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Tbe flow between concentric spheres, one of wbicb rotates, is considered theoretically on the

assumption that the space between the two spheres is relatively small in comparison to radial

dimensions, where Navier-Stokes equations can be
reduced to a relatively simple form tbrougb order-

of-magnitude arguments. These simplified equations are integrated by the perturbation method.
In

addition to the velocity componellt in the direction of rotation, secondary velocity components

are also present for large Reynolds
number.

These
velocity components, shearing stress, pressure

distribution and viscous frictional moment (torque) are obtained. Upon comparison, the theoretical

results are found to agree wellwith the experimentaldata, being within ReP2 <40.

1. 1NTRODUCTJON

Recently, interest has been focused upon the

flow in the narrow space between two bodies,

which rotate about a common axis. These narrow

spaces found in turbomacbillery are not Only

linear, as with rotating disks or cones, but also

cuⅣilinear, as is the case betweell two Spheres.

There are mally problems to be solved as to the

flow in such curvilinear space. As one conside-

ration on the rotating fluids in the space between

two spherical surfaces, we berewitb
consider the

flow of an incompressible viscous fluid contained

between two concentric spheres, one of which

rotates about a common axis.

The flow between concentric rotating spheres

is very interesting for engineering and geophysics,

in particular. Fluid motion in a rotating spherical

annulus has been chiefly investigated as to

hydrodynamic stability or atmospheric and oceanic

circulation from the viewpoint of geophysics,

considering, for example, the case in which a

large clearance between spheres is equal to the

radius of the inner sphere. Pearson (1967) or

Munson and Joseph (1971) proposed computational

methods, by which full Navier-Stokes eqs. can be

illtegrated numerically il一 the above･mentioned

problems, but their methods are complicated and

computers have to be used. Most of these studies,

however, involve an outer sphere with a radius
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twice that of the illner One, and it is difficult to

theoretically formulate frictional resistallCe, Velo-

city etc. fらrannular space narrow enoughto serve

as the focus for mechanical engineerillg COnSide-

rations. Moreover, the space ratio, Reynolds

number and the like which affect the flow are not

fully
explained. Although Sawatzki and Zierep

(1970) have investigated both experimentally and

theoretically the flow in narrow spherical annuli

between concentric spheres, with the inner one

rotating, their theoretical consideration seems to

be inapplicable to large Reynolds number. In their

analysis the boundary layer's eqs. obtained
by

Howarth (1951) was used, where the pressure

gradient in the β-direction is neglected. They

obtained the result that the velocity component in

the ¢-direction is not influenced by the secondary

flow. But the experimental results of the coeffi･

cient of frictional momellt are influenced by the

secondary flow and tend toincrease for the larger

Reynolds number above a critical value for each

clearance ratio : and the pressure distribution in

the β-direction is not obtained, either

ln this report, in order to improve on the

above･mentioned points, Navier-Stokes eqs. were

reduced by order-of･magnitude estimates, assuming

that the clearance between spheres is small

enough in relation to the radius of the inner

sphere. The
solution was obtained by a pertur-

bation technique. Velocity components, shearing

stress, frictional momeI一t and pressure distribution
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were obtained.
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NOTAT 10N

-coefficient of viscous
frictional

moment, M/ bR15血)2)

-function of 77

-function of 77

-viscous frictional moment

=

pressure

-jth･order Legendre polynomial

γ, ♂, ¢ -spherical polar coordinates, Fig. 1

Rl, R2 -radii of inner and outer spheres

Re -Reynolds number based on the radius

of inner sphere, RL2血)/IJ

Rs -Reynolds number based on clearance s

between inner and outer sphere, RIGDS/

z/ = Reβ

-clearance
between inner and outer

sphere, R2-Rl

u, v, w -velocity components in the i, e and

y

β

q

〟

I/

〟

Tr¢

+

a)

γ
･directions

-distance from the inner sphere, r-Rl

-clearance ratio, s/Rl

-dimensionless y･coordinate, y/s

-dynamic viscosity

- kinematic viscosity

- density

-wall shear stress of inner sphere in

the ¢-direction

-stream function

-angular velocity of outer sphere or

lnner One

-angular velocity function

Subscript

●

nondimensional variables

2. ANALYSIS

Usi□g the nomenclature glVen in Fig. 1 and

assumlng axial symmetry, the governlng equations

expressed in the spherical coordinate system are

reduced from full Navier-Stokes equations and

contilluity equation as follows.

aw v aw v2+u2

w-.---

-ニーi旦+リ{三富(r2芸)ar r ae r p ar

o(62) o(6) o(1) o(611)

Fig. 1 Spherical annulus.
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∂v v ∂v u2cot e u)v 1 aP

w-+----+-=---
∂γ γ ∂β γ γ βγ ∂β

o(1) o(1) o(1) o(6)

･y{i三(r2芸,+高言去(sin
e里)

1

∂β

o(62) o(1)

2 ∂w v

十---

. _r2 ae r2sin2e

),(1 a)

(1 b)

o(6) o(1)

au v au uw uvcot e 1 a au

w-+--+-+-=v(万言(r2盲)∂γ γ ∂β γ γ

o(1) o(1) o(6) o(1) o(62)

I-i(sin e:,-i,I
1 u

r2sin e ae

o(1) o(1)

1 a 1 a

--(r2w)+--(vsin e)-0,
r ar sin e ae

(1 c)

(2)

o(1) o(1)

where the clearance s between two spheres is very

small in comparison with
RI Or R2, Eqs･ (i) and

(2) can be simplified by an order-of-magnitude

estimate. Substituting r-Rl+y,
Eq. (2)becomes

2R-;I(1･昔)冨+志孟(vsine,-0･(3'

An order-of-magnitude estimate of the size of

individual terms in Eq. (3)is made for the relative

sizes of u, v, w and their derivatives. Thus, u, v,

Rl and e are assumed to be of the order(1), y of

the order (♂),and ♂ is taken as a very minute

quantity compared to unity'which
is equlValent

to

the clearance ratio P. From Eq. (3), w is also

'■
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assigned the order (6). Hence, Eq. (3)becomes

au) 1 a

-+--(vsin e)-0.
勿/ RISin e ∂0

(4)

Substituting γ-凡+γ into Eq. (1), comparing

the order-of-magnitude of individual terms in Eq.

(1) and leaving the terms of the maximum order of

♂, the equations of motion are reduced to

u2+u2 1 aP ∂2u)

+=--~v-

RI P ay ay2'

o(1) u･o(OIL)

∂u v ∂v u2cot e
w-+----

ay Rl∂e R1

o(i) o(1) o(1)

(5 a)

-i旦+y里(5b)pRl∂e
ay2'

L'･0 (6-2)

∂u v ∂u uvcot e ∂2u

u'す'盲~諒+T= u面･
(5 C)

o(1) o(1) o(1) v･o(6-2)

Assuming I,→o(62) and p-o(1) in Eq. (5), the

relation of p-o(6) can be obtained from Eq. (5

a). Then the pressure term in Eq. (5 b) can be

neglected and the Eqs. (5 b) and (5 c) agree with

the equations of boundary layer obtained by

Howarth (1951). Now, assuming zJ⊥0(6) instead of

I,-o(62), we can get the linear distribution
of u,

u=O and u)-0, i. e. the velocity distribution
of

creeplng motion. The purpose of the present paper

is to show how an aIlalytic perttlrbation solution

is given to the increase of Reynolds number and

clearance ratio, so that I, is properly considered to

be a parameter whose order-of-magnitude is

variable from o(6) to o(62). Hence the pressure

terms
of Eqs. (5 a) and (5 b) remain, but the ten

v∂2u)/ay2 in Eq. (5 a) is omitted in order to

simplify the equation.

The equations to be solved are glVen by

u2+v2 1 aP

RI P ay'

∂v v ∂v u2cot e

w-+1 --ay Rl∂e

azL l) all
u)-+- -+

ay Rl∂e

Rl

(6 a)

-pi芸+γ芸,
(6 b)

uvcot e ∂2u

Rl

Velocity components 〟, 〟

甘and a by

l ∂甘
v=

-~;妄言盲'
1 ∂甘

u)

=高言㌃盲盲訂'

=u有･
(6 c)

and u) can be related to

q2
■■

RISin e'
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(7 c)

where v and w satisfy
Eq. (4). The governing

equations are made
dimensionless by the use of

y u V W

~=符･高言=u*･高言=v',盲忘=w',S

l)
.

甘
_ー

n

前=p',~前~=甘♯,言古=n*,
to glVe the followlng equations :

ap* 1 ∂2w'

β(〝*2+〃*2)ニー一--
∂〃 Rs ∂q2'

∂〃* ∂〃*

(8)

(9 a)

apt. 1 a2v'

w'高'Pv*盲~βu'2cote-~β忘+盲諒,
(9b)

au' au' 1 a2u'

w'J有'Pu'盲+βu'v'cot
e---

-Rs a772'

11
∂甘*

!･●-

I(.'-

Jf●-

psine a77'

1 ∂甘+

sin e ae'

凸*

(9 c)

(10 a)

(10 b)

(10 c)

Eliminating P'from Eqs. (9 a) and (9 b) and using

the relationship given by Eq. (10), the governing

equations become

∂n+ ∂n*

2P3(n'-1n'2cot e)-2P2n*高cot
e

∂β

aV+ a2v+

+2P(高一石打-(al')2cot e)
∂77

∂甘'∂2甘' ∂甘* ∂3甘* ∂V' ∂3甘*

-2- -cote---+-
-

∂q ∂符2 ∂e ∂q3 ∂e ∂q2∂e

1 ∂4甘+

I- -Sin
e,

Rs ∂が

∂v'∂n' ∂甘*∂f)' sin e ∂2`】*

∂e ∂q ∂符 ∂e Rs ∂q2

(ll a)

(ll b)

The solution for these equations
is obtained

by a perturbation technique･ The perturbation

solution of equation (ll)can be written in the form

of Munson and Joseph (1971) ;

こ±害 q

甘･(符,e)-Sin2e

l享IR皇〈,!1
Pj(cose)gil(q)〉, (12)

odd odd

し1⊃ /

n･(q,e)-sin2eL写.R皇〈き.p,･(cose)fjl(q)～, (13)

eVeIl even

where Pj(cose) is the jth-order Legendre polyno･

mial, and both gjE(q) and fjL(〟)are functions of q･

Considering the convergency of Eqs. (12) and (13),we

have to take account of not only Rs, but also P
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in the functions,
g,.I(〟)and fjl(q),aS Can be seen in

Eq. ¢2). Substituting equations (12)and (13) into Eq.

(ll)and equating equalpowers of Rs, the system of

equations is multiplied by an appropriate Legendre

polynomial, P,.(cose), and integrated (0≦e≦7r).

Using the orthogonal properties, the pertubation

equations can be written
as follows.

At Rsll,

3H盟

conditions el), solutions for component functions fjl

dq2

At RsO,

d4gll

dq4

At Rsl,

-

2PVoo号-2Pyoo2
･

d2fo2
--

-ifoo一驚
dq2

df.o坐-2g11頂
dq2

At Rs2,

驚喜号箸.igll
･p2{foo

(2%･ii
4

+P3foo (- 4fo2+}f22)･

d4g3, 2 dg11 d2

dq4 5 dq d

-;p(
dg1 1

dq

%-i(i,2
)+

6
虹十7gl
q2

･
2

･fp2{foo

3n監

4
(2fo2+if22)〉

(10

2-･f22dq

14

-言P3foof22
･

3. SOLUT10NS

3.1 W汀H 丁目E OUTER SPHERE ROTATING

Tbe boundary conditions are given by

u'-v'-w'-0 at q=0,

u'-(1+♂)sine,v'-w'-0 at q-1,

3n冨

なo)

The boundary conditiollS COrreSpOnding to both &`

and fjL Can be written at q-0:

gjl-0, dgj,/(わ-0, where both i and l are odd ;

fj,-0, where both i and l are even ; (21 a)

And at q-1,

a,･l-0, dg,･,/dq-0, where both i and l are odd ;

foe- (1+P) J,I,-0, (21 b)

where bothノand ∫ are even except for 0.

IntegTating equations (14)-(19)with the boundary

and gj, are Obtained as follows :

I..-(1 +β)q,

1 1
gil

-β2(1･P,2{-1ioq6･6-oq5.4-5(β-言)
q3

1

~盲(β12)〉符2,

I.2-β2(1+β)310-3(0.卿が-1.32287q7

+ (5-2.2222P)q5+ (1.8519P-3･7037)q4

+ (o.o26455-0.026455P) q),

f22-β2 (1+β)310-3(0. 59524Pが- 1 ･ 8519q7

(22 a)

(22 b)

(22 c)

+ (5-2.2222P) q5+ (0.92593P-1.8519) q4

+ (o. 70106P-1.2963)q), (22 d)

gl,-β4(1+β)Ilo-5( -0.09152Pq12-0･10823qll

+ o. 615079PqlO+ (0. 33069
-

0. 617:28P)が

-
(o.39683+0.8664P)が+ (3.5714

-2.2222P)符7- (5.5555-4.4358P) q6- (0.15875

+0.10503P) 7f
+ (5.88151-0.80074β) q3

-
(3.56427+0.3469P)q2〉, (22 e)

g33-β4(1+β)410-5(-0.07994Pq12-O･11224qll

+o.6746PqlO-1. 12189Pが+ (1.05819

-2. 67:2P)が-3. 8095Pq7- 0. 96706Pが

+ (4.0740+0.66139P)が+(6.883+40.219P)q3

I
(3. 7549+32.iX)5P)q2). (22 f)

Substituting
above equationsinto Eqs. (12)

and
(13),

サ●and n暮 can be obtained. Then, using Eq. (10)

and Rs-Rep, we may write v', w' and u'by

v
･ = -

Resinecose一重L-p2Re3 (sinecose
dq

･-sine (5cos3e I

3cose,漂
1

β
〉+-, (23 a)

w'-pRegll (3cos2e1 1) +P3Re3(g13 (3cos2e- i)

1

+盲g"cose(5cos3e+3cos e)

3

一盲劫Sin
e(5sin3e+sin e))+･･･,

u'-I..sin e+P2Re2(I.2Sin e

+互sin e(3cos2e.1) +-,
4

(23 b)

(23 c)

where g" gl,, fop, f.2, etC. aregiven by Eq. Q2)･

Substituting Re-0 into Eq. e3), v', w' and u'

bec one

v'-w'-o, u.-(1+β)q sin e. Q4)

This shows a velocity distribution similar to

couette flow. In comparing Eqs. CZ3)and Q4), we find

that velocity components of v'and w'increase in

■
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proportion to Re and that the flow has a secon-

dary flow.

Now, we introduce viscous frictional moment

〟, which is transmitted from the outer to the

inner
sphere. Considering the axial symmetry of

flow･ shear stress acting on the inner sphere I.4

becomes

･y¢-〟{r三(チ,,y-Rl-竿〔(1･P)sin
e

+Re2β4(1+β)310-3(0. 026455 (トβ)sine

l

+-(3cos2e-1) (0. 70106P11.2963)sin e)〕.
2

¢S)

T here fore

M-2nR13/:
Ty. Sin2ede

-

27rR.4/LaI
,
4

〈3-(1+♂)

+Re2β4(1+P)310-3(0.38095-0.22222P) ). ¢6)

Hence, the coefficient of viscous frictional moment

CM becomes

cM

-号uiBIRe-I
･2q (0 1 38095-0

･22222P)

β3(1+β)310-3Re. ¢7)

The first termin Eq. ¢カindicates the coefficient of

viscous frictional moment obtained by the assum-

ption of lillear Velocity distribution. The second

term in Eq. C7)shows the increment of CM induced

by the secondary flow. Moreover, the dimension-

1ess form of shear stress frふis written by

･yi

--一也-一土欝〔sine･Re2p4(1･β,2pR12h)2

1
10-3(0 ･ OB6455 (1-β)

sine+ち(3cos2e-1)

(0. 70106P- 1.2963) sine)〕. ㈹

Now we shall consider the region of Re and

β, in which Eqs. CZ3)and位5)-但8) can be adopted.

Substituting Eq. ¢2)into Eqs. (1カand (13)and setting up

the condition of the convergency of Eqs. (12)and (13),

the following relation can be obtained approxi･

mately by the order･of･magnitude calculation.

Esp - ReP2 < 10.

3.2 WITH THE INNER SPHERE ROTATING

Tbe boundary conditions are given by

u'=sine, v'=w'=O at 〟-0,

u'=u+=u)'=O at q-1.

位9)

伽)

Rewriting the boundary conditions corresponding

to both gj, and I,.l,We Can Obtain at q-0 :

gil-0, dg)i/d77-0,

where botbノand ∫ are odd:

I..-1, /l-0, where both i and l

are even except for 0 :

and at符-1,

BT1,-0, dgl,/dq-0,

where both i and l are odd:

I,･,-0, where both I and l are even.

193

(31 a)

(31 ら)

The functions g,･, and fj, Can be
obtained

in much

the same way as in the foregolng
paragraph.

I.o-llq, (32 a)

1 1 1
go2- β2

{一志q6･3-0(言･β,q5-1-2(1･P,q4

･4-5(1-6+β)が-3io(言+β)q2,･
(32 b)

4 21

fo2-β210~3(
-0.39683Pが+

(1.3227:5十3.1746P) q7

1
(9.25927+ll.1111P)776+ (22. 7778

+2010P) q5 -
(25.0+18.5185P)774+ (ll.1111

+7･4074P)ポー(0.95238 + 0.55556P)q),

(32 c)

f22-β210-3(-0.59524Pが+ (i.85185+4. 7619P) q7

-
(12.9629+16.6667:P) q6+ (33.8B9

+31. 1111β) q5- (41.6667+31.4815P) q4

+(22.2222+14.8148P)q3- (3.3333+2.5P) q),

(32d)

gl,-β410-5( -0.06124Pq12+ (-0. 108226

+0.940624P)が1+ (1. 19048-5.2263P) qlO

+(-5.6217+12.6837:P)q9+ (15.2778

-ll.9365P)が+
(-23.4127+22. 7337:P) q7

+ (13.8889-6.9842P)が十(14.2858

+101582P) q5
- (35. 7143十3. 70375P)符4

+ (29･2146-108･ 095P)が+(-9.αX)65

+81.659P)符2), (32 e)

BT,,-β41015( -0. 1Z904Pq12+ (-0. 112233

+1. 14373P) qll+ (1.23457-4.2975P) qlO

+(-6.17284+6.3859P)が+ (17.4603

+13.9506P)が- (28.5714+ 7.3016P) q7

+(22･2222+7. 7778P)が+(3. 3333 +8. 3333P)符5

-(16･6667十12.5P)q4+ (6.8831-97.642P)が

+ (0･38959十84.27:8P)符2). (32 f)

The coefficient of viscous frictional moment CM

becomes

cM-号1%PRe-1.2n
(0 ･ 38095

+0. 07413β)p31013Re. ¢3)

The first term in Eq. ¢3) indicates the coefficient of

viscous frictional moment obtained by the assum･

ption of linear velocity distribution.
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4. DJSCUSS暮ON

Fig. 2, in which clearance is magnified 25

times on the radius scale, provides an example of

a contour line of the stream function 甘*, i. e.

Fig. 2 Stream lines for P-0･Ol and Re-7XIO4

(The clearance is magnified 25 times on

the radius scale)

the stream line of secondary flow in the case

where the outer sphere rotates and the inner one

is stationary.
In the case where the inner sphere

rotates, the secondary flow direction is inverse in

the case where the outer sphere rotates, but the

effects of Reynolds number and clearance ratio on

the velocity components and the shearing stress

etc. seem to be the same as those in the case

where the outer sphere rotates. Hence, in the

following, the results of numerical calculatio-I are

discussed for the case where the outer sphere

rotates.

Fig. 3 (a)shows the velocity distribution of the

velocity component in the β･direction 〝*･ It may

be observed in Fig. 2 and 3(a)that the secondary

flow, y*>0, from the pole (e-0.) to the equator

(e-90o) occurs near the outer sphere wall region

(符>0.53), while the secondary flow, ･J'<0,

from the equator to the pole occurs near the

inner sphere wall region. The distributions of v'

at various e show its increase with e to e-45o.

Having the maximum positive and negative values

at e=45o, v' decreases with an increase of e,

alld becomes zero at ♂-∂o. In the case of a small

(b)

O Q5 1

ワ

(c)

Fig. 3 (aXbXc) Dimensionless velocity distributions

witb ♂ as a parameter for a fixed value

of Re and P.

value of Re β2, it may be noted that the

relationship
betweell 〃* and ♂ can be approximately

given by sin2e.

The velocity component u)'in the r-direction,

as shown in Fig. 3(b)has a maximum value
near

q-o･5
for each e･ For e<55o, w'is positive,

i. e･

a flow is observed from the wall of the inner

sphere to that of the outer one; with e<55o, u)tis

negative, i. e. flows opposite to that for β<55o,

■
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while u)I has positive and negative maximum

values at β-Oo and 90o, respectively. In the case

of a small value of ReP2, w' is approximately

proportional to (3cos2e11).

Tbe velocity component in the ¢-direction 〟◆

is shown for various β in Fig. 3(c). For β<55o,

the velocity distributions of 〝★ tend to make 〝*

at q-0.5
decrease from the linear distribution,

because fluid near the wall of the inner sphere

flows into the center of the space, accompanied by

a smaller moment of momentum. On the other

hand, the velocity distributions of u' for e>55o

tend to make u' at ,7-0.5 increase from the

linear distribution, because fluid near the wall of

㌦
○･03

-

0.02

- 0.05

(a)

195

Fig. 4 (aXbXc)Dimensionless velocity distributions with Re as a parameter

for a fixed value of β and β.
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the outer sphere is accompanied by a greater

moment of momentum in the center of the space.

In other words, w'<0.

In creeplng motion, where Reynolds number is

extremely small, no secondary
flow occurs･ But in

the flow･region of a large Reynolds numder, a

secondary flow occurs whose velocity componeI一tS

v'and u)'increase with Re, as showninFig. 4(a)

and(b). But velocity component u' is slightly

influenced by Re increase. The tendency of u'to

differ with an increase of Re at e-15o and 45o as

compared to ♂-75o, as shown in Fig. 4(c), depends

on the sign Of w'. Figure 5 shows an example of

the distribution of dimensioIlless shearing stress.

o 30o 60o 90o

8

Fig. 5 Distribution of dimensionless shearing

stress.

Now we try to compare the theoretical results

with the experimental results for the coefficient of

frictional moment CM Obtained by the auther

(1978)･ In order
to

adapt the theoretical equation,

Eq. e7), not only
for a very small clearance ratio

β, but for a
relatively

large β as well (but βくⅩ

1), the first term
of

Eq. CZ7)should be replaced by

the solution of creeping motion, CM-87TRe~1/(1-

(Rl/R2)3). The following equation can be obtai-

ned.

8好
CM-

1- (Rl/R2)3
Re-

1

+27T(0.3805-0.2222P)β3(1+β)310~3Re. (34)

In Fig. 6 Eq. (34)is compared with the experimental

data wbicb remain in the laminar flow region,
Eq.

伽is in a good agreement with the experimental

data, being within ReP2<40.

4 6 8105 2103 2 4 68104 2

Ro

Fig. 6 Comparison between theory and experi-

ment for CM.

5. CONCLUS10NS

Only a velocity component in the ¢-direction

〟● exists in the creeplng flow situation･ But in the

flow for large Re, in addition to u, secondary

velocity components v'and w'in the e- and
r･

direction are also present. Both u' and
w'

increase approximately
in proportion to Re･ But

u'is slightly influenced by Re and the effect of

Re on u'varies with e, depending on the value of

w

I
. The relationship betweeen the order･of･magni-

tude of w'and of v'can begiven by w'/v'-β,

and that between v'and u'by v'/u'-ReP2.
The

coefficient of frictional moment is influenced a

little, and
it tends to increase for a large

Reynolds number･ The theoretical results agree

well with the experimentaldata within ReP2 <40.

1
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