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THEORETICAL STUDY FOR THE FLOW IN THE GAP BETWEEN
CONCENTRIC SPHERES, ONE OF WHICH ROTATES
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The flow between concentric spheres, one of which rotates, is considered theoretically on the
assumption that the space between the two spheres is relatively small in comparison to radial
dimensions, where Navier-Stokes equations can be reduced to a relatively simple form through order-
of-magnitude arguments. These simplified equations are integrated by the perturbation method.

In addition to the velocity component in the direction of rotation, secondary velocity components
are also present for large Reynolds number. These velocity components, shearing stress, pressure
distribution and viscous frictional moment (torque) are obtained. Upon comparison, the theoretical
results are found to agree well with the experimental data, being within R.8% <40.

1. INTRODUCTION

Recently, interest has been focused upon the
flow in the narrow space between two bodies,
which rotate about a common axis. These narrow
spaces found in turbomachinery are not only
linear, as with rotating disks or cones, but also
curvilinear, as is the case between two spheres.
There are many problems to be solved as to the
flow in such curvilinear space. As one conside-
ration on the rotating fluids in the space between
two spherical surfaces, we herewith consider the
flow of an incompressible viscous fluid contained
between two concentric spheres, one of which
rotates about a common axis.

The flow between concentric rotating spheres
is very interesting for engineering and geophysics,
in particular. Fluid motion in a rotating spherical
annulus has been chiefly investigated as to
hydrodynamic stability or atmospheric and oceanic
circulation from the viewpoint of geophysics,
considering, for example, the case in which a
large clearance between spheres is equal to the
(1967) or
Munson and Joseph (1971) proposed computational

radius of the inner sphere. Pearson

methods, by which full Navier-Stokes eqs. can be
integrated numerically in the above-mentioned
problems, but their methods are complicated and
computers have to be used. Most of these studies,
however, involve an outer sphere with a radius

twice that of the inner one, and it is difficult to
theoretically formulate frictional resistance, velo-
city etc. for annular space narrow enough to serve
as the focus for mechanical engineering conside-
rations. Moreover, the space ratio, Reynolds
number and the like which affect the flow are not
fully explained. Although Sawatzki and Zierep
(1970) have investigated both experimentally and
theoretically the flow in narrow spherical annuli
between concentric spheres, with the inner one
rotating, their theoretical consideration seems to
be inapplicable to large Reynolds number. In their
analysis the boundary layer’s eqgs. obtained by
Howarth (1951) was used, where the pressure
gradient in the @-direction is neglected. They
obtained the result that the velocity component in
the ¢-direction is not influenced by the secondary
flow. But the experimental results of the coeffi-
cient of frictional moment are influenced by the
secondary flow and tend to increase for the larger
Reynolds number above a critical value for each
clearance ratio . and the pressure distribution in
the g-direction is not obtained, either

In this report, in order to improve on the
above-mentioned points, Navier-Stokes eqs. were
reduced by order-of-magnitude estimates, assuming
that the clearance between spheres is small
enough in relation to the radius of the inner
sphere. The solution was obtained by a pertur-
bation technique. Velocity components, shearing
stress, frictional moment and pressure distribution
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were obtained.

NOTATION

Cu =coefficient of viscous frictional
moment, M/ (pR’w?)

i =function of #

i =function of 7

M =viscous frictional moment

b =pressure

P; =jth-order Legendre polynomial

7, 8, ¢ =spherical polar coordinates, Fig. 1

R, R =radii of inner and outer spheres

R, =Reynolds number based on the radius
of inner sphere, R’w/v

R =Reynolds number based on clearance s
between inner and outer sphere, R ws/
v=R.f

s =clearance between inner and outer
sphere, R,—R,

u, v, w =velocity components in the ¢, 6 and
r-directions

y =distance from the inner sphere, r—R,

g =clearance ratio, s/R;

7 =dimensionless y-coordinate, y/s

u =dynamic viscosity

v = kinematic viscosity

p =density

Trg =wall shear stress of inner sphere in
the ¢-direction

v =stream function

@ =angular velocity of outer sphere or
inner one

Q =angular velocity function

Subscript

* nondimensional variables
2. ANALYSIS

Using the nomenclature given in Fig. 1 and
assuming axial symmetry, the governing equations
expressed in the spherical coordinate system are
reduced from full Navier-Stokes equations and
continuity equation as follows.
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Fig. 1 Spherical annulus.
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where the clearance s between two spheres is very
small in comparison with R, or R;, Egs. (1) and
(2) can be simplified by an order-of-magnitude
estimate. Substituting »=R,+y Eq. (2) becomes

2w ow 1 ]
— +(1+—y—)~—+———_ —(vsinf) =0. (3)
R,sin@ o6

R, R oy
An order-of-magnitude estimate of the size of
individual terms in Eq. (3)is made for the relative
sizes of u, v, w and their derivatives. Thus, %, v,
R, and @ are assumed to be of the order(l), y of
the order (¢), and ¢ is taken as a very minute
quantity compared to unity, which is equivalent to
the clearance ratio 8. From Eq. (3), w is also
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assigned the order (J). Hence, Eq. (3) becomes
ow 1 o
—+————/(vsin 6)=0. (4)
9y Rysin 6 96
Substituting »=R,+y into Eq. (1), comparing
the order-of-magnitude of individual terms in Eq.
(1) and leaving the terms of the maximum order of
d, the equations of motion are reduced to
u2+1)2_ 1 op o*w

— v (5 a)
R poy 3
o(1) veo(ds?)
ov v v wu’cot 8 1 o o%v
w—+— ——— =—— ——4v , (5 D)
9y R, o6 R, pR, 96 oy
o(I) o(D o(1) veo(d?)
ou v ou  wuvcot 6 o%u
w——+t———t———=r—, 60
oy R o6 R, ay?
o(1)  o(D) o(1) veo(672)

Assuming v—~o0(6%?) and p~o(I) in Eq. (5), the
relation of p~o(6) can be obtained from Eq. (5
a). Then the pressure term in Eq. (6 b)v can be
neglected and the Egs. (5 b) and (5 c) agree with
the equations of boundary layer obtained by
Howarth (1951). Now, assuming v~o(d) instead of
v~o0(d?%), we can get the linear distribution of #
v=0 and w=0, i. e. the velocity distribution of
creeping motion. The purpose of the present paper
is to show how an analytic perturbation solution
is given to the increase of Reynolds number and
clearance ratio, so that v is properly considered to
be a parameter whose order-of-magnitude is
variable from o(d) to 0(d?). Hence the pressure
terms of Egs. (5 a) and (5 b) remain, but the term
v2*w/dy?* in Eq. (5 a) is omitted in order to
simplify the equation.
The equations to be solved are given by
wtv® 1 9p

, (6 a)
R, p oy
v v ov ucot 6 1 o 2%y
w—t—-—————=————+4y , (6b)
9y R, 96 R, pR, o6 oy?
ou v ou uvcot 6 o%u
W—t— —F————=p——, 6 ¢
oy R, 96 R, ay?
Velocity components #, v and w can be related to
¥ and Q by
1 ov
V= —— ) (7 a)
sin 6 oy
1 ov
— (7 b)

w=———— ,
Rysin 6 06

Q
U=———-
Risin 6
where v and w satisfy Eq. (4. The governing

equations are made dimensionless by the use of

(7 o

y u v w .
—=7, = *’ :U*, —w*,
s Rw R R )
v Q )
» =p*, =p*, =0*,
pR2w?® R*w R‘*w
to give the following equations :
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Eliminating p* from Egs. (9 a) and (9 b) and using
the relationship given by Eq. (0, the governing

equations become

o0 on*
2B (Q* —Q*2cot ) —26%Q* cot 8
o6 on
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+28{ — ———( )2cot 6}
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ov* o+ " ov* ¥*¥* avr o93v*
_ cotf— il
on on® o6 on® 26 ontol
4. *
_,i o sin 8, (11 a)
Ry on*
* * * * y aZQ*
ov* a0* ow*oQ* sin 6 (11 b)

90 oy oy3 o6 R, on®

The solution for these equations is obtained
by a perturbation technique. The perturbation
solution of equation (1) can be written in the form
of Munson and Joseph (1971) ;

© 1

T (7,0) =sin*f = R{Z Plcost)ga(nm)}, (2
odd odd
© /

0*(7.0) =sin0 2 RUZ Py(cosh)fulm)), O3

where Pj(cosf) is the jth-order Legendre polyno-
mial, and both g;(») and f,(#) are functions of #.
Considering the convergency of Egs. (12 and (13, we
have to take account of not only R, but also g
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in the functions, gu(») and fu(y), as can be seen in
Eq. @). Substituting equations (2 and (13 into Eq.
(1) and equating equal powers of R;, the system of
equations is multiplied by an appropriate Legendre
Pn(cosf), and integrated (0=8=<n).
Using the orthogonal properties, the pertubation

polynomial,

equations can be written as follows.
At R,
d*foo
dn®
At R,
dl 11 f
d ‘. _Zﬁzﬂm =
At R,
d*fo2 2 dg.

= 0. 149

2Bfoo®. (15

At R?,

d'gs =£ dg., d’gu 4g d’g. Z(dgu X
dnt* 5 dn dn? dn®* 5 dpy

dfy 4 df dj 4
+p2{fl-10 (2 ® +— 2 )+ ]:)o (2]82+*'f;2)}
dn 5 dn 5
4
+ﬂ3f60 (— 4f62 +gfzz> . 18
d*gs =_£ dgy d*gn £ d*gu
dnt 5 dpn dn? 5gu dn®
8 d, dj dfy
A “r—-ﬂz{ﬁm f“ LI
dn
——5—/3313.,_52. 19

3. SOLUTIONS

3.1 WITH THE OUTER SPHERE ROTATING
The boundary conditions are given by
ut=v*=w*=0 at =0,
=(1+p)sinb, v*=w*=0
The boundary conditions corresponding to both gj

@0
at =1,

and f, can be written at =0

£1:=0, dg;/dn=0, where both j and / are odd ;
f1=0, where both j and / are even ; (21 a)
And at =1,

g1=0, dgu/dn=0, where both j and [ are odd ;
JSo=(118).f2=0 (21 b)
where both j and / are even except for 0.

Integrating equations (4—(19 with the boundary

conditions @), solutions for component functions f;,
and g; are obtained as follows :

fo=(1+8)7, (22 a)

A L 9
W= (148 — — 7+ —p+— (B—2) 7
&u=p*(1+8)% 0" a0 (B 4)77

1
—509—2)}77 , (22 b)

Foa=p*(1+8)21073{0.39683pn°— 1.32287n"
+(5—2.22228) n°+ (1.85198—3.7037) n*
+(0.026455—0.0264558) 1},

foa =B (1+B8)210°%0.595248n°— 1.85197"
+(5—2.22228) n°+ (0.925938—1.8519) »*
+(0.701068—1.2963) 5}, (22 d)

G =B (1+5)410-5{—0.0915287"—0 . 10823n"'
+0.61507987°+ (0.33069 — 0 .617288) n°
—(0.39683+0.86648) n*+ (3.5714
—2.22228) " — (5 .5555 —4.43588) 76— (0.15875
+0.105038) 17 + (5.88151— 0 .800748) n*
—(3.56427 +0.34698) n*}, (22 e

G =B (1+8)*10°%{—0.0799467"* — 0 . 11224n"
+0.674687"°—1.121898%°+ (1.05819
—2.6728) n*— 3 .809587" — 0 . 9670687°
+(4.0740+0.661398) n°+ (6 .883 +40 . 2198) *
—(3.7549+ 32.9058) n*}. (22 1)

(22 ¢)

Substituting above equations into Eqs. (12 and (3),
VY*and Q* can be obtained. Then, using Eq. (10

and R;=R.8, we may write »*, w* and #* by

l

dgis
— 2R {sinfcosé

v* = — R,sinbcost

d
2 e, (23 a)
7

=BR.g, (3c0s26— 1) + 2 R3{ g3 (3cos?6— 1)

1
+Esin8 (5¢0s38+ 3cos8)

1
+;gaacos 8(5¢0s36+ 3cos 6)

3

——gg”sin 8(5s5tn36+sin 6)}+---, (23 b)
u*=foosin 0+ LR {fasin 6

+f%;sin 6(3cos26+ 1)+, (23 ¢

where g, &s, fw, foz, etc. are given by Eq. (2.
Substituting R.=0 into Eq. @3, »*, w* and »*
become

v*=w*=0, u*=U+B)n sin 6. o)
This shows a velocity distribution similar to
Couette flow. In comparing Eqs. 3 and @4, we find
that velocity components of »* and w* increase in
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proportion to R, and that the flow has a secon-
dary flow.

Now, we introduce viscous frictional moment
M, which is transmitted from the outer to the
inner sphere. Considering the axial symmetry of
flow, shear stress acting on the inner sphere T g
becomes
uR @

2]
T=ulr—()},—pg= ((1+8)sin 8
or r

+R2B(1+8)21073{0. 026455 (1—p)sinb

1
+5(3c‘oszt9—1) (0.701068—1.2963) sin 8}).

@5
Therefore

2nR uw

4 4
M=27rR,3f0 7re Sin*6df =————(_(1+5)
S

+R2B(1+8)%107%(0.38095—0.222228)}.
Hence, the coefficient of viscous frictional moment
Cu becomes

CM=% (1—;/3—)1?;‘+27z(0.38095—0.22222ﬁ)

B (1+8)107R.. @
The first term in Eq. @7 indicates the coefficient of
viscous frictional moment obtained by the assum-
ption of linear velocity distribution. The second
term in Eq. @7 shows the increment of Cy induced
by the secondary flow. Moreover, the dimension-
less form of shear stress z.; is written by

___L'_é_ __ﬁ_ 204 2
7,4 Riw R, (sinf@+ R2B*(1+8)

1
107%{0.026455 (1—ﬁ)sin6+;(3cos’0—1)

(0.701068—1.2963) sind}). 28
Now we shall consider the region of R, and
B, in which Eqs. @) and 29~@8 can be adopted.

Substituting Eq. @2 into Eqs. (12 and (13 and setting up

the condition of the convergency of Egs. (12 and (13,
the following relation can be obtained approxi-
mately by the order-of-magnitude calculation.
RB=R.[*<10. @9
3.2 WITH THE INNER SPHERE ROTATING
The boundary conditions are given by
=sinf, v*=w*= at =0,
at #=1
Rewriting the boundary conditions corresponding

@80

ur=v*=w*=0

to both g; and f, we can obtain at =0:
£:=0, dg./dn=0,

where both j and / are odd .

. (31 a)
Joo=1, f;=0, where both j and !
are even except for O .
and at =1,
£:=0, dgu/dr)=0,
where both j and / are odd . (31 b)

f1=0, where both j and [/ are even.

The functions g; and f;, can be obtained in much
the same way as in the foregoing paragraph.
fo=1—n, (32 a)

(*+/3) ”—— (1 +8)7*

= 2
&= P 20

—(— B) 7 *—(—+/3)77} (32 b)

4516 30 2

o2 =02107%{—0.396838n*+ (1.32275+3.17468) 5"
—(9.25927 +11.11118) n°+ (22.7778
+20.08) 5° —(25.0+18.51858) n*+(11.1111
+7.40748) n* —(0.95238 + 0.555568) n},

32 ¢

f2=B2107%—0.595248n°+ (1.85185+4.76198) 5’
—(12.9629 + 16 .66678) n*+ (33.8889
+31.11118) n°— (41.6667 + 31.48158) n*
+(22.2222+14.81488) n* — (3.3333+2.58) n},

(32 d)

83 =B410"%{—0.0612489"*+ (— 0 .108226
+0.9406248) "'+ (1.19048 — 5 . 22638) n*°
+(—5.6217+12.68378) n°+ (15.2778
—11.93658) n*+ (—23.4127 +22.73378) 5’
+(13.8889—6.98428) n°+ (14.2858
+10.5828) 5 — (35.7143 +3.703758) n*
+(29.2146 — 108 . 0958) n* + (—9.00065
+81.6598) n*},

83 =B410%{—0.128048n'* + (—0.112233
+1.143738) n*'+ (1.23457 — 4.29758) n'°
+(—6.17284+6.38598) n°+ (17 .4603
+13.95068) n*— (28.5714+ 7 .30168) "
+(22.2222+7.77788) n°+(3.3333 + 8.33338) n°
—(16.6667 +12.58) n*+ (6 .8831— 97 .6428) n°
+(0.38959 + 84.2788) n*}. (32 f)

The coefficient of viscous frictional moment Cy

(32 e)

becomes
C= T B 4 220 38095
3 B8
+0.074138) £*10—3R.. 33
The first term in Eq. 83 indicates the coefficient of
viscous frictional moment obtained by the assum-

ption of linear velocity distribution.
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4. DISCUSSION

Fig. 2, in which clearance is magnified 25
times on the radius scale, provides an example of
.a contour line of the stream function ¥*, i. e.

8=90°
EQUATOR

B=0.0I
Re = 7x!0’

Fig. 2 Stream lines for £=0.01 and R.=7X10*
(The clearance is magnified 25 times on
the radius scale)

the stream line of secondary flow in the case
where the outer sphere rotates and the inner one
is stationary. In the case where the inner sphere
rotates, the secondary flow direction is inverse in
the case where the outer sphere rotates, but the
effects of Reynolds number and clearance ratio on
the velocity components and the shearing stress
etc. seem to be the same as those in the case
where the outer sphere rotates. Hence, in the
following, the results of numerical calculation are
discussed for the case where the outer sphere
rotates.

Fig. 3(a)shows the velocity distribution of the
velocity component in the §-direction v*. It may
be observed in Fig. 2 and 3(2)that the secondary
flow, v*>0, from the pole (§=0°) to the equator
(6=90°) occurs near the outer sphere wall region
(#>0.53), while the secondary flow, v*<0,
from the equator to the pole occurs near the
inner sphere wall region. The distributions of »*
at various 6 show its increase with 6 to =45
Having the maximum positive and negative values
at =45, p* decreases with an increase of 4,
and becomes zero at §=0°. In the case of a small

VY 4xi02 W* 4x10%——
3x107 3x0Y
2x10% 2xi0%
1xI0° IXIO
0 | 0
- Ix10? -1 xI0"
2 s,
- 2xI0 2xi0% 8001, Re =7xiC"
- 3x|0®
(a) (b)
x
Y jotB=o00l
Re = 7x10*
09 r 8 = 90"
o8 752
07 60°
06 45°
05
04
03 30°
02
15°
ol
6:=0
0 1 L
0 05 I
Y]
(c)
Fig. 3 (aXbXc) Dimensionless velocity distributions

with # as a parameter for a fixed value
of R, and gB.

value of R. fB? it may be noted that the
relationship between v* and @ can be approximately
given by sin26.

The velocity component w* in the r-direction,
as shown in Fig. 3(b)has a maximum value near
7=0.5 for each 6. For §<55°, w* is positive, i. e.
a flow is observed from the wall of the inner
sphere to that of the outer one; with <55, w* is
negative, i. e. flows opposite to that for <55,
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while w* has positive and negative maximum
values at #=0° and 90°, respectively. In the case
of a small value of R,8% w* is approximately
proportional to (3cos*6— 1),

The velocity component in the ¢-direction #*
is shown for various # in Fig. 3(c). For <55,
the velocity distributions of #* tend to make u*
at #=0.5 decrease from the linear distribution,
because fluid near the wall of the inner sphere
flows into the center of the space, accompanied by
a smaller moment of momentum. On the other
hand, the velocity distributions of #* for 6>55°
tend to make wu* at =0.5 increase from the
linear distribution, because fluid near the wall of

Ve 0.03
B =00l
6 =45°
0.02F Re = 7xI0"
5x10*
25x10*
001l
1 x10%
05
0 |
n
Re = 5X10°
-00IF
- 0.02F
-0.03

(@)

for a fixed value of 6 and 8.

*

w

0 0.5
©

Fig. 4 (aXbXc) Dimensionless velocity distributions with R, as a parameter



196 Bulletin of Nagoya Institute of Technology Vol. 36 (1984)

the outer sphere is accompanied by a greater
moment of momentum in the center of the space.
In other words, w*<0.

In creeping motion, where Reynolds number is
extremely small, no secondary flow occurs. But in
the flow-region of a large Reynolds numder, a
secondary flow occurs whose velocity components
v* and w* increase with R., as shown in Fig. 4(a)
and (b). But velocity component x* is slightly
influenced by R, increase. The tendency of u«* to
differ with an increase of R, at §=15" and 45 as
compared to §=75°, as shown in Fig. 4(c), depends
on the sign of w*. Figure 5 shows an example of
the distribution of dimensionless shearing stress.

X
Tye
[
- +\Q
3XIO-3— B=00I ”’b
Q\Q
-3 A
2xI07 6*\0
&
0
15*
I x10° |
O | |
0] 30° 60° 90°
e
Fig. 5 Distribution of dimensionless shearing

stress.

Now we try to compare the theoretical results
with the experimental results for the coefficient of
frictional moment (4 obtained by the auther
(1978). In order to adapt the theoretical equation,
Eq. @), not only for a very small clearance ratio

B, but for a relatively large g as well (but g <
1), the first term of Eq. @7 should be replaced by
the solution of creeping motion, Gy=8zR.,~'/{1—
(R./R,)%}. The following equation can be obtai-
ned.
_ 8z
11— (R/R)?
+22(0.3805—0.22228) 8°(1+8)%10~*R.. 6§
In Fig. 6 Eq. 84 is compared with the experimental

R.!

Cu

data which remain in the laminar flow region, Eq.
@) is in a good agreement with the experimental
data, being within R.8%2<40.

C
u B=0024 (é't 0.024)
(=006 ] ';'o'l
2107+ BT oo 18
M- RRS S 4
|8x|0"r_- B:=006 1y
6 - Eq(34)
4 L - 1x102
-8
. | Eq(34) ] 6
“Cong, 4 axi0’3
1107 ! Lo L %en 11
0 2 4 6810 2 4 68100 2
Re

Fig. 6 Comparison between theory and experi-
ment for Cy.

5. CONCLUSIONS

Only a velocity component in the ¢-direction
u* exists in the creeping flow situation. But in the
flow for large R,, in addition to u, secondary
velocity components »* and w* in the #- and 7-
direction are also present. Both ¢* and w*
increase approximately in proportion to R.. But
u* is slightly influenced by R. and the effect of
R. on u* varies with 8, depending on the value of
w*. The relationship betweeen the order-of-magni-
tude of w* and of »* can be given by w*/v*~8,
and that between »* and #* by v*/u*~R.6*. The
coefficient of frictional moment is influenced a
little, and it tends to increase for a large
Reynolds number. The theoretical results agree
well with the experimental data within R.S* <40.
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