,朱,中村「生体の視覚系モデルによる文字パターン認識」電学論C Vol. 108-C pp. 453-456,

1988.

- 4)朱,岩瀬,神保,梅野「ニューロンモデルを用いた 文字認識」光学 Vol. 18 pp. 250-255, 1989.
- 5) 梅野, 枇杷木「文字パターン認識における自己組織 化を利用した特徴の検出」信学論 D J69D pp. 1443-1449, 1986.
- 6) 樋渡≪生体情報工学>コロナ社 1971.
- 7)福島≪視覚の生理とバイオニクス>コロナ社 1976.
- 8) D. H. Hubel and T. N. Wiesel: "Receptive fields and functional archit ecture in two nonstriate visual area of the cat" J. Neurophysiol. 28 pp. 229 -289 1965.
- 9) D. E. Rumelhart et al.: "Learning Representation by Back-propagation Error" Nature Vol. 323 pp. 533-536, 1986.
- 10) Y. Hiral et al: "A Digital Neuro-Chip with Unlimited Connectability for Large Scale Neural Networks" IJCNN89 P. II-163.
- Silvio Eberhardt et al: "Design of Parallel Hardware Neural Network Systems from Custom Analog VLSI 'Building Block' Chips" IJCNN89 P. II-183.
- 12) Mark Holler et al: "An Electrically Trainable Artifiicial Neural Network (ETANN) with 10240' Floating Gate' Synapses" IJCNN89 P. II -191.
- 13) 酒井, 梅野「ガリウムひ素・シリコン一体化結晶」 Semiconductor World No. 2 pp. 1-6, 1986.
- 14) 梅野, 曽我「Si 基板上への化合物半導体のヘテロエ ピタキシー」応用物理 Vol. 55 No. 8 pp. 47-50, 1986.
- 15) 梅野,曽我「Si 基板上への GaAs 結晶成長と光素 子への応用」電子情報通信学会誌 Vol. 70 No. 2 pp. 169-173, 1987.
- 16) 梅野, 曽我「歪み超格子を中間層に用いた Si 基板上 へのⅢ-V化合物半導体の MOCVD 成長」日本結晶 成長学会誌 Vol. 13 No. 4 pp. 38-42, 1986.