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The Activation Energy of Domain Walls
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The activation energies of various domain walls are discussed. For the estimation of the
activation energy of the thick domain wall, the method of the contour integral is adopted. The
ferroelectric domain wall energy and Pierls energy of a double sine-Gordon dislocation are analytically

calculated.

§1 Introduction

The problems of domain walls have attracted
much attention in the relationship with solitons,
discommensurations in the incommensurate phases,
dislocations, ferroelectrics and so on.'"* The
purpose of the present paper is to show a very
simple method for estimation of the activation
energy in the various systems.

Usually, a model system is represented by the
following energy density

f<x)=%<‘;—¢)z+xzv<¢> w
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where K? is a parameter characterizing strength
of potential. In (1), ¢ is a physical quantity which
specifies the state and depends on x. Polarization
P, is such a parameter in the ferroelectrics.
Potential V (¢) is an even function with respect
to ¢. The ordinary procedure for finding the most
stable configuration of the potential is to solve the
Euler-Lagrange equation
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As the result, we obtain a kink solution
d=¢(x) (3)

with the boundary condition
$(x)>*to  gs

The total energy of the wall is given as

F=[ " rwa 6

x —>+00, (4)

In the field of ferroelectricity, the system is
sometimes called the ¢*—system for the second
order phase transitions and ¢°—system for the
first order phase transition, respectively. In this

paper, we discuss these problems in detail.>®
§2 Kink Energy of the Thick Domain Walls

Let us take the energy density as
1 d¢,, K 2y
= — . 6
fx 2(dx)+2(1 $%) (6

This model is applicable to domain walls in
double minimum potential. By solving the Euler
equation (2), we get the solution

¢ =tanh Kx. (7)
The energy density and the wall energy are given
as

f(x) = K*%sech*Kx, (8)
and

F=]" f D dr=1 K*. 9

When the wall is thin, the continuous model is no
more valid. In such case we have to adopt a
discrete model, in which the difference and the
sum must be used instead of the derivative and
the integral. Thus, the wall energy becomes

F=a3f (x), ' (10
where x=na, and the equation govering the
structure of wall is given as

i — 2 ot gor—a? K2 (1 — @) = 0.0
The eq. (1)) should be solved under the boundary
conditions

=11 for
There are two types of the kink solutions (Fig. 1),
which satisfy the above conditions :

bn=— (the odd type) 13

n~—>+oo, 12

and
¢-0n=—¢ns1 (the even type). (14
In the odd type kink, the center of it is locate
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Fig. 1

The structure of a domain wall. Solid
lines and dotted line show stable and
unstable walls, respectively.

on the lattice site, while in the even type kink,
the center is at the midst of two lattice sites.
The difference of these two kinks is called the
pinning energy or the Peierls energy. Cahn has
already calculated such activation energy, making
use of the Poisson sum formula.

The wall energy can be written as

AF=aSf (na) —aZf(na-F%). 15

For the simplicity of following calculation, one of
the sum can be approximated by the integral, and
then

AF=a5f (na) — f 1 f(%)dx. 1

This is equivalent to the errors caused due to
approximation: of the integration by the sum-
mation. On the basis of the Cauchy integral
representation of the function, as adopted by
Takahashi and Mori,”AF can be expressed as

__1 LI
AF= ” fc f(2)[cot az+1]dz, 17

where the contour ¢ has to surround the real axis.
The integration (17 is calculated by the steepest
descent method, or by contour integration.

The calculated result for the activation energy is
given by

AF~K(KLa)3e ~/aK) | gt 19

§3 Domain Walls in the Ferroelectrics ($°—model)
Let us take the polarization p for the para-
meter ¢, which governs the structure of the wall,

and then the free energy density is*®
B
4
The total free energy is given by(5), and by

dp
=2 p X per X () 19
f 2P+ P+6P+2(dx). 19

solving the Euler equation

2
x 4 —(ap+pp2+v®) =0, (0
dx?
with the boundary condition that
p—xp for x—+oo, @n

After calculations we obtain the spatial variation
of p as (Fig. 2)

P/P,

Kx

Fig. 2 The spatial variation of p. Curves 1, 2,
3 and 4 correspond to a=. 225, 0.15, 0

and .25, respectively.

) = / 1 —4a
PiE=h 3(1 —2a)—2(1 —a)tanh®’Kx

tanh Kx,
22

where

K:/ B a1 -2a),
2xy
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The wall energy is given by

F=["_(-max o
where
A= 05+ B pi+ 2 gt o
The integrand f—f can be obtained as
4
g sech*Kx ’ 29

[3(1—2a)— 2 (1 —a)tanh®’Kx]?
which shows the distribution of free energy

density in a domain wall.
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Fig. 3 The temperature dependence of the sinus
term of eq. @7.

The activation energy is calculated by contour
integral, then we obtain (Fig. 3),

7y aginl 2 tanht [ 2L =) 5, —rka
AF (Ka) Sm[Kd tanh™ [ 1 *Za)Je . "

~#/Kd which comes from

Because of the factor e
the % (at poles z==*x+iy), AF is quite small.
The sinusoidal term as a pre-exponential factor
which comes from the situation that poles are not
located on the imaginary axis, i.e. , x¥0. As a
result, AF is an oscillating function of tempera-

ture.

§4 Double-Sine-Gordon Equation

The calcutation of the activation energy of
the dislocation, the Peierls energy is one of the
central problem. Among various dislocation
models, the one proposed by Frenkel-Kontorova is
most famous. As is well known, the equilibrium
state of the Frenkel-Kontorova model is obtained
by solving the sine-Gordon equation.

Now we solve the double sine-Gordon equation.®

Let us take the total energy density as

d
f(x) =12‘-(d—¢)2+a(1 +cos @) +b(1—cos 2 ¢).
x
29
In this case, the Euler-equation is
d2
x ¢=—a sin ¢ +2b sin 24, (29
dx?
which is a well known double sine-Gordon
equation.
We obtain a so-called kink solution as (Fig. 4)
_+.
¢=COS“['2—(61—& 1], (30)

a cosh’Kx+4b

il

Fig. 4 The kink solution of the double sine-
Gordon equation. Curves 1, 2, 3, 4 and
5 correspond to the value of & equal to
0, 0.25, .75, 1.5 and 2.5, respectively.
a=1.
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Fig. 5 Energy density vs x given by eq. (2.

where

K= [a+4b, 6D
which is a measure of the dislocation width.
The total energy is obtained by the integration of
the energy density (Fig. 5),

cosh Kx

=4a(a+4b) (————————
f(x)=dala ) (a cosh’Kx+4b

)2 62
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and

/’ 4b
F= 4/‘{/—+j—— ‘ /%1}.(33)

The Pierls energy is the energy required to move

D

a dislocation by one lattice unit and further. The
activation energy is calculated by the contour

integral
F— 1 f [ 7t(z é)
+c t—”(zdjz“) cot%] f(z)dz, 84

where ¢ is the displacement from the lattice site,

and f(z) is given by the relation

f=——4 Ly, @
z2—x
The poles of f(z) are located at
Zm = T % £idm, 36
where
[ 4b / 4b
Ko=In([—+1— [—),
a a
Ky =%+ mn. @n

As the contribution to AF from the poles closest
to the real axis (m=0) is most dominant, then

we obtain
8
| AF | ~7 | gexp(—n¥ Kd) + gexp(—27*/Kd)| ,
39
where
2719(0( 276 0
~cos——(cos———
& d d
and
~2c05 2 (cos 2~ 1), 9
cos— (cos———
d d

§5 Summary

In the present paper, the activation energies
are calculated by the contour integral. The result

will shed light on the domain wall problems in the
system undergoing structural phase transitions.
The calculated energy showed that AF was a
periodic function with the period of the lattice d
in the double sine-Gordon system. In the case of
¢®—system, AF was an oscillating function of
temperature (oscillating violently in the close
vicinity of the transition temperature). This situ-
ation is derived from the fact that at some
temperature the odd type domain has a lower
energy, while at another temperature the other
type of domains is more stable. The even type of
domain is always stable in ¢*—system.
The wall problems of the improper ferroelectrics
are also solved by the double-sine-Gordon equ-
ation.

By adding the kinetic energy term, we are
able to discuss the two-headed solitons or the
extended solitons.

References
1) J. Frenkel and T. Kontorova : J. Phys. USSR
1(1939) 139.
2) V. L. Indenbom : Sov. Phys. Cryst. 3 (1958)
193.
3) Y. Ishibashi: J. Phys. Soc. Jpn. 46(1979)
1254.

4) J. Lajzerowicz . Ferroelectrics 35(1981)219.

5) Y. Ishibashi and I. Suzuki: J. Phys. Soc. Jpn.
53(1984)1093.

6) Y. Ishibashi and I. Suzuki: J. Phys. Soc. Jpn.
53(1984) 1366.

7) H. Takahashi and M. Mori : Applicable Analy-
sis 1 (1971)201.



