プラズマMOCVD装置の開発とInP薄膜結晶成長

梅野正義・内藤正美・鈴木孝之・曽我哲夫 神保孝志・松本 功*・加藤匡也*

電気情報工学科

(1988年9月3日受理)

InP Epitaxial Growth using a Newly Developed Plasma MOCVD System

Masayoshi UMENO · Masami NAITOH · Takayuki SUZUKI · Tetsuo Soga Takashi JIMBO · Koh MATSUMOTO^{*} and Masaya KATOH^{*} Department of Electrical and Computer Engineering

(Received September 3, 1988)

The use of highly toxic gases such as AsH_3 and PH_3 in metalorganic chemical vapor deposition (MOCVD) is not desirable. To avoid such toxic gases, we replaced the conventional hydride gas by the group V element and H_2 plasma. In this paper, we report on a new MOCVD apparatus which uses a solid source for the group V element and the growth of InP using red-phosphorus and H_2 plasma.

In the growth using PH₃, the carrier concentration and the Hall mobility of InP were 7.2×10^{14} cm⁻³ and 87000 cm²/V·s at 77K, respectively.

In the growth using red-phosphorus, the carrier concentration and the Hall mobility of InP were 1.6×10^{16} cm⁻³ and 7100 cm²/V·s at 77K, respectively. The InP layers grown using red-phosphorus and H₂ plasma, however, were contaminated by impurities.

1. はじめに

GaAs や InP を中心とした化合物半導体は、高移動度、 直接遷移型の特徴を持つものがあり、Si にはない面が ある。このため、高速デバイスや光デバイスに適した材 料として重要である。これらデバイスを作製するには、 従来は液相エピタキシャル成長法 (LPE 法)が用いられ ていたが、最近では、大面積に均一な結晶成長ができる 有機金属気相成長法(MOCVD 法)や分子線エピキタシ ャル成長法 (MBE 法)等が用いられるようになってきた。 特に MOCVD 法は、量産性に向くために、非常に注目を あびている。しかし、まだ完成された技術ではなく、残 された問題点もある。このうち,重要な問題点は, AsH3やPH3等の有毒ガスを原料として使用するために 危険性が伴うことである。成長装置には、もちろん十分 な安全対策が行われているが、完全ではない。原料自身 をより毒性の低いものに代えることが本質的な解決策と いえる。

MOCVD法のV族原料としては、当初から AsH3 や PH3

が用いられてきたが、最近では、危険性の低減のため、 液体で毒性の低い有機金属を用いる研究がなされてき た。AsH₃に代わるものとして、 $(CH_3)_3$ As (トリメチル アルシン、TMAs)、 $(C_2H_5)_3$ As (トリエチルアルシン、 TEAs)、 $(C_2H_5)_2$ AsH (ジエチルアルシン、DEAsH)等 がある。このうち、DEAsH を用いた GaAs 成長において、 77K で64600cm/V・sの移動度が得られている¹⁾。一方、 PH₃に代わるものとして $(CH_3)_2$ CH₂CHPH₂ (イソブチ ルホスフィン、IBP)、 $(CH_3)_3$ CH₂ (タートブチルホス フィン、TBP)等がある。このうち、TBP を用いた InP 成 長では、300K で3100cm/V・s の移動度が得られている²⁾。 しかし、有機金属には、純度が良くない問題があり、さ らに原料の炭素が成長膜に取り込まれる恐れがある。

一方,他に固体元素を用いる方法がある。原料の純度 に関しては,MBE法等によく用いられているため,高 純度のものが容易に手に入る。しかし,固体砒素を用い たGaAs成長の報告によれば,Ⅲ族の有機金属から炭素 が成長膜に取り込まれてしまい,膜質を悪くする³⁾。そ こで,我々は,高純度の固体元素を用いて,炭素が成長 膜に取り込まれないようにするため,水素化物を結晶成 長時に生成させる方法を考案した⁴⁾。すなわち,結晶成 長時に固体元素を水素と反応させ,水素化物を生成し, これをV族原料として用いた。この方法では,成長を 行わない時は,V族原料は固体原料のままで,成長時の み,水素化物を生成するため,危険性が低い。さらに、 固体元素を用いているため、純度についての問題はない という特徴を持つ。

本論文では、固体元素を用いた成長ができるように作 製した MOCVD 装置とこの装置で成長させた InP の特性 について報告する。

Fig. 1 Schematic diagram of MOCVD system

2. MOCVD 装置

Fig.1に MOCVD 装置の配管図を示す。実際にはドー パントや他の原料の配管もあるが、ここではわかりやす くするために InP 成長に関したものだけを示してある。 また、この装置の外観写真を Fig.2に示す。MOCVD 装 置は(1)原料系、(2)配管系、(3)反応管系、(4)排気系、(5)制 御系から構成されている。以下、それぞれの構成部分に ついて説明する。

(1)原料系

InP成長の場合,Ⅲ族原料としては,(CH₃)₃In(トリ メチルインジウム,TMI)を使用する。ステンレス製容 器に充塡されたTMIは,電子恒温槽によって一定温度 に保たれ,蒸気圧が制御されている。この容器中にキャ リアとしてH₂を流すことによって,TMIの供給を行う。 一方,V族原料としては,本装置には,一般的なPH₃と 赤リンが備わっている。PH₃は,高圧ガスボンベから供 給を行う。本装置の特徴である赤リンは,6Nの純度で

Fig. 2 Photograph of MOCVD apparatus

ある数mmの粒状20gが石英管の中に入っている。この 固体原料部の外観写真をFig.3に示す。赤リンと水素か ら PH3を生成するために、プラズマを利用した。H2は、 そのままでは反応性がないので、マイクロ波プラズマに よって反応性の高いH原子を生成し、リンと反応させれ ば PH3が生成できる。また、リンとH原子が反応しや

Fig. 3 Photograph of the solid source for the group V element

すいように、赤リンを加熱し、リンの蒸気をプラズマ中 に入れた。この方法により、PH₃が生成されることが 四重極質量分析計によって確認されている⁵⁾。この時マ イクロ波プラズマは、出力可変の2.45 GHz のマイクロ 波によって作る。マイクロ波は、マグネトロンによって 発生され、導波管を通して、減圧下の石英管まで伝えら れ、ここでプラズマを発生させる。

キャリアガスは、パラジウム透過膜式のH2精製装置 によって7Nに高純度化されたH2を用いる。

(2) 配 管 系

配管は、SUS316のステンレスチューブを用い、継手 には漏れがないように、VCR 継手を用いている。ガス の流量調整には、マスフローコントローラ (MFC)を 用い、しかも応答性の速いものを使用している。原料ガ スは、前もって、排気系に通じるバイパスラインに流し ておき、成長時にバルブによってキャリアラインに切り 換えて反応管に導入する。この切り換えバルブは、原料 ガスのたまりがない四方向バルブを用いた一体化マニホ ールドを使用している⁶⁾。これにより、急峻な界面が得 られる。また、Ⅲ族原料とV族原料は、配管途中での反 応をさせないように、別々の配管で反応管まで供給させ る。固体原料部から反応管までの配管は、圧力損失をな るべくなくすように、特別に1/2インチの径のステンレ スチューブを用いている。

(3) 反応管系

反応管周辺の写真をFig.4に示す。反応管は、石英 でできた横型のものである。基板は、反応管内のカーボ ンサセプタ上にガラストレーと共にのせる。基板加熱は、 赤外線ランブにより、下からカーボンサセプタを加熱す ることによって行う。この時成長温度は、カーボンサセ プタ内に挿入された熱電対によりモニターされ、設定温 度に制御される。また、基板交換時に、反応管内へ空気 が入るのを防ぐため、試料準備室を備えている。さらに 安定なV族原料の分解を促進するために、基板の直前に 高周波によってプラズマを発生させることができる⁷⁾。

Fig. 4 Photograph of the reactor

(4) 排 気 系

プラズマを使用するため、1 Torr 前後での成長が可 能なように、排気系には、ロータリポンプ(RP)とメ カニカルブースタポンプ(MB)を備えた。圧力調整は、 H2流量、バタフライ弁の開度、N2流量の調整によって 手動で行う。排ガスは、未分解の有毒ガスを吸着剤(リ カゾール)で吸着除害した後、大気へ放出する。

また、ガス成分の分析が行えるように、反応管の後に、 ニードルバルブを介して、四重極質量分析装置をつなげた。これによって、赤リンとH2プラズマによって生成 されたガス成分の測定や成長時のガスモニタが可能である。

(5) 制 御 系

装置の制御盤では、各機器の運転、停止およびバルブ の開閉操作が行え、各ラインの流量や圧力などが常時モ ニタできる。また、万一の異常に備えた多くの警報イン タロック機能やコンピュータによる成長時の自動バルブ 開閉機能も備えている。

3. PH₃を用いた InP成長

一般的な InP 成長として、V 族原料に PH₃を用いた。 この成長は、MOCVD 装置の性能をみるうえでも、ま た赤リンを用いた InP 成長と比較するうえでも参考にな る。成長圧力としては、一般的な圧力ではなく、後で述 べる赤リンを用いた成長と同じ1 Torr 前後とした。成 長条件は、Table 1 に示したとおりである。基板は、成 長前に有機洗浄を行った後、0.5% Br メチルアルコール で1分間エッチングを行った。

成長した試料の評価として,ノマルスキー顕微鏡によ る表面モホロジー観察,走査型電子顕微鏡による成長膜

Growth temperature	600 ~ 700°C		
Pressure	1. 2 ~ 1.7 Torr		
Total H_2 flow rate	490, 530cm³/min		
TMI flow rate (20°C)	°C) 50cm³/min		
V∕∭	600, 1000		
Substrate	(100) just or 2° off n-InP (100) just SI-InP		

Table 1 Growth conditions for InP grown using PH3

厚測定,プロファイルプロッタによるキャリア密度測定, Van der Pauw 法によるキャリア密度とホール移動度測定,及び77K でのホトルミネセンス測定を行った。 (1)表面モホロジー

成長温度とV/Ⅲ比を変えた時の表面モホロジーを Fig. 5 に示す。成長温度600℃では、やや曇った表面で あるが、それより温度を高くすると、鏡面が得られた。 また、V/Ⅲ比を1000にすれば、表面は平坦になる。 PH₃の熱分解効率が低く、流速がかなり速いため、V/ Ⅲ比をかなり大きくしなければ、平坦な表面が得られな いことがわかる。

(2) 成長速度

成長速度と成長温度との関係をFig.6に示す。V/Ⅲ 比1000では、成長温度が650℃までは、成長速度はほぼ 一定であるが、700℃になると、リンの離脱が増すため、 減少する。また、V/Ⅲ比600では、PH₃が少ないため600℃ の低温ではリンが減り成長速度が減少する。

(3) 電気的特性

キャリア密度と成長温度との関係をFig.7に示す。 V/Ⅲ比600では、成長温度を増すほど、キャリア密度が 減少する。これは、高温になるほど、PH₃が分解しやす くなり、不純物が取り込まれにくくなるためである。一 方、V/Ⅲ比が1000と大きいとPH₃が多いため、600℃ から700℃まで,キャリア密度の変化が少なく,2×10¹⁵ cm⁻³ 前後の低い値である。

ホール測定から,成長温度650℃,V/Ⅲ比1000の場合, 4.4μmの膜厚で,室温でキャリア密度が7.6×10¹⁴cm⁻³, ホール移動度が4900cm⁴/V·sである結果が得られた。 77Kでは、キャリア密度は、7.2×10¹⁴cm⁻³、ホール移動 度は87000cm⁴/V·sであった。比較的よい特性が得られた。

Fig. 6 Growth rate of InP layers grown using PH_3 as a function of the growth temperature

Fig. 8 Photoluminescence spectrum at 77K from InP layers grown using PH₃

(4) ホトルミネセンス特性

成長温度650℃、V/Ⅲ比1000の成長条件で成長した InPのホトルミネセンス特性をFig.8に示す。878nmの ピークは、バンド間遷移からの発光である。このピーク の半値幅は8.7meV である。成長温度600℃から700℃ま では、同様なスペクトルが得られた。

4. 赤リンを用いた InP 成長

赤リンを用いた InP の成長条件を Table 2 に示す。成 長した試料の評価は、3 で述べたものと同じである。

(1) 表面モホロジー

成長温度と V/Ⅲ比を変えたときの表面モホロジーを Fig. 9 に示す。成長温度が600℃では鏡面が得られるが、

Table 2 Growth conditions for InP grown using red-
phosphorus and H_2 plasma

Growth temperature	550 ∼ 650°C
Pressure	1. 2 Torr
Total H ₂ flow rate	600cm²/min
TMI flow rate (20°C)	50cm³/min
Temperature of red-phosphorus	410, 435°C
H ₂ flow rate through red-phosphorus	200cm²/min
Plasma Power	40, 100W
Substrate	(100) just or 2° off n-InP (100) just SI-InP

これより温度を上げると、表面が荒れ、曇ってくる。ま た、試料表面はプラズマパワーに大きく変化し、100W 以上に上げると荒れてくる。これは、リンがプラズマに よって石英管や配管に多く付着してしまい、基板まで達 するリンが少なくなるためであると考えられる。しかし 500℃以下の低温では、平坦な表面が得られた。

(2) 成長速度

成長速度と成長温度の関係を Fig.10に示す。赤リン の蒸気で成長した InP の成長速度は,600℃と650℃では, ほぼ一定である。一方,プラズマを使用すると違う。600℃ では赤リンの温度を上げると,大きく成長速度が増し, 650℃ではあまり変化しない。これは,Fig.6 に示した PH₃の場合に似ている。赤リンの温度を上げることによ って,PH₃が増すためであると考えられる。

(3) 電気的特性

キャリア密度と成長温度との関係を Fig.11に示す。 成長温度550℃以下の試料は、鏡面な表面であるが、キ ャリア密度の測定ができなかった。600℃以上では赤リ ンの蒸気で成長した試料のキャリア密度は、1×10¹⁶cm⁻³ と一定である。しかし、プラズマを使用した試料では、 成長温度600℃では減少し、650℃では増加する。この現 象は現在のところ原因がまだわかっていない。

ホール測定からは、成長温度650℃、赤リン温度435℃ の場合、4.0 μmの膜厚で、Table 3の結果を得た。 Fig.11と同様に、プラズマを使用した場合、キャリア密 度が増加し、ホール移動度が減少する。

(4) ホトルミネセンス特性

成長温度650℃,赤リン温度410℃の成長条件で成長したInPのホトルミネセンス特性をFig.12に示す。赤リ

Nomarski photomicrograph of InP layers grown using red-phosphorus Fig. 9 and H2 plasma at various growth temperatures and plasma powers

Fig. 10 Growth rate of InP layers grown using redphosphorus and H2 plasma as a function of the growth temperature

Table 3 Result of Hall measurements for InP layers using red-phosphorus and H2 plasma

carrier		Hall mobility (cm²/Vs)	
Plasma	(cm ⁻³)	300K	77K
0 W	4×10^{-16}	1500	7100
40 W	8×10^{-10}	1700	2800

ンの蒸気で成長した試料では、PH3の場合に比べて強度 が小さいが、半値幅は8.7meVと同じである。一方、プ ラズマを使用した場合、半値幅は15meVとかなり大き い。これは電気的特性からもわかるように、不純物が取 り込まれているためである。また,600℃以下で成長し

Fig. 11 Carrier concentration of InP layers grown using red-phosphorus and H2 plasma as a function of the growth temperature

た試料も測定したが、ホトルミネセンスのピークが現れ なかった。欠陥が多いためと考えられる。

5.まとめ

固体原料を用いた成長ができる MOCVD 装置と、この 装置で成長した InP の特性について述べた。

固体原料を用いた MOCVD 成長の特徴は、次の点であ ろ。

(1) 毒性の低い固体原料を使用するため、危険性が低 V10

(2) 固体原料は蒸気圧が低いので,漏れる恐れがない。

(3) 高純度の固体原料が容易に手にはいる。

Fig. 12 Photoluminescence spectra at 77K from InP layers grown using red-phosphorus and H₂ plasma

InP成長の結果では、PH₃を用いた場合、77Kでキャ リア密度7.2×10¹⁴ cm⁻³、ホール移動度87000 cm²/V·sの 良好な InP が成長できた。赤リンを用いた場合には、赤 リンの蒸気を用いた成長で、77Kでキャリア密度1.6× 10¹⁶ cm⁻³、ホール移動度7100 cm²/V·s の特性が得られた。 しかし、プラズマを使用すると、不純物が成長膜に取り 込まれ、膜質が悪化した。

今後は、膜質悪化の原因を調べ、良質な結晶が得られ る条件を見い出すことが必要である。

本研究に協力いただいた板倉秀明君と田中啓司君に感 謝致します。

1 文 1 文

- R. Bhat, M. A. Koza and B. J. Skromme : Appl. Phys. Lett. 50 (1987)1194
- 2) C. H. Chen, C. A. Larsen, G. B. Stringfellow, D. W. Brown and A. J. Robertson : J. Cryst. Growth 77 (1986)11
- 3) R. Bhat : J. Electron. Mater. 14 (1985) 433
- 4) M. Naitoh and M. Umeno : Jpn. J. Appl. Phys. 26 (1987) L1538
- 5)内藤正美, 鈴木孝之, 曽我哲夫, 神保孝志, 梅野正 義:電気学会研究会資料 EFM-87-31 (1987)9
- 6)伊東和彦,植松邦全,山崎利明:日本酸素技報 6 (1988)3
- 7)内藤正美,鈴木孝之,曽我哲夫,神保孝志,梅野正義:電子情報通信学会技術研究報告 ED88-29 (1988)49