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ABSTRACT

progressive waves advancing
into shallow water region are expected to

be
unsteady

due to the near-

resonance. The velocity field associated with such a nonlinear shallow-water wave is determined

theoretically using the numerical results obtained previously'and neglecting viscosity the equatio℃ of

mass-transport velocity is derived for both infinite and closed-ended cbannels･ The results
indicate that

the mass transport induced by unsteady water waves is eventually unsteady and the spatial variations

of the drift become increasingly significans with the increase of Ursell number･
This feature may

result in the circulating currents in a closed-ended channel･ Experements are conducted to examine
the

theoretical predictions.

lNTRODUCT10N

The mass transport in progressive water

waves, first noticed by Stokes (1847), is a subject

of great
interest to coastal investigators as it

plays a role in the local circulation pattern and

sediment transport. Longuet-HiBgins (1953) for the

first time derived the lamillar boundary-layer

conduction solution based on sinusoidal wave

theory to predict the drift velocity close to the

bed. His solution was later examined by Unluata

and Met (1970) using the Lagrangian description

of the boundary layer. The calculation of mass

transport based on the shallow-water
wave appro･

ximation
was carried out in the recent studies

: a

second approximation'･with Stokes wave theory by

Sleath (1972) and that with Cnoidal wave theory

by Isaacson (1976).

Assumptions commonly made in the work

cited are that waves
are steady and propagating

on a rigid and smooth
bed. From sand bed model

tests for waves of the shallow water rangさ,
it has

become clear that the values of the mass-transport

velocity vary spatially, and as a result the circu-

lation of the current takes place along the
wave

channel (see hhida et al., 1983). This tendency
is

considerably different from the results predicted

by afore-mentioned theories･ The experimental

211

results suggest that the mass transport can be

affected by the presence of secondary waves･ It

should
be noted that progressive waves in the

shallow water are inevitably unsteady
due to the

near-resonance as described by Phillips (1960) and

thus the secoⅢdary waves observed in the labo-

ratory are present in the nature･ The study of the

effect of such unsteady
waves is of great

impor-

tance for better understanding of the
mass trans-

port in the shallow water･

The aim of this study
is to develop an

expression for the mass-transport velocity which

takes account of the presence of secondary
waves

and
to investigate the mass transport under

unsteady shallow-water
waves on the sand bed･

The influence of viscosity is neglected assuming

that the viscosity would cause the secondary effect

on the mass transport for the case of movable

bed. Although the interaction between the fluid

and bed is sufficiently complex that it is not

satisfactorily predicted
by existing theorise,

it may

be remarked that the sand
moves in the direction

of oscillatory flow, in other words the non･slip

condition is not satisfied
on the boundary of

movable bed. Experiments are also carried out
to

test theoretical predictions obtained, specifically

for shallow-water waves progressing over the sand

bed in the closed-ended wave channel.
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THEORETICAL INVESTIGATJONS

Consider a deep-water wave
of sinusoidal

shape advanclng into a shallow-water reglOn. In

the shallow water the dispersion relation between

frequency
and wave number can be regarded as

nearly linear･ Under this condition, according to

Phillips (1960) the second10rder near-resonance

takes place and some of the energy of sinusoidal

wave is transfered to the second-order free wave.

In this connection Met (1983) applied a naive

perturbation method to the KdV equation and

found that the amplitude of the second･order free

wave is resonated to grow lil-early with the

distance traveled until it becomes comparable with

the amplitude of the fundamental component. The

Ursell number has shown to prescribe the signi-

ficance of the nonlinear interaction. As for the

case of barmonic motioⅢ of the wave maker,

Fonh2net (1961) showed by solving the Lagrangian

equations of fluid motion that a second-order free

wave is generated when the relative water depth

to
wavelength is small.

Tbe
generation of second･order and possibly

higher order free waves renders the progressive

waves unsteady. Accordingly the surface elevation

of the shallow-water wave should be expressed in

the general form

dk

Fig. 1 : Interpretation of the spectral components

in wave-number and freqency.

.Ⅳ
〟

77(X, i)- ∑ ∑ Anncos(knmx-o･mt+enm)
n-0 m-1

(1)

where Ann is the amplitude of the spectral

component in wave-number A
nm and frequency o･m,

andenm is the initial phase. In this equation N and

〟 denote the total number of the spectral

components used
to describe the unsteady wave

profile and vary depending on the Ursell number.

The wave-number knm and frequency o･m are

composed of elements, with each element being

the sum or difference of other components. The

amplitude Ann may be obtained from the double

Fourier series expansion analysis of 〟(∫,り.
Fig･ 1 shows the two･dimensional wave compo-

nents in relation to wave-number and frequency.

Henceforth, as indicated in this figure, the not-

ation Ann for the wave amplitude will be also

used to denote the correspoding wave component

itself for convenience. Thus the fundamental

component A｡1 and the second･order free wave

A12 COrreSPOnd to (kl,0･1) and (2kl+A k-k2,

2o'1), respectively. The sum-wave and difference-

wave components, A13 and All, are induced by

the nonlinear interaction between A.I and A12. A

set of components lying along the line through the

origin, A.1, A.2, A., and so forth, constitutes the

nonlinear waves of permanent typesuch as Stokes

waves. The
other components contribute to the

deformation.

Extensive numerical studies of the KdV

equation for. the initially given sinusoidal waves

with various wave heights H, water depths h and

wave periods T have been carried out by lTshida

et al. (1979, 1980 and 1981) using the method of

2bbusky
and Kyuskal (1965). They have shown that

the resultant wave amplitude Ann can be ex-

pressed as a function of the Ursell number Ur.

Eq. (1) is then rewritten as

〟(〟, i,-号n!.
m!15nmcos

{(-kl+n△k,x

-m ql t+enm)

Enm-α(logU,)2十βlog U,+γ

where Ur-HL2/h3, kl-27'/L and o･1-2方/T,
with L being the wavelength corresponding to the

primary free wave of period了'. The mismatch of

wave･number A A introduced in Eq. (2) has rele-
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Tablel :Coefficients α, β, and γ, and phase

angles亀山involved in Eqs･ (2卜(3)･

∈
Tm
E] 良 Y

0

rm

∈o1 -0.137
0.263

-0.118
0

∈∂2 -0.536
2.273

-2.817
0

(o3 -0.876
4.143

-5.552
0

亡o4
-1.182

5.901
-8.258

0

Tr

E]

¶

TT

¶

0

E]

¶

0

らll
-0.865

4.108
-5.379

∈12
-0.646

2.607
-3.075

∈I3
-0.903

4.163
-5.406

∈14
-1.202

5.876
-7.929

∈15
-1.300

6.726
-9.601

∈21 -1.807 9.881
_14.136

∈23 -1.450
7.396 _10.071

∈32 -2.079 10.351 -13.714

∈∂∂ -2.111
10.045

-12.543

∈44 -0.159
2.528 -6.045 0

vance to the overtake length Lou, the distance

between two stations where the secondary crests

have equal strength,
as follows:

A k-k2-2kll-27T/Lov
(4)

The amplitude ratio of the spectral component to

the initial wave 古,m is shown in Fig･ 2 as a

function of Ur. Note that the ratio 52. is ex-

tremely small and therefore is not shown
here.

For the values of Ur less than about 50, the

ratios E.1, Eo2, ill, f12 and fl, aregiven larger

than 0.I. with the increase in Ur, however, in

addition to these five components the other

components fo3, El. and 5,, become increasingly

significant. The coefficients a, P and y determi-

ned from Fig. 2 as well
as the phase angles enm

are presented in
Tabe1 1. In determining enm, eel

is chosell tO be zero. The normalized celerities

have been obtained for both primary and
secon-

dary waves in the work of lshida et al. (1981) (see

Fig. 3 ). From their results the dispersion relation

of primary(m-1)and second-order (m-2) free

waves may be expressed in the form

log(憲一'-α′{log(TJE7t,}2･β′(TJW,･γ
(5'

where the coefficients a', P'and y'for m-1 are

given with the parameter of H/h as

α′- 0.387(H/h)2-0.537(H/h)-0.012

P'--1.094(H/h)2+1.567(H/h)+0.075

y'- 0.797(H/h)2-1.014(H/h)10･093

and for m-2

a'-12.803(H/h)2+l･635(H/h)-0･057 l
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Fig. 3 : Normalized celerities of the primary and second-order

free waves are

plotted
as a function of TJi71万(1Tshidaet al., 1981)

P'- 5.270(H/h)2-2.834(H/h)+i.256

y'--2.372(H/h)2+1.223(H/h)-0.721

As can be seen from Fig. 3, Eq. (5) assumes close

agreement with the cnoidal wave theory for larger

values of TJi7k- and the Stokes wave theory

for smaller values of T>/前7㌃ At very small T

ノ訂7盲~the computed celerities approach the curve

obtained from the linear wave theory.

To estimate the mass ransport, we next seek

the potential function that can represent the inner

velocity field associated with the
wave defor-

mation described ill the foregoing analysis.
Exact

expressions of the velocity potential,
however, are

not straightforwardly attainable in the present

¢=a16l

+β21

cosh kl(h+I)

sinh klh

cosh 2kl(h+I)

sinh 2klh

sinSl + 2a20･l

sin2Sl +
B22

case because the analysュs involves all high order

nonlinear compollentS. To this end, we restrict our

attention to the cases of relatively small Ursell

number so that the second-order interactions

between two free waves would play a central role

in the wave deformation. The problem considered

here, that is, the second-order illteraCtions
of two

primary waves in the water of finite depth, has

been treated and solved using the perturbation

procedure in powers of wave steepness by Ha〝∽da

(1965). We omit the details of the process and

merely reproduce the solutions here. Namely, the

second order approximation to the velocity poten-

tial is

cosh k2(h+I)

sink k2h

cosh2k2(h+I)

sinh 2k2h

+ B2,一班--sin(Sl +島)十B2.
sinh(kl+k2)h

sinSl

sin2S

cosh(kl-k2)(h+I)

sinh(kl-k2)h
sin(Sl一馬)

(8)

-･<
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with the notations of
S.-k.x-61t+el.

S2-k2X12o･lt +e2
(9)

where al, 0･1 and kl are the amplitude, fre-

quency alld wave-number of the prlmary Wave

respectively, and a2, 261 and k2 are those of

another free wave. The coefficielltS β21, β22, β23
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and β2｡ are uniquely determined from the values

of
al, a2, 0･l, kl, k2 and h (see Hamada, 1965).

It may be llOted that in this case the dispersion

relation for primary and secondary free waves is

identical to that of linear wave theory. The

corresponding wave profile is glVen by

〟(X, i)-alCOSSl+a2COSS2

･喜(2qlB21COth
2klh

-‡a紙(coih2klh
-3)〉 cos2Sl

･与(4qlB22COth
2k2h
-a茎J21(coth2k2h -3)〉 cos2S

･与i3qlB23COth(kl+k2)h-a.a2621(cothklh･coth鳥h-‡)〉cos(Sl･S2)

･去〈-61B2.COth(kl-k2)h-‡ala2q21(2coth
klh･coth勉h-3)〉 cos(Sl一島)･

The terms on the righトhand side of this equation

correspond in sequence to the wave components

A.1, A12, Ao2, A2., A13 and All. Against what

we had expected initially, our preliminary experi-

mental measurements of the wave profile at Ur=

42 indicate that the agreement with the predictions

based on Eq. (10) is unsatisfactory. The presence of

the spectral component A｡3 is evident in experi-

ments alld the measured celerities of A｡1 and A12

are not consistent with the dispersion relation of

linear wave theory. This discrepancy can be also

detected from the numerical results shown in Figs.

2 and 3. To improve the agreement, we conveni･

ently make use of the numerical results: the

amplitudes and coefficients introduced in Eqs.
(8)

and (10) are determined from

al

-号f.1

a2-号f12

4f.2g一号E.12
q12 (3- coih2klh)

8o'1COth 2klh

E2.g一号f122
q12 (3- coth2勉h)

4o･.coth 2hlh

2fl,g一号E.151,
q12(7-2coth klh coth烏h)

661COth(kl +勉) h

2E13g-号folf12q12(3-2coth klh coth hh)

2o･lCOih(k.
-k2)
h

and the dispersion relations

more, we add the potential

results from the third-order

Then the velocity potential

(10)

from Eq. (5). Further-

function of A｡3 tbat

interactions to Ep. (8).

in the absence of any

other components is glVen by

¢′=¢+β31

where

cosh 3kl (h+I)

sinh
3klh

sin 3Sl
(12)

a
I 0･12kl (B21(2coth klh･coth 2klh13)

3 612 coth 3klh-gkl

･‡
E.2(11tanh2klh) 〉

An additional term associated with the funda･

mental component is obtained, but excluded from

this equation because its contribution
to the

behavior of the velocity
field is extremely small.

The corresponding wave profile is now glVen by

q,(x,
i)-q(x,
i)+喜(B21alqlkl

(3-coth klh･coth

2klh).‡al
q12 f.2

･‡a苧612klCOth
klh〉 cos 3Sl

3iFIE

The dispersion relation for primary and secondary

free waves is now glVen aS that of Stokes third-

order wave theory.

An exression for the mass-transport velocity

may be obtained by representing the Lagrangian

velocity of a glVen particle at the
instantaneous
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Fig. 4 : Distributions of the steady component P(I)LT/(7tH)2 and the spatially

varying component Q(z)LT/(7EH)2

position (f, E) as a Taylor series of the Eulerian

horizontal velocity at a fixed position (0, 0) :

u(E, E, i)-u(0,
0,

i)･E㌍(0,
0･ i)

･E㌍+苦器･EEa%2･言語+--･
(15,

where

E-Iu(o,
o, i,)dt′, E-Iw(o,

o, t')dt′

If u, u),与 and E are now expanded as power

series in wave steepness,

〟-〝1+〟2+〟3+-

w-wl+w2+W3+･･･

E=El+f2+ち+-

E-El+E2+E3+-

B口冨

we obtain the mass･transport velocity extended
to

the third-order approximation in the form

uM-(51Zl+EISl'･'E2SIEIZ2
･賢覧1+E2芸1.El芸2.2Ei=21

･fl碩1z)

(17)

where an overbar denotes a temporal mean and

the Euler velocity periodic in time vanishes in

taking the time average. Substituting Eq. (12) into

Eq. (17) yields

UM-P(I)+Q(2)cosA k･x

where

(10

p (I )=A坦1co.sh,
,守_kl.

(h'2). a22
ql包c?sケ_.2乍(h'z)

2sinh2kl h
sinh2k2h

of the mass transport.

Q(I)-- a._.k2(A.一烏)(.､osJl k2()I+ヱ)

2sinh klh
sinh(kl-h2)h

･砲Bilkl (2.<311Ihh2)A?:S;jn2hkl'k空)
(h'z)I

)sinh 2klh sinh kbh

･‡a12
%ql (

k12
cosh h2(h+I)

sinh2klh･sinh
k2h

k22
(､os!l(2kl+k2)(h+zI

sinh2klh･sinh hah

The second-order quantity P(I ) assumes uniform

flow in the x direction while the third-order

quantity Q(I )varies spatially according to cos△kx.

Note here that cos△kx-1 at x-m Lou and

cos△kr-ll at x-(m+1/2) Lou, with
m being

an arbitrary integer. If no nonlinear interaction

occurs, omitting a2 in Eq. (18) eventually reduces

to the well-known formula of Stokes' drift.

Fig. 4 shows the distributions of P(I ) and Q(I )

expressed in a dimensionless form at Ur=20, 50

and 100. It should be remarked that the spatially

varying component Q(I ) becomes more pronoun-

ced as Ur increases.

The predicted mass transport is uIISteady by

virtue of the cos△kx･ terms in Eq. (18).This might

give rise to a circulating flow in a closed-ended

wave channel. We require the total horizontal

traIISpOrt tO be zero and further
assume the

steady mass-transport velocity P(I ) to vanish

everywhere along the wave channel･ This rather

crucial assumption
is made since our preliminary

experiments
indicate that the mass･transport

velocity vanishes identically at
x
= (m±1/4)Lou,

i.e., when cosAkx-0. For a return flow in

accordance with the unsteady
dnift Q(z)cos△kx,

we assume two types of parabolic
distribution as

UMl-Q(I)cos△kx-CI(-h十Z)(h+I)×cos△kx (19)

ー■
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and

UMll-Q(z )cos△kr-CllZ (h +I )cos△kr (20)

Requiring the total horizontal flow due to the

mass transport to be zero, arbitrary constants CI

and
Cll are given as

cI-志(

-.3t.I:

al&.(k.1k2)sink hah
. 2a2&1klSinh(2kl+h2)h

sink
klh sinh(k.-A)h sinh 2klh sinh勉h

a伽2_
a12
a2ql勉2sinh(2kl+h2)h

勉sinh2k.h (2k.十島)sinh2klh sinh島h

CIl-4CI

COMPARISON WITH EXPERIMENT

bed with
a mean particle diameter of 290FLm. For
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A wave channel used in the experiments
is

26m long, 0.6m wide, 1.Om deep and glazed
on

olle Side. Waves were generated
by a wave-paddle,

siIluSOidally oscillating in a horizontal plane with

different strokes at the bottom and still water

levels. At the end of the channel a gravel beach

of slope 1/10 was constructed as a wave absorber.

Over the full length of the challnel the
bottom

was covered with
a lOcm thick horizontal salld

measurements of the mass-transport velocity,

potassium permangnate grains glued
to a pole

were iIISerted over the water depth at a particular

point. The movement of the center of a cloud of

dye was then read at every lOsec. The temporal

wave profiles were measured uslng a CapaCitance

type wave gauge. To ensure a steady state all
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Fig. 6 : Profiles of the cloud of dye at various positions for

Ur=1111 The profiles were

traced from photos taken lOsec.

measurements were done after rlpples of the

equilibrium formbeing developed and were termi-

nated before the large scale undulation of the

sand bed being developed.

Experiments were conducted with a constant

depth of 20cm and wave periods of 1.2, 1.7, 2.0

and 2.4sec. The wave height Hvaried between

6cm and 9cm. The Ursell number Ur-HL2/h3

thus ranged from 30 to 111. Measurements were

related to the overtake length Lou, a location of

which was computed from

3帝監

where celerities cl and c2 for a glVen Ur were

determined from Fig. 3. The distance of Lou was

then adjusted by examing the measured wave

profile.

The obseⅣed drift of dye, an example of

which is presented in Fig. 6, indicates the

occurence of circulating currents. Fig. 7 (aトFig. 7

(d) show the comparison between the measured

and predicted mass-transport velocities over the

depth for Ur-50 and Ur=111. The behavior of

the mass traI-Sport profiles is rather well predicted

by Eq. (19) (i.e., type I) including the data not

shown here.

after
inserting the dye.

In Fig. 8 (a)-Fig. 8 (d) the measured wave pro丘1es

are compared with the porfiles computed from Eq.

(14)at Lou and Lou/2. Slight discrepancy observed

at Ur-111 may be due to the presence of higher

order components that are not included in Eq. (14).

CONCLUS10NS

The solution of the mass transport in uIIStea-

dy shallow-water waves has been derived semi-

analytically uslng the numerical results obtained

previously by one of the present writers. The

resulting exression for the mass-traIISpOrt Velocity

consists of the steady and spatially varyillg

components. The unsteady part of the drift

increases its strength with the increaslng Ursell

number. This behavior of the
mass transport

induces the circulating currents
ill the closed-ended

wave channel. The results of experiments compare

favorably with the theoretical predictions.

The results obtailled ill this study may be of

slgnificant interest in the explanation of the

formation of multiple offshore bars, particularly if

the grain of the bed material is fine and if the

effect of superposed tidal currents is less signi-

ficant.

1

I.I



名古屋工業大学学報第37巻(1985)

-･._田''･･i'.iE闇
ー0.8 -0.4

0 0.4

UM (cm/SeC)

0.8

-0.8 -a.4
0 0.4 0.8

UM (cm/SeC)

0 0.4 0.8

UM (cm/SeC)

Z (cm)

-0.8 -0.4 0 0.4 0.8

UM (cm/SeC)

Fig. 7 : Distributions of the mass transport over the depth.

REFERENCES

Fontanet, P., Thaorie de la generatin de la boule

cylindrique par un batteur plan, La Houille

Blanche, 3-61 (1), 174-197 (2), 1961.

Hamada, T., The secondary interactions of surface

waves, Rep. Port and Harbour Tech. Res. Inst.,

10, 1128, 1969.

Isaacson, M. de St. Q" The second approximation

to mass transport in croidal waves, I. Fluid

Mech., 7:8, 445-457, 1976.

219

Ishida, A., ∫.Hirosawa and Y. Nisbigaki, Double

Fourier components of deformlng Shallow water

waves simulated with
KdV equations, Proc. 26th

Japanese Conference on Coastal Eng., 16-20,

1979.

Isbida, A., H. Takahashi and K. Kanazawa,

Deformation
of shallow water waves on a

constant depth, Proc. 27th Japanese Conference

on Coastal Eng., 20-24, 1980.

Ishida, A. and H. Takahashi, Numerical analysts

of shallow-water wave deformation in a constant

depth region, Coash2l Eng. in Japan, 24,
1118,



220 Bulletin of Nagoya Institute of Technology Vol. 37 (1985)

-1l

Fig･ 8 : Comparison of the measured and computed wave profiles.

1981.

Ishida, A., W. Kioka and K. Asada, Mass trans-

port velocity of nonlinear shallow water waves,

I. Japan Soc. Fluid Mech., 2, 3711380-1983.

Longuet-Higgins, M･ S･, Mass transport in water

waves, Phil. T71anS. Roy. Soc. London, A903,

535-581, 1953.

Mei, C. C., The az,I,lied dynamics of ocean su4ace

u)aves, 740pp., John Wiley&Sons, New York,

1983.

Phillips, 0･ M･, On the dynamics of unsteady

gravity waves of finite amplitude-Partl. The

elementary interactions, I. Fluid Mech., 9, 193-

217, 1960.

Sleatb, ∫.F. A., A second approximation to mass

transport by water waves, I. Marine Res., 30,

295-304, 1972.

Stokes, G. GリOn the theory of oscillatory waves,

Proc. Cambridge Phil. Soc., 8, 4411455, 1847.

Unldata, u. and C. C. Me主, Mass transport in

water waves, I. Geophy. Res., 75, 7611-7618,

1970.


