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By making use of the Bergman kernel K. H. Look gave a useful fundamental theorem with respect to the
estimation of |3,/ (¢)| for any bounded holomorphic mapping fon a bounded domain in C".

The main object of this paper is to generalize and sharpen the fundamental theorem of Look [8] and the
theorem of Hahn-Burbea [2] with respect to some higher order metrics on a bounded domain. As applications,
the Cauchy type estimation formulas in the L,-bounded class on a bounded domain and the generalized
Schwarz-Pick type lemma between a bounded homogeneous domain and a bounded (or bounded homogeneous)

domain are given.

As an example the best possible inequality with the generalized Schwarz constant between the Bergman
metrics of the classical Cartan domain of the first type Mrmxn in C™ and the unit ball in C* is given.
The main tools are the L,-minimum problem and the properties of the Bergman kernel and the

Carathéodory metric.

1. L,-minimum problem, higher order metrics.

Throughout this paper let D=D, be a bounded
domain in C”. Hol(D, G,) (resp. :Hol(D)) denotes
the class of holomorphic mappings of D into another
bounded domain G, in C* (resp. the class of k-tuple
holomorphic column vector functions in D). Further
let L, (D) be the class {f€,Hol(D)|(f, f)p<oo},
where

UHp=1Ifllo*= [ |F@Pw=0 [ ff @ e

Hereafter w;, o and * denote the Euclidean volume
element, the trace symbol and the adjoint symbol,
respectively.

«Hol(D : R) (resp. +L.(D : R)) denotes a bound-
ed class {f€.Hol(D)||f|Z=R} (resp. {g€.l.(D)
[llgllp=R}).

For 8/92=(9/0z, -+, 0/92,)(z2=%(2, **, Z)E
D) and u=*(wy, -, ) CC"-{0} set J, +=(yX X
9= {(9/0zX--X9/3z)+}(uX--Xu)(j-times
kronecker product), then we may consider bounded
linear functional vectors

(1.1) Liwa=Lrnau=0" *+ 3e=s
JD=C, o+, 70, 021 <p< - <jr (r2D).

Let ¢(2)=%(¢(z), ¢.(z), --) be a complete
orthonormal system in D, then we have the Bergman
kernel Kp(z, t)=¢*(t)¢$(2) for (2, t)&€D XD and

the Bergman tensor
Tp(z,t) =2%0gK p(z,t)/02* 0z,
9/0z*=(2/az)*.

Lemma 1. 1. Let Apmnu(D) be the L,-mini-
mum value for the class {g€:L.(D)|Lynug= (P,
-+, PO=P(7r)}, then we have

(1.2) wdpma(D)

=0 {P(")(Lyna*LinuKp) ' P*(1)},
where Kp=Kp(z, £)=¢*(&)$(2) denotes the Berg-
man kernel and Ly LinaK p=Lynud)* Lrnud)
(see details in [11]).

Definition 1. 1. For a bounded domain D we can
define the m-th order metrics (m=1) :
(1.3) «Com(t, wy=sup{|3,"f()||f €:Hol
(D : D},
(1.4) 4Som(t w=4Spm(t, WK (4, 1)
=sup{|a,"g()|K p™'*(t, )|g €sls
D : D},
the (k, m)-Carathéodory-Reiffen metric
(1.5) :Con(t uw
=sup{|3,"f ()| |f EsHolneu(D : D}
(cf.[2]) and the (%, m)-Bergman metric
(1.6) xSom(t w)
=sup{}2,"g(t) | Kp*(t, t)|g€sle: meu
(D : D}
(cf.[2]), where for Luw= (1,84, Ou™ D=
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(1.7) sHolpw(D : D
= {f€Hol(D : D|Lnuf=(0, --, 0)}
and
(1.8) wle:mu(D : D
= {g€:(D : D|Lneug=(0, --, O)}.

Lemmal. 2. For each m(21) +Cpn(z 4), +Som
(2, w), Com(z, 1) and Spn(z u) coincide with
them for k=1, respectively.

1Cpi(2, u) and Sp.(z, u) coincide with the
usual Carathéodory and Bergman metrics (we denote
them as Cp(z, u) and Sp(z, u)), respectively.

Proof. The similar procedure as in [4] for m =1
enables us to prove this lemma. Therefore we have
only to treat the case of ,Cp,m.

Suppose that f,€,Hol,(D : I), then f=(f, 0,
-+, 0) belongs to zHolmn(D : I) with |3,"f(t)|=
8.4 (#)|. This gives xCp.m(t u)2:Cpn(t u). On
the other hand set fi=uf for any fF=4f, .-, foe
tHolnew(D : 1) and v=_u, -+, ) EC* with |v|=1,
then we have i€ ,Hol,;,(D : 1I). Therefore we have
1Com(t, wyzsup{|3,™A(1)|| i€, Holpu(D : D}
=sup{|vd,"f (D)|| f E4sHolnw(D : D), vEC*(|v|=D)}
Zsup sup|vd,"f ()| =sup|8,"f ()| =4Cp.m(t, w).
This completes the proof. (See also Lemma 1. 3.)

Lemma 1. 3. For each m(=1) and k(=1) we
have

(1.9) «Son’(t W=Jpn(t w)/Kp(t, )] pms

& w

and

(1.10) #So.m*(t W) =4Spn?(t, w)/Kp(t, 1)

=3,*"3,"Kp(t, t)/Kp(t D),

where Jp.,(t, u)=det (Lirenen* LirenyeuK D) for Liene
=(1, By, *+, AuNa=r

Proof. Using Lemma 1. 1 for g€,L, : (D : 1)
we have

12(g g)pZ4d Piminyeu(D)

=18."g(t) %] pm-r(t, 0 /] pm(t w),
where P(m+ D =Lminaug=(0, -+, 0, 3,"g(t)). There-
fore we have

[2."g(O|2/Kp(t, £)

£lon(t, W/Kp(t, )] pmr(t, w).

The normal family argument on ,L,: n (D : D)
shows that the supremum of the left hand side of the
above inequality for each (¢, %) is attained by some g,
€4ls: mew(D o 1) (see [1], [2]). The extremal func-

tion g is unique up to unitary transformations by a
Hilbert space argument. Now we have (1.9). (1.
10) is similarly obtained by Lemma 1. 1.

Theorem 1. 1. For each m(=1) and arbitrary
positive integers k and v we have

(1.11) Copn(t )< Spna(t u)

(cf. [2], [4], [6]) and

(1.12) «Com(t, ) <vol*(D),Spn(t, w),
teD, usC"-{0} .

Proof. By Lemma 1. 2 it is sufficient to prove this
theorem for k=»=1. (1.11) has been proved for
k=r=1 by Burbea [2].

Set F(z)=vol"*(D)f(z) for f€,Hol(D : I),
then we have

12(F, F)pz|3,f (D *(vol(D)Spm*(t, w)™!
from (1.2),1i.e,

1{Com?(t, ) =vol(D),Sp.n2(t, ).

If the equality of this holds for some (¢ #%) and €
{Hol(D : I), then we have (F,, F,)p=1 for F,=

Vol (DI, i e, [, Q-lA@[D@=0, which

shows |£(2)| =1 in D. By the maximum principle we
have f,(z)=constant in D. This is a contradiction.
(1.11) and (1 .12) give us various estimations of
higher order differentials of f=,Hol(D : R) or ,L,
(D : R) in terms of the Bergman kernel.

Remark 1. 1.

(1) «Cpm and ,Sp. are biholomorphically
invariant [2] but «Cp.m +Sp.m and ,Sp . are not so.

(2) From Definition 1. 1 we have

(1.13) +Com(t W=Com(t, w)
and

(1.14) Sp,2(¢ u)§k§1),m2(t, u)

=wSo.m(t, W/Kp(t t)

since for R=,Sp (¢, u)=28,*"3,"K p(t, t) we have

Tom(t w=det(2,8)=7 pn.(t, w)(R-Q*P1Q)
Q*R

2] pm-1(t, w)R
in(1.9),
where P is a positive Hermitian matrix.

In particular, if D is a bounded complete circular
domain with center at 0, say a classical domain, then
we have

(1.15) «Sp.a(0 u):hsD.m(O, u)

=vol"*(D)48p.n(0, w),
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ucs Cr-{0} , since 3,*'0,/Kp(0, 0)=0 (i+#j) and
K50, 0)=vol*(D) hold (see [10]).

(3) From Definition 1. 1 4Cp,m, »Cp,m and .Sp,
have the antimonotonicities, say

(1.16) +Com(t W =:Com(t, ),
teDcGccCn (cf. [3]).

(4) From Definition 1.1 (1.5) «Cp,n has the
decreasing property :

(1.1 sCun(f (D), 3uf ())=kCpm(t, w),
f€Hol(D, M) (cf. [3]).

(5) We easily have biholomorphic invariances :

(1.18) MY., .Sp (¢ w)

=Jon(t w/KpN( t), N21.

2. Cauchy type estimation formulas.

Lemma 2. 1. Let B=B,(0, r) be a ball of radius

v with center at 0, then we have
(2.1 WSantlt, w)=("F ) omtyCnt D=

'hSB,lzm(tn uw),
(2.2) #Caalt w=mHCp,"(t ©)
and a genervalization of Graham [3, Proposition 1] :

(2.3) wSzat, w=("F " )Crult ),

teB usC™{0} . In particular we have
(2.4) xCom(0, 0)=4CBn(0, W=m!(lu|/r™
<xS5n(0, W) =4Spn(0, w)=vol"2(B)-

sSmm(0, w)=("F ") reml (lul /o,

Proof. By direct calculations and (1.15) we
have

(2.5) +Spa*(0, ) =4Spn(0, u)
=8,""8,"K5(0, 0)/K5(0, 0)

=(" T YcmieCul 7y

(m+") (mD*(n+1)"™Sp,2"(0, u)

since S5,%(0, #)=.58,%(0, w)=(n+D(ul/7)*.
From the biholomorphic invariancies of ,Sgn(t %)
(m=1) we have (2.1).

For f;(2)=(u*z)™/(r|u|)™ we have f,€,Holm
(B : 1) with 8,"£,(0)=m!(|u|/r)™. Therefore from
(1.13) we have

«Con?(0,0)24Cp.n*(0, u)Z|8,"4(0)|?

=mD*(ul/7)*"

On the other hand set F(s)=f(us/|u|) (s€C) for
any f € ,Hol (B : 1), then we have F™(0) = m!

«(2mi)” ‘f _ F(s)s“”‘“’ds 0<e<r and thus
{F"’"(O)l-Ia,,”‘f(O)I/lul"‘Sm//(r &)™, Therefore
we have

(2.6) xCon(0, w)=4Crn(0, w)
=m!(lu|/r)"=mlCr,"(0, ®).

Noting the biholomorphic invariancies of ,Cp n(m=
I) we have (2.2). From (2.5) and (2.6) we
have (2.3). (2.4)isclear from (2.5),(2.6),
(1.11) and K5(0, 0)=vol™'(B).

Theorem 2. 1.
we have

At any t€D with »=dist(¢, aD)

(1) the generalized Cauchy’s estimation for-
mulas for a bounded mapping f <, Hol(D : R) :
(2.7) |af(OIsRmHUul/r™,
ueC"-{0}, m=0[5], and
(2) the generalized Cauchy type estimation for-
mulas for a L,-bounded mapping g€ L,(D : R) :
(2.8) |amgOISR((m+n)Im!/z™ | u|™/
y™r yeCr-{0} , m=21
Proof. Since from (1.16), (2.2) and (2.4)
we have
Con(t, W=:Caiunn(l, %)
=+Chunn(t, W =m!(ul/r)™
and thus (2 . 7), where B(t, ) =B,(4, r) denotes the
maximum ball in D with center at t€D. From the
antimonotonicity of S pn(f %) (see Remark 1.1
(3)) and (2.4) we have
|8,"g(£) 122 R%Sp.n2(t, #) S R:USpionm®(t #)
=R?K pn(t, DaSpienn’(t #)

=(" )OI (Bt IR mIY(|ul fry™m

for g€,.L,(D : R), where vol(B(¢, r))==n"r*"/nl.

Lemma 2. 2. For any feF={feHol(D : R)
[Lneuf =(& O, -+, 00} (§=F(£D) we have

(2.9) |2 fOIPSER-fDIDuSpn*U w),
teD, usC"-{0} , where the equality holds iff f(z2)=
& (constant vector with|&|=R) in D.

Proof. From the reproducing property of the
Bergman kernel we have

05 [ |(f(@D-OKn(z Dl'w

= [ Uf@I-1emIEsG Ol*e:
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S(R*-[§IDKp(t, t)=L? fEF.
Therefore F(z2)=(f(2)-)Kpn(z t) (fEF) belongs
t0 xls i ma(D : L) with P(m+ 1) =LimiyuF = (1, 3,
s, ™= F=(0, -+, 0, 8, (1)K p(4 £)). Hence by
Lemma 1. 1 we have

L*=(R*-[§|HKp(t, )2 (F, F)p24A pimenyeu(D)

=13, (O 12Kp(t, )/eSp.m(t w),

which gives (2.9).

If the equality of (2. 9) holds for ,=F, then we
have (R*-|¢[)Kp(t, )=(F, Fp, i.e, [ (R*-|f(2)
DK p(z t)|?w,=0. Therefore we have |f,(z)| =R
a.e.in D with |f(#)|=|€&| =R. Set h(z)=E*£(2)/R,
then we have 4(z)&e,Hol(D : R) with k(¢)=R. By
the maximum principle of holomorphic functions in
Dc C" we have h(z)=constant, i. e., £*£(z)=R? in
D. Hence we have

|£(2)-¢|*=(h(2)-E* h(2)-©)

=|/(2)|>-2Re(&* /(2 + ]2
=R*-2R*+R*=0, z€D,

which gives £(2)=¢ (|| =R) in D. Converse is true.
(2.9) includes Theorem 1.1 (1 .11).

Theorem 2. 2. Let D=D, be a bounded domain
in C" and H = H, be a bounded homogeneous domain
in C*. Let By(c, R.) be the least ball containing H,
with center at an arbitrary point ¢ C* and u(a, H)
be the maximum characteristic value of the Bergman
tensor Tu(a, ). Suppose that f belongs to Hol(D,
H) and « is an arbitrary point in H, then we have a
generalization of the Schwarz-Pick type lemma of
Look [8] :

(2.100 Sa(f(t), af (=K, (H)Sp(t, u),
teD, usC"-{0} , where

Ki(H)=inf{u(a, H)(R*-|a-c|®)| a€H, ce

C*H .

Proof. If f belongs to Hol(D, B,(c, R.)) with Ly,
F=U(8), 8,f(t)), then we have

(21D |auf (O (R~ |f(D-c|DuSp*(, ).
Indeed, for geHol(D, B.(¢, R)) with Limiyu
g=@&, 0, --, 0, 3,"g(t)) we have, from (2.9),

18,8 (D*< (R~ | g(£)-¢|)aSp.m?(t, ), tED.
Set m =1, then we have (2 .11).

Now, for feHol(D, H)CHol(D, Bi(¢, R.)) with
f)=¢, set F=h¢Of with F(¢) =a € H, where hg is
a transitive mapping of H with k¢(&)=a, then we
have FeHol(D, H)CHol(D, Bi(c, R)) (ceCH,
LyooF = (1,00) 2= F = (a, (dhe(§)/dw)a,f(t)) and

|F(2)—c|<R. for z€D. Therefore from (1 .11) we
have
[(dhe(§)/dw)duf (1)< (RE—|F()-¢c|DuSp%(t, w),
F(t)=a. On the other hand, since

Tru(§ &)=(dhe(§)/dw)* T u(a, a)(dhe(£)/dw)

sula, H)(dhe(§)/dw)*(dhe(§)/dw)

holds, then we have (2 .10) by making use of

S @), auf()=BufUN*Tu(§ Oouf(H),
¢=f(t), and Lemma 1. 2.

Remark 2. 1. Let B.(y, R,) be the least ball
containing H, then we have
KeP*(H)=inf{u(a, HY(R*—|a—c|?)| a€H, cE
C*}
sinf{u(a, H)R,?| a€H}=K*(H)
since R, *—|a—vy|*<R,*holds. Therefore K,(H) is
a sharper bound than K(H) given by Look [8],
because R, *—|a—y|*<R,? holds when y&H.

3. Generalized Schwarz constants.

Let H = H, be a bounded homogeneous domain in
C" then from Theorem 2. 2 there exists a least
positive constant K (H) depending only on H such
that

(3.1) Sa(f(2), 8uf(2))=K(H)Su(z, w),
z€H, ueC"-{0} , holds for any feHol(H, H),
where Sy denotes the Bergman metric of H. K(H)
is called the Schwarz constant of H and is biholomor-
phically invariant. K. H. Look [ 8] has given the
Schwarz constants of the classical domains.

Now we shall treat the generalized Schwarz
-Pick lemmas between arbitrary two sorts of bound-
ed homogeneous domains which are not necessarily
biholomorphically equivalent each other.

Theorem 3. 1. Let H=H,cC” and H' =H,/ C
C* be arbitrary bounded homogeneous domains, then
we have the genevalized Schwarz-Pick lemma

(3.2) Sur(f(2), ouf(2))<KH H)Su(z uw),
zeH, usC"-{0} , whgre

(3.3) K*(H, H)=inf{R*(8, HDu (B, H')+

«(r*(a,H)v(a,H))™'| a€H, SH'"}.

Here u(a, D) (resp. v(a, D)) denotes the maximum
(resp. minimum) characteristic value of the Bergman
tensor T p(a, a) for a bounded domain D and R(a,
D) (resp. (a, D)) denotes the radius of the circum-
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sphere (resp. inscribed spherve) of D with center at a.
Proof. Noting B(a, ¥)=B,(a, v(a, H))CHC
B,(a, R(a, H))=B(a, R) for any a€H, we have

Cha.r(a, w)SCula, W <Che »(a, u)
from the antimonotonicity (1 .16). Since
CBea p>(a, w)=|u|/p from (2 .4) and

v(a, H)|u|?<Su*(a, w)=u*Tu(a, adu

=ua, H)|ul?,
then we have

(R*(a, H)p(a, H))''Sy*(a, W =Cx*(a, )

S (r¥a, H)v(a, H)) 'Sx?*(a, u), usC"-{0}.
Making use of the biholomorphic invariancies of Cx
(a, #) and Sz (a, #) and the homogeneity of H we
have

(3.4) (R¥a,H)u(a,H))'Su*(au)=Cr’*(qu)

<(r*(a, H)v(a, H))'SH*(z, u),
a€H.
From the left and right hand sides of (3. 4) and the
decreasing property (1 .17) for f€Hol(H, H") we
obtain (3.2).

Definition 3. 1. If a bounded domain D satisfies
(8.5) Tpla, a)=cE, ¢>0, a€D,
then it is said that D has “Prop(A)” at a €D, where
E, denotes the unit matrix of order » (see [10]).

Corollary 3. 1. If H=H, is a bounded homoge-

neous domain with Prop(A) at 0 € H, then we have
(3.6) Su(f(2), af ())=K(H H)Su(z, w),
feHol(H, H), where K(H, HY=R(0, H)/r(0, H).

The classical (Cartan) domains M; G=1, II, III,
IV) with Prop(A) at 0€ M, are defined as follows :
Mi=Mimxm= {2€C™| E;-2*2>0, 2=(2;) :mXn
matrix, m=n} ,

Mu=Mpyn= {z€C™"™02| E-x*x>0, x=(;) : .n
X#n symmetric matrix, z=(2;), %=z %;=2"z;
G*D},

Mm=Mmm= {zEC™D2| F-2*2>0, 2=(2;;) : n
X n skew symmetric matrix} and

My=Mpm= {z€C"| 1+|%2z|*-22*2>0, 1-|'zz| >
0, 2=z, -, 2,)}.

Further we set
My=Myn= {z€C*| 2=z, -, 2»), |2/ <1 (=1,
<., n)}. (See [8]D

These are complete (Carathéodory) circular
domains with center at 0 and multicanonical domains,
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i. e., the Bergman minimal, Bergman representative
and also Mitchell moment minimal domains with the
same center at 0 (see [101). Prop(A) is related to the

Mitchell moment minimal domains.

Lemma 3. 1. For M, G=1I II, IIl, IV, V) we
have the table

j 1 11 14 v 14

u(0, Mp)=v(0, M)) |m+n|nt+l n—1 2n 2
R(O) MJ) nll2 nl/z [n/z]UZ 1 nl/l
7(0, My 1 1 1 271 1

(see [7], [8D).

Corollary 3. 2. For M; G=1 IL IIL IV, V) we
have

(3.7) Su,(f(2),0uf 2)=K(M;M)Sm, (2w,
2EM,;, us C4™"Ma_{0} | where

j I Vi mr v 14
K(M; M) ntiz nbi2 [n/2]" ouz niz

and these coincide with the Schwarz constants of M;
for feHol(M,, M) (=1 II III, 1V, V)given by
Look [8].

We may set the conjecture such that for the
classical domains M; with Prop(A) K(M;, M) (3, j=
LIL III IV, V) for a=B8=0 in Theorem 3. 1 give the
generalized Schwarz constants.

We shall treat this elsewhere. Here we only give
an affirmative example of this conjecture, which
gives a generalization of the theorem of Ozaki-Mat-

suno.

Example 3. 1. Set M =M mxn and B=B:(0, D),
then from (3. 2) we have

(3.8) Ss(f(2), auf(@N=K(M, B)Su(z, w),
z2e€M, ucC™-{0)} , for f€Hol(M, B), where K (M,
B)=(k+1)/(m+n) since R(0, By=r(0, M)=1,
10, M)=v(0, M)=m+n and u(0, B)=v(0, B)=
k+1 hold.

We should like to emphasize that (3. 8) is best
possible, that is, K(M, B) gives the generalized
Schwarz constant for Hol(M, B). Owing to show
this, it is sufficient to prove the equality of (3. 8) at
t= 0, namely,
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(3.9) 18,/ (0)|=RWOBYr (O,M)|u|l=|ul
for some # and some f&Hol(M, B) since the Berg-
man metrics of M and B are invariant under transi-
tive mappings of M and B, respectively.

Take u=wu=*%1, 0, -, 0) (mnx1 type) and
F(2)=4(2)=(&, 0)Z where &=%(1, 0, -+, 0) (kX1
type), (&, 0) is a kX m»n matrix and
=) =2, 2oy v Zmi ;B s Zma it L lm
Znn) for z=(z;,)E M, then f, belongs to Hol(M, B)
and satisfies (3.9) : [9,6(0)]=|u|=1.

By the way we show that (3. 8) gives a general-
ization of the theorem of Ozaki-Matsuno [ 9 ] for Hol
(B, B)(B=B,(0, 1)) which is a direct generalization
of the usual Schwarz-Pick lemma for the unit disc 4.
Since

Sut(z, w=p(z, M) |u|*=(m+n)(1-]|2||D2|ul?
and

Se*(f(2), 3.f () =v(f(2), B)|a.f(2)]|?

=Gk+DU-|f@DIDN|auf(D)]?
where N =2 for k=1 and N =1 for k=2, then from
(3.8) we have

(3.10) [ldf(2)/dz||*=sup{|8.f(2)|*/|u|?]

lul=1}

ST-f @DV /-] 2] 127,
where ||A||® denotes the maximum characteristic
value of A*A, i.e, || A||=sup{|Au|/|u|} | |u|=1) .

In particular we have the theorem of Ozaki
~Matsuno :

(3.1 [ldf (@/dz| [P T-|f (D /(I-]2|D?,
zE€B=B,(0, 1), for feHol(B, B) (k=2) and the
usual Schwarz-Pick lemma :

(3.1 |df (&)/dz|*<{(I-|f(2)|®/(1-|2|D)),
z€ 4, for f€Hol(4, 4).
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