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A method for enumerating the whole of partitions of n-set Nu={0,--,

n—1} is obtained by

using a certain set D, of n-adic integers. And, also by using D, the following rule is given for Bell’s

number B(n), (the number of partitions of Nn) :

B(m=% 3 1%k

=1 kit-+hr=n-r1

where &, ---, k, are non-negative integers.

1. n-adic representations of the partitions

of n-set
For each n-adic integer o= (so,""*, $n-1) Where 0=

si<n—10G=1, -, n—1), let D,(0o)

denote the following condition :

So=0AVIi(0<i<n— 1—»maxs,+129)

and let D, be {o| D, (o') o is an n-adic integer}
Then we have the following.

PROPOSITION 1 Let C, be the set of all partitions

of the n-set Nn = {0,---,n—

g from D, to C, is given as follows : g(¢)={{7 | s;=0},

{i| s:=1}, -, {i | ss=m(o)}}, where 6=(S,, *** ,Sn-1)

and m (o) = maxs,.

1} .Then a 1-1 onto mapping

Proof The proposition is clear in the case : n=1. For
any ¢ and ze D, where a=(so, ***, Sa-) Fr=(to, -+,
t.—1) and n>1, let I denote min {i | s;#t;, 0<i<n—1}
. Then, without loss of generality, (so=to, *** , S1I-1=
ti-1,) s < t;. On the other hand, re D, implies n}ialxt,»-i—
12t > s

Then max s;=max t;=s.. So, s;=s for some j<
I. Let] = mm {3 s,Zs, and j<I} , then s;=sg;=t;
[Because, s;=s, and, for every j<], s;<s. Inthe
case : J>0, max s;<si. So, s,Smax s;+1<s<s;. In
the case : J= 0 s,—s,,—OSs,Ss,] Thus, g(e) > {i|
s;=s;}5),I,and g(z) 3 {i | t;=s} 3Jand {i]|t:=s}

31. So, g(o) +g(7). Therefore, the mapping g is 1-1.

For an arbitrary partition C = {A,, -, A} of
N,= {0, ---,n—1} , let d(k) = min A.(k=1, ---, p).
Then, without loss of generality, we can assume that
d(D=0and d()<d(2)<:--<d(p) in the case : p>1.
Let p= (1o, -+ , Tr-y)such that r;,=j—1for all i€ 4;(j=
1, .-+, p). Then we can easily see that g(p)= {4, -
,A,} and pe D,. That is, g is a mapping from D, onto
C,.

2. A nonrecursive expression of the n-th Bell’s
number B(n).

By PROPOSITION 1, the number B (n) of
partitions of n-set N,= {0,:-,n—1} ,
number of the elements of D,. Thereby, the following

is equal to the

proposition holds.
PROPTOSITION 2 B(m=3 % 1I»
2%....r* where k,, -+ , k, are nonnegative integers.
Proof Forr,o<r<n,letd,;+--+d,=nandd;=
1(i=1, --- ,r). Moreover, let Q(d,, --- , d,) denote
{(So, ***, Sn-1)€ Dn | wi(lgjsr—(saumra, =]—IA
wi(d,+--+d;m Si<d 4+ +d,—0=s,=j— D))}
where d, +---+d,_,denotes 0 when j=1.
We represent n-adic integer o=(s,, **+, S».—1) by a
line-graph which connects the points (0, so), (1, s», =+
,(n—1, s,-,)one by one.
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Fig. 1 A line graph which represents an element of Q(d,, -+

Then Q(d,, -+, d,)is represented by the set of all
the line-graphs, each of which intersects in P, = (0, 0)
Pi=(d, D, P.=(di+d;, 2), -, Proy=(di+-+dy,
r—1)and has the segment for every interval [d,+---+
d;.;+1=<isd,+--+d;—1] in a limited region 0<s;<
j—1.

Therefore, we can calculate the number of the
elements of Q(d,, -+, d,)as follows :

$(QUd,, -+, dp)) =14"12% e (1)

On the other hand, it holds clearly that

Moreover, let 1<r, r<n, d,+---+d,=n,
d,21(i=1, --, 1), dy+-+dy=n and d;=1
(i=1, ---, ). Then(d,, ---, d))£(d}, -, d»)
implies Q(d,, -+, d) NQd,, -+, dp)=¢.

Therefore, B(n) =#(D,,) (the number of D,)

v

dy+ee4d

, d,), where d;+:--+d,=n and d, 21, ---, d,21.

_ 2 b
T1=r<n d1+"'+d,:n#(Q(d" =, de).
d; 21, ---, d, 21
(2)
Thus, by(1)and(2), PROPOSITION 2 holds.
3. An enumeration of partitions of n-set.
For every two n-adic integers 6= (S,, ***, Sn-1)and

7=(to, -, ta-1), let 6> 7 mean that 3 ,(0<k<n-—1A
(So=toA-* ASpoi =ta 1 A >te)).

Then, we define inductively the k-th element p (k)
of D,(k=1, ---, B(n)) as follows :

(i) p(D=0700)

(ii) p(k+D=min{c | p(k)<o and oeD,}, for
each k< B(n).

Then, a procedure for enumerating all the parti-
tions of n-set is also obtained by using D,.

PROPOSITION 3 For each k, 1=k<B(n), by
using p (k) =(s,, -+, s,-,), We can calculate p(k+1)=
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(8%, ***, S'n-1) as follows :
Let I=max {i| 0<igEn—1Amax s;+1>s,}. (3)
J<t

Then s, =5,, **,81-1 =811,
S'[:Sl‘*‘l, }(4)
S =-=8p,=0.

Proof First, we notice that the final element of D,, is
p(B())=(0,1,---,n—1).

So, if p(k)=(s,, -**, Sn-1) is not final in D,(that is,
k< B(n)), then 3,(0<iZEn— l/\max s;+1>s;)holds.
Therefore, I = max {i | O<1Sn 1/\maxs,+1>s}
Let 7 denote (s, -
obtained by the above calulation (4) from p(k) =(s,,

*, Sn-1), where k< B(n). Then, to prove that p(k+
1) =1, it suffices to verify the following :
(i) p(k)<7 and ze D,
(ii) p(k)<u<rt implies x ¢ D,.
The former part of (i) is clear, since p(k)=(s,

*, Sn-1) and r=(s,, =+, Si-1, S+ 1,0,-++, 0). p(k) =(s,

*, Sn-1) € D, and (4) imply that max s;,+12s’; holds
L I-1, 141,
also holds for i=1, since rr}gx s’,—+1=n}gx s;+1>g=
, $n-1)€ D
The hypothesis of (ii) is written thus p(k)=(s,

is definable. , s,, Dwhich is

clearly, for each i=1, ,n—1, and it

s'—1. And s, =s,=0. So, 7=(5, -

Sno1) <p=(Myg, *++, M.y, My, My,
 Mpy) <7=(So, -+, Si-1, S+ 1, 0, coeeee , 0).

Thus, it implies that I<n—1 and (m,, ---,

*y Si-1, Sty Si+1, "7,

my_,) =

(S0, ***, S1-1), and then (my, -+, my_y) <(s1+1,0,--+, 0).
So, m;<s;+1. Moreover, m;=s;. Thus, m;=s,.
So, (Sie1, ***y Sn-1) <(Mypyq, *++, Mpy).

Therefore, for some J>1, (s, *+, §;-1) =(m,, -+,

my_,) and s;<my. So, by (3)and J>I, m;>s,= mgxs,--‘r

l=maxm;+1.
J<J
Thus, ¢ D,.
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