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In this paper the chaotic behaviour in nonlinear electric circuits is discussed, and as a modification of

the L-R-Diode nonlinear system, the chaotic behaviour in R-L-ferroelectric system is analyzed.

§1. Introduction

Nonlinear dynamics have been a concern of many
theoretical and experimental scientfic researchers in re-
cent years. 119 There are many nonlinear phenomena
observed in the electrical circuits. They are known to
be the dynamical systems named chaos and the bifurca-
tion phenomena. It is also reconfirmed by extensive
computer simulation of the mathematical model; the 3-rd
order autonomous ordinary differential equation.

Matsumoto et al.3™ reported the nonlinear 5-ele-
ments electrical circuit system. Despite the simplicity of
the circuit, it shows the great variety of the bifurcation
phenomena. By changing the capacitance values, many
phenomena including Hoph bifurcation, periodic-double
cascade, Rossler’s spiral-type and screw-type attractors,
Shilnikov-type phenomana, have

boundary crisis, etc,

been observed. These systems are now very important
for the basis of the chaos-type nural computer.m)
In the ferroelectric or piezoelectric crystal, these
nonlinear dynamics have been investigated by many
researchers.'"'? D. J. Jefferies has been reported the
periodic multiplication and chaotic behaviour in the
Rochelle salt crystal. The piezoelectric active vibration-
al resonances were tuned over a 2:1 range by an applied
voltage.“) At high driving amplitudes, subharmonics of
the driving frequency occur, accompanied by regions of
chaotic behaviour. Huang and Kim observed the charac-
teristics of the nonlinear response of a driven KHzPO4
the

crystals at ferroelectric

2)

temperature  near
transition. "

This paper reports the review of the chaotic be-
haviour in electric circuits. In §2, the results of the cal-

culation of the chaotic behaviour for the nonlinear effects

of the iterated system. The nonlinear dynamics in elec-
In §5, the

chaotic behaviour in ferroelectrics is described.

tric circuits are discussed in §3 and §4.

§2. Chaotic Behaviour of the Iterated System

There are many mathematical models of chaotic
bifurcations. The example is the iterated eqution of
forms such as

tar1=42%, (1—z,) (1)

It shows onset threshfolds in for non-convergent be-
haviour and quiet bands where the period can be multi-
plied by an integer number. The figure 1 shows the be-
haviour of the bifurcation as the function of A.

For the double chaotic model for two variables is

given by

X3=.5

Fig. 1 Bifurcation diagram of the eq. (1).

—
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£n+1=9,+0.008(1—0.05y,%) y,, + (x,)

In=—%ntf (xn1)

f@)=px+2(0—#)2/ (1+19). @)
There are many interesting cases for various values of
#. The plot for #=—0.8 and #=0.9 are shown in fi-
gure 2 (a) and (b).

(b)

Fig. 2 2-D map of eq.(2). (a) #=-0.8, (b) #=
0.9.

§3. The Double Scroll Bifurcation

T. Matsumoto et al. reported the double scroll
bifurcation system observed in the electrical circuit. 7
They used a simple circuit as shown in Fig. 3. They
observed the extremely complicated non-periodic
waveforms. The v-i characteristic of the nonlinear reg-
ister R is described by

C1dVa/d)=G6(Ve—Va)—g (Va)

C2(dV.2/dt)=G (V1 —V,2) +ir

L (dip/dt)=—V,, (3)

where the function g(z) is given by figure 3(b), and G

is the conductance chosen as the bifurcation parameter.
The numerical simulation of the bifurcation phe-

nomena observed from the physical circuit Figure 3.

Equilibria of eq. (3) are given by

GW2—Va) —g(Va) =0

G
Ve2
v :
1 L ¢l !
(a)
i
0 Vv
(b)

Fig. 3 Simple uncoupled circuit with chaotic attrac-
tors; (a) circuitry, (b) v-i characteristic of

the non-linear register.

G(Va—Va) +iL=0

V=0 (4)
Therefore for fixed values of G, these are three
equilibria:

P+:Va=k, V.2=0, i,r=—Gk

0 :Va=V.=i=0

P—:Va=—k, V.2=0, iy=Gk (5)

where k and —k are the positive and negative solutions
of
GV.atg(V,) =0. (6)

Many bifurcation were derived from various parameter
values of c1, such as Hopf bifurcation, Periodic doubling,
etc. The result for the case of Hopf bifurcation is shown

in figure 4.
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1-C= 8.

Fig. 4 Periodic orbits on the (i, V) —plane.
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\
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(c)

Fig. 5 Driven R-L-Diode circuit; (a) circuitry, (b)
equivalent circuit, and (c) simplified capaci-

tor characteristic.

§4. The driven R-L-Diode circuit

The bifurcation in a driven R-L-Diode circuit was

9. The used driven circuit

discussed by Tanaka et al.
is shown in figure 5. Despite of its simplicity, the cir-
cuit exhibits a rich variety of interesting bifurcation
phenomena. The diode is replaced by a parallel conec-
tion of a nonlinear registor and a capacitor given by fi-
gure 5(b). The relation V vs. gq is rather complicated,
therefore the nonlinear capacitor is replaced with the
piecewise capacitor given by figure 5 (¢c). For the
simplicity, the sinusoidal electric field was replaced by
a square wave voltage source of the period T =1 /f.
Then the dynamics of the circuit is described by
dg/dt=i
L (di/dt)=—Ri— (¢/C1if g>=0

{ q/C3 if ¢<0 }

—Eo{ +E if nT<t<@m+1)T
—Eif @+1/2)T<t<@m+1) T
(7

where ¢ is the charge stored in the capacitor, i is the

(b)

Fig. 6 Projected orbitson (g, ) —plane;
(a) 0<t<1,72, (b) 1/2<t<1.
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current of the circuit, R is the registor, L is the induct-
ance and C1 (Cz) is the capacitance of the capacitor.

Tanaka et al. analysed the circuit of figure 5 driven
by sinusoidal voltage source. They observed the
bifurcation tree which represents a one-dimensional
Poincare section taken at each fundamental period, T=
1/f of the sinusoidal source.

The results are easily simulated by the 2-D map
which mimics the point transformation. They plotted the
q vs. i curves as shown in figure 6. On the trajectory,
which passes through the origin, a trapezoid A at t=0
is deformed along the flow as ¢ increases.

A simple 2-D map model was proposed to describe
the point transformation, and to exhibits the same
bifurcation phenomena as those observed experimentally
from the circuit in figure 5. The bifurcation phenomena
was described by
Zn+i=y,—1 ([ tax, if x,>0

{ —a,, if 2,<0
Yn+1=bxy (8)

For the R-L-Diode circuit, Tanaka et al. showed the
one-parameter bifurcation diagram of x with a;=0.7, b

=—0.13 and az is varied over range 0<a><20. (Fig.

7)

Fig. 7 One-parameter bifurcation diagram of » for the

2-D map model.

§5. Bifurcation Response in Ferroelectrics

Huang and Kim showed a real-time display a
periodic doubling response observed in KDP. 12 When
the frequency was used as a bifurcation parameter, they
observed a complete periodic-doubling sequence to
chaos. Jeffries showed the result observed in Rochelle
salt. 'V
In this paper we report its simulation of the non-

linear behaviour effects in ferroelectrics. The circuit

E ,9 L

Fig. 8 Driven R-L-Ferroelectric crystal (C) circuit.
used for the computer simulation is shown in figure 8,
which is quite same as Fig. 5. The Gibbs free energy
appropriate for the second order phase transition in fer-
roelectric crystal is
G= (1/2)aP’+ (1/4)BP (9)
It gives the electric field E=dG /dP as function of the
polarization P,

E=aP+ 3P a0
The dynamics is described by

Fig. 9 Periodic orbits on the (g, i) —plane; (a) a
=—0.0001, b=—0.9845, ¢=0.1, (b) a=—
0.102, b=—0.9845, ¢=0.2.
(a) Period-two signal, (b) period-three signal.
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dg/dt=i

Ldi/dt=V—Ve—V. w
where V,=ag+bg>.

Therefore we get the differential equation corres-

pond to eq.(]) as
dg/dt=i
di/dt=—ai—bg’+c 12
From the equation we get the flow (g - ¢ curve), which
is shown in figure 9. For the system shown in Fig. 9,
we get the multiplication of the frequency voltage
imposed. The result calculated from eq. (12) are shown
in Fig. 10. The 3-rd harmonic oscilation of the frequency

is found. The detailed analysis is now on progress.

(b)

Fig. 10 Multiplication characteristic of the circuit
shown in Fig. 8 (a)Period-two signal,

(b)period-three signal.
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