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This paper deals with a single-server priority queuing system consisting of several terminals with single
buffers. The service rule is a policy on a priority basis, that is, the terminal with the highest input rate having
the highest priority, -+, and the terminal with the lowest input rate having the lowest priority. It is shown that
the initial busy period has a monotonicity property under the service rule.

1. Introduction

This paper deals with a priority queuing system.
The system consists of M terminals with single
buffers and the server attends to one of busy termi-
nals. The service time of each job at all terminals is
assumed to be a unit time. The system is observed at
time £=0, 1, 2, ---. The {-th terminal (=1, 2, -, M)
generates one new job in each period with probability
a,, independently of the other terminals and indepen-
dently from period to period. It can be assumed
without loss of generality that 1=2a,=a,= ----- =ay>
0. A new job arriving at a terminal in service is not
allowed to enter into its buffer. The service rule is a
policy on a priority basis, the terminal with the
highest input rate having the highest priority, --+, and
the terminal with the lowest input rate having the
lowest priority. The purpose of this paper is to show
monotonicity of an initial busy period under the
service rule. It should be noted that the monotonicity
leads to the optimality of the policy on the priority
basis mentioned above.

In the real world the above system is found in
data networks using packet switching techniques®*¥,
and is closely related to communication systems with
polling®®. Any optimal service rule, however, has
never been discussed for a single-server queuing sys-
tem consisting of terminals with finite buffer spaces.
An optimal service rule in a multiclass queuing sys-
tem with infinite buffer spaces has been studied by
Harrison”. Furthermore, Wan Tcha and Pliska®
have dealt with this system with feedback.

This paper is organized as follows. In Section 2,
the preliminaries are given. In Section 3, it is proved
that the initial busy period has the monotonicity
under the service rule.

2. Preliminaries

The system is observed at time t=0, 1,2, --- The
state of the system is described by the vector i ()= (4
1), -, (), where (), k=1, -, M, t=0,1,2, -~
represents the number of jobs at the k-th terminal
and takes the value 0 or 1. The state space consisting
of all possible states is denoted by S. Denote by A(/)
the set {k | 4,=1, k=1, ---,M} and define [(i) by
(iY=min{k | keA(i)}. The system in state i next
moves to state j =i, -, ) with the transition
probability P (i, j) given by

P, =1 {(I—a)+j(2a— D}
kEAWD
for jyup=0, jn=1 (m+1()eAl))
=0, otherwise. (1)
Let P be the 2M x 2¥-dimensional matrix whose (j, j)
component is P, ).

Let ¢(i) be the initial busy period, i. e., the first
epoch at which the system starting from the initial
state i is cleared of jobs. Define F (i) as the expecta-
tion of 4", where d is an arbitrary constant between
0 and 1. Here, we assume that F(0)=1. Let S’ be the

set S—{0}. It is clear by (1) that F(i) satisfies the
following relation for any ieS” :
F()=dP(, 0)+d = P, DF(). (2)
jeS’
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3. Monotonicity of Initial Busy Period

In order to prove the monotonicity of the initial
busy peoriod, it suffices to show that of F(i). For
this purpose, let a partial order i <j be defined for i=
(&, =+, ) and j= (i, -, ju) as the relation that i,=
0, =1, ji=1, ;=0 for k<[ and ip=7j, for m+k, [. If
F(i)=(<)F () for all i and j such that i <j, then the
column vector F is said to be (strictly) monotone.

Let #,(i) be the first epoch at which the system
consisting of the first terminal to the m-th terminal
(2=m=M-1) is cleared of jobs, given that the ini-
tial state is i=(4, %, -, #y). Since t,(i) is not
affected by 4, k=m+1, ---, M, define F,,(in) as the
expectation of d" given that the initial state is i, =
(iy, =+, im). Denote by S, the state space consisting of
all possible i, and by S, the set S,,—{0,}, where 0,,
stands for the state with #,=0, k=1, -, m.

First, we consider the case where m=2. From (2),
F,(10), F,(01) and F,(11) satisfy the following rela-
tions :

F,(10)=d(-a)+daF,(01)
FO0D=d1—a)+daF,10)
F,(11) =dF,(01).
That is, the 3-dimensional column vector F,(S,) =[F,
10), F,(01), F,(11)]" satisfies
F2(S82)=dB,+dT.F,(S"), (3)
where the 3-dimensional column vector B, and 3 x 3
-dimensional matrix T, are given for constants ¢,=1

—~a and ¢,=a, by

l—a, 0 @ 0
B,= | ¢ and T,=|¢, 0 Of,. 4)
0 0 1 o0

Let B, be the transition probability vector from
state ineS’, to state jn=0, and T, be the transition
probability matrix from state ineS , to state jneS’ .

For m=2, ..., M—1, define for vector or matrix 0
whose components are all zero,
Cmo=1—am) Cn_1,0, (5)
Cn1=[1—an)Cn-1., @mCn-1,0, GmCrm-1,1], (6)
Cn=[Cm0,Cm.1], (7
(1-an+1)Bn
B = Cm,o (8
0
and

(A=ni )T @ni1Bn  amei Tn
Tm+x = Cm,1 0 0 , (9)
0 B, T

where ¢,0, ¢i1, B, and T, are given by (4). The follow-
ing lemma holds :
Lemma 1. For m=2, ---, M—1, the (2™*'—1)-
dimensional column vector B,,; and (2™!'—1)x
(2™*'—1)-dimensional matrix T, satisfy (5) through
(9) and the (2™*!—1)-dimensional column vector Fp.,
(S mr )= [Fre1 (8" 0", Fns 1 (Op, 1), Fuy i (8w, 1DT]T
satisfies
Fm+1<s’m+l):dBm+1+dTm+l me1 (S ma1). (10)
Proof. It follows from (1) that the transition probabil-
ity matrix is given by [B,, T,]. Using B,, and T,, and
noting that ¢, is the transition probability vector
from state i, =0, to state j,eS,, we can obtain
Funir(S8'm, 0)=d(1 —ni1)Bn+d (A —am1) Ty
X Fne1 (S m, 00+ dps1BnFomsy (Om,1)
+dams1 TaFne1(S'm,1), 11i]
Fni1(0m,1) = dcmo + dem Frne1 (S m,0) 12
and
Fre1(S"m1) =dBnFps1(Opy1) + AT i1 (S m,1). (13
Summarizing (1) through (13) leads to (5) through (10).
O
Since d"[Tn+1]" converges to 0 as » tends to
infinity, the inverse matrix (/—dT,,,)™! exists for
identity matrix /. Therefore, (0) with m replaced by
m-—1 leads to
Fn(S'm)=—dTn) " 'dBpn. 19
DefineFn(S'y) as Fn(S'm) with d replaced by (1—
am+1)d. From (12, the next lemma is obtained, because
0=(1—amns1)d<1, B, and T, are independent of d,
and Fr(S'»)=0 for (1—ap..)d=0.
Lemma 2. If F,(S'») is (strictly) monotone for any
d(0<d<1), then F,,(S’'n) is also (strictly) monotone
for any d(0<d<1).

Lemma 3.
(@) Fre1(S 1) = Fp1 (0, 1) Fr (S7 ). 19
(1) Frne1(S'm,0) = [1— Fpsy (0, 1)1 F(S'm)
+ Foni1 (0, 1) Fr (S ). (16)
Proof.

(a) From (13, Fps1(S'm,1) is given by
Fnir(S"m,1) = Fpng1 (0, 1) (| — dT,) ' dB,.
Consequently, (14 yields (5.
(b) It follows from (11) and (13 that
Frs1(S'm0)= (1—am:1)dBr+(1 —Ome1)dTy
X Fit (S’m,O) + @ms 1 Fss (S'm,l)-



AHBIERFFER

Thus,
Frsi(S'm0) == 1~ ans1)dTn] ' [(1—Gn+1)dBr
+ i1 Fre1 (S’ m, 1) ]. an
On the other hand, (4 and (15 lead to the following
relation :
tmir [l — A= me1) AT ] Fr1 (S, 1D
=1 2 (1= ane1)"d" [ Tn) "Fnes O, 1DFn(S'm)

= P (Om D) £ (1= ap)"d" [ T)"
X (I —=dT,)"'dBn

:amﬂFmH(Orml)’go(l_dm+1)nd"[Tm]n
X 3 d*1[T,]*Bn
k=0

=1 Frs (O ) 3 3 (1= ame)"d™!
X[ Tw]*Bn
=l P O 3 £ (1—ape)ma*
k=0n=0
X [Tn]*Bn
= Fner(Om) 2 [1= (1= Gmen)* 144 [ T4y

=dFn+1(0n,1) (1 —dT,)"'Bn
— (1= an+1) AF 1 (O, 1) [ = A — @n+1 ) dTn] B,
19
Combining (17 with (1§ yields
Frer (8 m0)=[1=Frs1 (00, D] [/ — (A —aps+1)d Tp]
X (1~ me1)dBn+ Fri1 (0, 1) (1 —dT ) 'dBm. (19
Using (14), (19 is rewritten as (1. The proof is complet-
ed. O
Noting that from the definition of Fp4;(0n,1), 0<
Fre1(0,,1)<1, we have the following lemma from
Lemmas 2 and 3.
Lemma 4. If F, (S »)is (strictly) monotone for any d
(0<d<1), then Fpyi(S'm,0) and Fpi1(S'm,1) are also
(strictly) monotone for any d(0<d<1).
Lemma 5.
(@) Fops1(Om-1,1,0) 2 Frs:1 (Om-1,0,1).
() Fae1Uim-1,1,0) 2 Frp1 (im—-1,0,1)
for all ip_,&S m-1.
In particular, when 124, >@>->au > 0, the strict
inequalities in (a) and (b) hold.
Proof.
(a) From Lemma 3(b), it follows that
Frn1(S m,0)
=Fu(S'm) + Frs1 (O, 1) [Fu(S'm) = Fn(S'm)]. @0
Combining (12 with (), we have
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Fni1(0,1)
= dcmm + dcm.l [Fm(s’m) +Fm+1 (Omvl) [Fm(s’m)
—Fn(S"w)]1. )

Since Fn(S m) = [Fn(S me1,) T, Fn(Om1,1),
F (S moi,1DT]T, it follows from (5) and (6) that
CriFn(S m) =1 —an)CroysFn(S n-1,0)
+ @ Cn10Fn (On1,1) + @mCm11 P (S o1, 1.
Hence, using (6) again, (1) is rewritten as
Fpro (0, ) =d (1 —am) cno10+d (1 —@n)Cm-11
X Fn (S 11,00 + damCnr,0En (Omy,1)
+damCm11Fn (S me1,1) + dF s 1 (O, 1) €t [F(Sm)
—Fu(S' )]
=dem-10+ dCm11Fn(S mo1,0) — damCm-10[1
— Fo(On_1,1)] — €y [Fn (S m-1,0)
—F (S me1, 1)1+ dF i1 (0, 1) €t [Fr (S m)

—Fn(S"m]. (@2
On the other hand, Lemma 3 implies that

Frns1 (S m,)

=Fnii(S' ) = (1= Frt1 (0n DIFn(S'm). @

Combining (2 and (12 with @3) gives us
Foiy(On D) =dcn-10+ dcm—l,lﬁm (S m-1,00
—damCmAl.o[l—‘Fm(om—hl)] _dam[l_Fm<0m-1,
DIXCmoraFmor (S mer)
+ dF 41 (0m 1) s [Fn (S m) — Fn (S m) ]
=Fn(Op1,1) — dan[1— Fn(0p-1, D] [6n-10

+CnriF s (S o))+ dFns (O, 1) o [Fn (S m)

- Fm<slm)] +am+ld[cm—1,0+Cm—1.1pm(slm—lv0)] ,
where I?,._l(S’,,,_l) denotes Fpu (S m_y) with d re-
placed by (1—an+1)(1—am)d. Thus we obtain

F(0p1,1) = Fns1 (0, 1D

=dan[1—Fn(0p_1,1)] [ Cno10+ Cme1n

X F (S m1)] — dFpsr (Om, 1) G [ Fn (S m)

—Fu(S'w)] _llm+1d[5m—1,o+Cm~1.1fm(slm—1y0)]~
Therefore, Lemma 3 leads to :

Fri1 (0pm-1,1,0) — Fp41 (0m-1,0,1)

=[1— Fin1 (07, 1)1 En (01, 1) — Frn 1 (0, D[ 1

—Fn(Op-1,1)]

=dam[1— Fn(On-1,1)][Cnoro+ Cmo1a

X F 1 (S 1))+ Fonss (O 1) [{ Fn (01, 1)

—F(0m-y, 1) } = dCm1{Fn(S'm) — Fn(S'm)}]

'—am-Hd{Cm—l.O+cm—l,1Fm(slm—h0)} .

Using (12, @4 is rewritten as

F1(0m-1,1,0) — Fips1 (Om-1,0,1)

=dan[1— Fn(On-1,1D][Cno10F Cra

X F s (S )]+ @Fmir O D) [{ Em 11 (S m-1,0)

—Cmi Fn(S'm)}— {cm~1.lpﬂl(s’m—1y0) —Cm,1

@)
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X f"m(S'm)}] —n118{Cn-10

+cm—1,lpm(slm—lv0)} {1_FM+1(07M1)} (25)
On the other hand, from (6) and (7), it follows that
cm,|Fm(S’m)

=1 =an)Cn-11Fn(S m-1,0) + @nCmo1,0Fn(Opn_1,1)
+ anCmo1 1 Fm (S m-1,1)

=1~ 2n) Cm11Fn(S m-1,0) + @mCrmer 1 F (S me1,0)
+ @nCno10Fn(Om-1,1) + anCmer1 [ Fn (S o1, 1)

—Fn(S" m-1,0)]. 26)
Combining (6 with @3, we have

CriFn(S'm)

=Cno11Fm (S m1,0) + @nCn1,0Fm (Om_1,1)

~anCn11[1= Fn(Op-1,01F s (S mo). @

From @7, it is immediate that
Cn-11Fmn(S m-1,0) — Cp 1 Fn (S m)
Za’m[1—Fm(om—l’l)]cm—l,lpm—l(Slm—l)
— nCno1,0Fm (Om-1,1). (28
and
Cno11Fm (S 1,00 — oot Frn (S )
=n[1= Fn(On-1,1) )i F s (S o)
— GnCn1,0E(Op1,1). 7]
Combining (9 and @9 with @5 leads to
Frt1(0p-1,1,0) — F, 1 (021,01
=dDn+d[1— Fps; (On,1)]an[1— Fp(0p_1,1)]
X Cnors Fone1 (S mr) + @mFopsy (O, 1) 1
— Fp(Opn-1,1D] Cm—l.IFm—l(S’m—1>;dam+l[l
—Fn1(0p,1)] [Cm—l.n+Cm-1,1’?m(s,m—h0)},
where for notational convenience D, is defined as
D= an[1—Fn(0p-1,1)] tno1.0— mFns1(Om,1) Cmoso
X [Fn(On-1,1) = Fn (0p_1,1]7. (0
It follows from (12 and @0) that
D= (1~ Fn(On-1,1)] m- 10— @mFs1 (Om,1) Cmor0
X [en-118{Fn(S ne1,0) = Frn (S m_1,0)}
+daﬂH—l{cm—l,0+cm—l‘lpm(srm—h0)}]
:am[l—Fm(Om-l,D]Cm—l.o_amqu(Omyl)Cm-x,o
X [Cmo11d{lm=F (S m1,00} + @tmsr{ Cmoro
+Cno11Fn (S mo1,0)}]
+@nFns1(Om,1) Cner0dCy s [1n—Fn(S m-1,0)]
= ma16m-1,0[1— Fns1 (O, 1) ] + (@ — e ) G [ 1
— Fny1(0p,1)] —@nCn10[ Fi:1 (0r-1,1,0)
—Fm+l(om—11091)]9
where 1,, denotes the m-dimensional column vector
1,=(,1, -, DT
By using Lemma 3, we obtain
Fri1(0p_1,1,0) — Frpe1 (0p—y,0,1)
=1~ Fn41(0m, 1)) Fn (O, 1) [ (Gm — @) /(1 —
am+1)_damcm—1.1{p —I(S’m—l)_F 108" m-1)}]

— dan(Cn-10+ Cro11Fme1 (S mo1)]

X [Fpe1(0m-1,1,0) = Fppy1 (Om-1,0,1)], @)
where Fr i (S'p-.) denotes Fp_,(S'm_1) with d re-
placed by (1—an,)d. From @), it holds that

Fpi1(0m-1,1,00 — Fy 1 (0rn_4,0,1)

= [1_qu(omvl)]Fm(om—hl)Im(amﬂ)/[l

+ dan{ Cn-s0+ Cmor s Fnc1 (S mD M, 62
where

In(ane) = (@n—ams1) [ (L~ Gpsr) — GndCpor s

X [Frc1 (8 mer) = e n (S me )]

for 0= a1 < am. @3
Define h(¢t) as h(t)=t(I—a)*'d*. Then,

Z—th(t):(l—zz)"‘d‘+t(l—a)"‘d‘ln[(l—a)d]

=[I+tn{(Q—a)d}](1—a)t'd".
Hence, defining ¢* as t*=—1/n[{(1—a)d], we have
max [R(E)] =Rt
=Q-a't*[d—-a)d]*
=—-a) e 't*. 34
On the other hand, the following holds : for a=0,

a ad] — [ __ — ad
5;[(1~a)de 1=[-1+Q—a)d]de**<0

and
}zi_tg‘l[(l—a)de“"jzdél.

Therefore,
[A—a)der]=d <],

and
—In[(A—a)d] = n[e*?].

Hence,
—ad/In[(1—a)d]<1. @9

Since at—bt=(a—b)(a* ' +at2b+--+b*1),
In(ame1)
= [(@n—m+1) = A= msr) amdCn 11§ Fne 1 (S o)
s (S0} A= mer)
=[(@n—am+1) — 1 —@ms1) GndCm-1, { E{(1
—@ne1)'dY | S} —E{(1—an)'d* | S'pn1}}]/
(A =an+1) 0
=[(@n—an+1) — A~ Gns1) @ndCm_1,1(@n— Gms1)
XE{d'S, (1= ane) = A= an)!| S s}/
(1—am+1) )

Using 1— 41 21— ay,, it follows from (4 and @7 that
In(@ne1) 2 [1— A —anir) @Gnden_1  E{t(
= n41) A S o1} ] (@ — 1) ) (L —my)
2[1-A-ap)nden-11{—1n(1—an.)te?/
ln{(l_aﬂwl)d}}](am_am+l)/(1_am+l)
=[1—{e'an/ms1}Cn-11 1 m{—mid/In{(1
—ne)d}} ] (am—anir) /(1 — ). 39
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Since Cm-10+Cm-11 1n=1 and cp_1; 1,<1, it holds
from (39 and (39 that
In(ans1) 20 for ame ' S an < an. 89
On the other hand, by @3,
lim Im(am-n):am[l_dcm—l.l{,? —1<S,m—l)

10
—Fni(S'm-}] 20. 0
Equation @6) yields
]
O+
X [E{(Q=ap:)'d* | S'ma}—E{(
—an)tdt | S’ mi}] + A —amer) @ndCm-1 E{t (1
~ 1) A | ST}
and

[AQA=ans) In(@me)] = —1+anden-1.

S (=t Tame)] = e
XE [t(1—ame1)*'d? | S'mor] — amden-1,E[t(A
—mi ) A | S 1] — (1= @n41) GndCmoia
XE[t(t—1)(1—ane1)t2d4| S m-1] 0.
Hence, (1—an+:)In{(am+1) is concave with respect to
ams+1. This property of (1— am+1)In(a@n+:) being con-
cave and relations (39 and (0) lead to
QA —ans1) In(@mer) 20 for 0= ams 1 < .
Since 1—am4:1 20, it holds that
L (@ns1) 20 for 0= apyi < ap.
Thus, from 32,
Fi1(0m-1,1,0) — Fyy 1 (Op-1,0,1) =0. )
In particular, when 1=za >a > ->au>0, the strict
inequality holds. The proof of Lemma 5(a) is complet-
ed.
(b) From Lemma 3, we note that
Fae1(S n-1, 0, 0)
Frne1(Op-y, 1, 0) ]
Fas1(S' m-1, 1, 0)

= m+1(slmy 0)

Fn(S mo1, 0
={1=Fps1(Op, D] | Fn(Opoy, 1
Fu(S ms, D
Fn(S mo1, O
+Fpir(0py 1D | F(Opey, D |, )
Fa(S'moy, 1D
Fror(S'mer, 0, D
Fpi1(Opy, 1, 1)
Frei(S'mes, 1, D
Fn(S mez, O
=Fpii(On, 1D | Fu(Opmy, 1D |, 43
Fr(S'm1, 1)
Frer (S mery 0, D= Fpy (0, D[{1

=Fner(S'm 1

—Fu(Opey, DYFrei(S'mo)
+Fp(Ops, DF s (S'm-)] (44
and
En(S mer, D=Fn(Ons, DFnes(Sm-0). )
Combining @2 through @5 gives us
Froi(S'mes, 1, 0) = Fpy1 (S me1, 0, D=[{1
—Frs1(On, D} F(Opot, 1) = Fu1 (Om, {1
— Fn(Opy, D} Fni (S me) + Fra1 (Omy D1
~Fn(Opt, DHFr(S'me) = Fnei(S'm-)}. 09
By @2, @6) is rewritten as
Frii(Sme1, 1,00 —Fp1(S"mer, 0, 1)
=[Fue1(Oner, 1, 00— Fsr (O, D]Fpoi(Smot)
+ F1 (O, D[1=Fp(Opy, DIFnei (S mo0)
—Fues (S ] @
Noting that FpiCin-1)— Fnoy(in_1) 20 for all ime
S’ n-1 because (1—ams1)d = (1—an)d, we see from @)
and ¢7) that
Fri1(in-1, 1, 002 Fopiy (imey, 0, 1D
for all in_18S" m-1-
In particular, when 12a4,>a>-->ay>0, the strict
inequality holds. Thus the proof of Lemma 5 is
completed. O
Theorem 1. For any d(0<d<1), F is monotone. In
particular, if 124, >a,>-->au> 0, then F is strictly
monotone for any d(0<d<1),
Proof. Suppose that F,(S ) is monotone for any d
(0<d<1). We note that
Fri1 (S m-1,0,0)
Frt1(0n-1,1,0)
Frni1 (S ,0) Frs1(S m-1,1,0
Frs1(S me1) = | Fne1(0n1) | =| Fr1(On-1,0,1) |.
Fm+1(S’m:1) Fm+l(S,m—b011)
Fpi1(Op-1,1,1)
Fre: (S m-1,1,1)
For i, such that 7,=1 and #,=0 for &£+, the states
(Op—y1, 1, 0) and (im-y, 0,0,) €(S'm, 0) satisfy the
relation
(Om-1, 0, 1)< (Op-y, 1,0,) <(im-1, 0, 0). 48
By (49 and Lemmas 4 and 5(a), we obtain for such in_1,
Fre1(Omoy, 0, D= Fty Oy, 1, 0O
< Fpy1(im-y, 0, 0). 9
For in—, and i’ n_,€S »-, such that

4=1, ,=0, /=1, 7,=1 and 4,=17,=0 for
k+1, n, the states (in_y, 1, 0)and (ip-1, 0, 0)&(Sp, O
satisfy the following relation :

(O, 1, D < (iner,y 0, D < (Uim=r, 1, 0O

=4, oy dnry 0y dmery o0y dmesy 1, 0D
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<y, ety Ldner, 0 Ime1, 0, 0)

=(ip-1, 0, 0) (50)
Lemmas 4 and 5 and () give us for such in_, and ij,_;,

Foi1(Onet, 1, DS Frp1 (s, 1, 0)

SFni(in-1, 0, ), 61)
For in-, and i;_,&S,_, such that 4=0, i/=1 and 7,=
i, for k+1/, the states (in_y, 1, 0) and (i, 0, 0)
satisfy the following partial order :

(im=1, 0, 1) <(im-y, 1, 0= (4, -+

s dmen, 1, 0)< (o0, dmgy 1, Gy o0, dmes, 0, 0)

=p-1, 0, 0). (6]
Combining Lemmas 4 and 5 with (52, we have for such

’ il—ly 0) iH»l:

im—y and fi,_,&Sy_,,

Frii(imey, 0, DS Fopy (e, 1, 0)

SFpi(ipey, 0, 0). 63
For in_, and iy_,&S;-, such that 4=0,i,=1 and 7,=7}
for k+1/, the state (in_1, 1, 0)e(S;, 0) satisfies the
relation

Um-1, 1, D=1y, 11, 0, G4y, =0, ey, 1, 1) < (e,

G 1, ey o e, 0, 1) =(igy, 0, D < (ify, 1, 0).
In a way similar to 63, we have for such i,_, and i},
Csr’n-b

Foii(in-1, 1, DE Fpy (ipey, 0, 1D

S Fn(in, 1, 0, (4
From @9, 6, 63, 64 and Lemma 4, we see that if Fy
(8'») is monotone for any d(0<d<1), then Fn,,
(Sn+1) is also monotone for any d(0<d<1). There-
fore, since by (3), F,(S5) is monotone, it follows by
induction on m that Fy(Sf) is monotone for any d
(0<d<1). In particular, when 124, > >ay>0, Fy
(§'w) is strictly monotone for any d(0<d <l
because from Lemmas 4 and 5 strict inequalities in (),
(1), 63) and (4 hold. Thus the proof is completed.

O

4. Conclusion

In this paper, we deal with a single-server prior-
ity queuing system consisting of M terminals with
single buffers. It is proved that the initial busy period
has the monotonicity under the service rule on the
priority basis, the first terminal with 4, having the
highest priority, -+, and the M-th terminal with ay

having the lowest priority, where @ =a=--=a,.
The monotonicity leads to the optimality of the ser-
vice rule mentioned above. It should be noted that
this service rule is optimal among dynamic probabilis-
tic policies depending on the entire history?.
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