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Theoretical Calculations of the Tricritical

Point in Two Sublattice Systems
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Theoretical calculations of a tricritical point were derived from an energy function with two
order parameters such as the Landau type free energy and the Bragg-Williams approximation
energy. Several possible phase diagrams are presented as examples, for the antiferroelectric phase

transition and the Rochelle salt type systems.

1. Introduction

In thermodynamic equilibrium, a physical system
consists of one or more subsystems. They are charac-
terized by the values of the extensive variables, which
are determined by the values of the intensive thermo-
dynamic variables like the temperature T, the pre-
ssure P, the electric field E etc. Griffiths et al. intro-
duced the terms density and field,instead of the exten-
sive and intensive variables, respectively.*? There-
fore, phases are characterized by macroscopic homo-
geneous values of densities.

The typical phase diagram for a pure substance in
the pressure P, temperature T plane is indicated sche-
matically in Fig. 1. The points, for which there can be
coexistence of two or more phases, are called coexis-
tence points, and the set of these points receive the
name of coexistence surface (CXS).

A triple point (7,, p.) is a point where three
phases coexist, and (T, p.) is a critical point which is
a boundary point of a first-order phase transition
surface with the property that all discontinuities in
densities across this surface go continuously to zero
upon approaching this point. The tricritical point
(TCP) is a point where three critical lines come
together.

In ferroelectric and antiferroelectric phase transi-
tions, the TCP is of great interest from a viewpoint of
related anomalies observed in physical properties.
When the free energy is expanded in the Landau-type

0 T

Fig. 1 Phase diagrams for typical substances. The solid
lines indicate the CXS C and T are critical and
triple points.

power series in terms of a single transition parameter,
the TCP is simply recognized as the point in a phase
diagram, where the coefficients to the second order
and fourth order terms vanish simultaneously. But, in
the case where the free energy is written in terms of
more than two transition parameters the situation is
rather different, and the procedure for finding TCP is
a little more complicated. In the present paper, we will
discuss the case of the antiferroelectric phase transi-
tions, and the ferroelectric phase transitions, on chang-
ing values of parameter in the free energy, where the
free energy is given in two-sublattice polarizations.
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2. Phase Diagrams

The set of all phase transition points, the phase
transition surface (PS), is equal to (FPS U SPS),
where FPS and SPS are the first order and the second
order phase transition surface, respectively?. The set
of first order phase transition surface is equal to the
coexistence surface (CXS) and the second order phase
transition surface coincides with the critical surface
(CRS). The phase diagram is then the set (E, PS),
where E is the set of control variables.

Recently, a classification of phase diagrams was
discussed on the basis of the qualitative shapes of their
phase transition surfaces'~”. The critical points of the
phase diagram for ferroelectrics have equal qualita-
tive shapes around the critical points (T., p.) and
(T’., 0), respectively.

In this section we introduce a general family of
energy potential V' (¢, ¢, -, ¢, %1, %, ***, X») depend-
ing on density variables or order parameters x ¢ r”and
k control parameters ¢ € R*. The state of the physical
system is described by the value of x; which minimizes
the potential, locally. Therefore, the equilibrium and
stability properties of the potential V (¢, x) is given ;

oV/aX,=0 (1
and

H,;=3V/8X:;8X;>0, (2)
where H,; is the Hessian matrix. The equilibrium
points, or critical points, of a smooth potential function
V are the points at which AV = 0. The critical points
at which det H;; + 0 are called isolated,non degene-
rated, or Morse critical points®?. A phase transition
occurs when the point X € R” describing the state of
a physical system jumps from one critical branch to
another. If the Maxwell Convention is adopted, phase
transitions will occur when the curve passes through
the component of the Maxwell set on which two or
more global minima are degenerate. Systematic cal-
culations have been made by using the Catastrophe
theory for one order parameter®*”. In the present
paper, we show an analytical method for the systems
with two order parameters.

3. Antiferroelectric Phase Transition

The phenomenological theories of Lntiferroelec-

tric phase transition have been developed by many
investigators, in which the free energy is expanded
into a power series in terms of two sublattice polariza-
tions®??. In some cases the expansion is truncated at
the fourth order and then the second order transiton
comes out. On the other hand, the first order antiferro-
electric phase transition can be obtained when the
expansion is carried out to the sixth order. Moreover,
the free energy with sixth order term may give rise to
a qualitativetly new feature, that is, appearance of a
phase called a semipolar phase, which is polar from
the symmetry viewpoint but has homogeneous and
staggered polarization components simultaneously
even at no external field'?.

When external field is applied to such a system,
interesting phase diagrams are drawn in the electric
field vs. temperature axis, for various values of
the coefficients of the free energy expansion. Espe-

cially, one may encounter the case where the first

~ order transition changes into the second order transi-

tion on applying electric field, that is to say, one may
get the tricritical point(TCP)in the phase diagram.

3.1 Second Order Antiferroelectric Phase Tran-
sition

We take the Kittel’s expression of free energy as
a function of polarization of two sublattice P, and

P, ;¥

A=f( P+ P?)+ 8PP+ h( P+ P ) —E(FPo+
P,), g>0, h>0. (3)
On introducing two new order parameters Q= (F,+
P)/v2 and q=(—F.+._. /v 2 which represent
the macroscopic and staggered polarization, respe-
ctively. Eq. (3) is rewritten introducing new variables
as;

a={U+)Q+1g*+ Q' +q¢'+6 Q¢—eQ.  (4)
Equilibrium condition of free energy are given by

3a/3Q = 2Q [1+ t + 2Q* + 64°]—e = 0 (5)
and

da/dq = 2q(t+2¢°+6Q5=0. (6)

There are several physically different phases
obtained and to distinguish them in this paper, we
adopt the following nomenclature ;

(1) Nonpolar (N) : @ = 0, ¢ =0,

(II)  Polar (P 1 Q +0, g =0,

am Antipolar (AP) : @ =0, g +0,

aw Semipolar (AP) : @ #0, g #0.
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We use the words ‘polar’ and ‘antipolar’ rather than
‘ferro’ and ‘antiferroelectric’, respectively. The values
of @ and ¢ are determined by the external field like
the temperature and the applied field.

The stability of the equilibrium state is assured if

d% d%
op? oqap
H;| = >0 7
| Hy | oa o (7
apoq 9q*

where the values representing the concerned equili-
brium state have to be substituted for @ in | H,; |
The second order phase transition takes place to some
other phase when

| H; | =0. (8)
The phase boundary between the states g+ 0 and ¢=
0 is given by eq. (8) as:

(1+t + 6Q%+6q (t+6Q*+6q>) —144Q* ¢*=0. (9)
In this equation the second order phase transition
boundary is given by putting q =0. The other lines
indicate the spinodal lines. The second order phase
boundary is determined by (5) and (9).

Let us consider the TCP where three critical lines

come together, Needless to say, TCP is located on the
second order transition line, where (5), (6) and (8) are
satified.
Notice that the value of @ in the P phase is deter-
mined by (5)(but not by(6) which is satisfied by any @
if ¢ =0), which is an even function of g, that is, Q =
Q(g», when @ and q satisfy the relation

£(Q(@Y, @) = 2a/oQ = g(Q(0), 0)+ ¢*(d*g/
dg®/2+--=0, (10
the continuity of @ against the change of ¢ around
g = 0 is broken when d?g/dq? changes its sign. At
the tricritical point, therefore, the relation

+

d'g _ o' _, 9% (dQ>

dg* ~ o¢ aQag \dg
+ (g () 5 ()

an

223 (49 -0

has to be satisfied, where it is made use of that @ is an
even function of g, that is, (dQ / dqg)=0 at q = 0.

If the second order transition is determined by 3%z /
8€? =0 the last termof (1)) is also zero, then TCP is

givgn only tgy the condition 9g® / 8¢*=0. In this case

252 = 2;; + 2, then the second order phase tran-
sition is determined by 9%z / 9¢*=0. The relation (11)

-2 1 -1/6 0

Fig.2(a) Calculated phase diagram for the second order
antiferroelectric phase transition. TCP is shown
in open circle.

Three dimensional phase diagram.

Fig.2(b)
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is reduced

1+ t—30Q* =0, 12
where d*Q /dg? is calculated from (6) . If we put
F=t + 29> + 6Q*, d*Q/dq* is given byF . / Fq,
where F,, = 8°F/9q® and Fy = aF /9Q. So TCP is
simply calculated from (9) and (12 as*®

t=—1/6. 13
The other critical lines should be considered, because
at TCP three critical lines come together. In case of
existing the staggered field ¢’, the equilibrium condi-
tion (6) gives the field ¢’ as

e'=23a/9q=2q(t+6Q* + 2¢%. (19
Therefore the other two critical lines are deduced
from (5), (9) and (14, which is easily calculated by
determining the enveloping of the spinodal lines. The
derivative (14 respect to g gives the critical lines e’ in
the function of g as

e =[—(3—16¢Hqtqv (3—16¢>*+20487*1/4.09

The critical lines e’ are given by (14), (15 and (9). The
calculated phase diagrams are shown in Fig. 2.

3.2 The First Order Antiferroelectric Phase
Transition

The free energy for the first order antiferroelec-
tric phase transition has been already given and ana-
lyzed in details'®'¥, Let us assume the free energy as
A=f(Pl+ PP+ gP,P,+ h(P*+ P,*) + 0P,*P,?

+ &P+ PY) PP+ j(Po*+ Py

—EF+PR), G>0), 19
where P, and P, are sublattice polarizations. Since
the antiferroelectric phase transition is of interest
now, we assume that g>0. On introducing two new
order parameters @ = (P,+P,)/ 2 and q=(—P,+
P,) /2, eq. (10 is rewritten

a=1+HQ*+tg*—m(Q'+q*+ 6Q°¢>)

—m' (Q'+q*—2Q*¢»

—m"(Q'—q)+Q°+¢°+ 15Q°¢*(Q*+ ¢

—eQ. an
The equilibrium state can be found by solving a set of
simultaneous equations :

oa
aQ

=2(1+HQ

—4mQ(Q*+ 3¢®) — 4m'Q(Q*—¢») —dm” Q°

+6Q°+ 60Q°q*+ 300 —e=0, 19

g"_;. =21q — 4mq(g*+ 3Q*) — 4m’q(¢*— @)

+4m” ¢ + 64°+60Q*q*+ 30Q'q=0. 19

If ¢ vanishes continuously on the phase boundary
between the polar and semipolar, the transition is of
the second order and the condition for it is expressed,
using (8), as

L1 22 it 6(mtmtm”) Q@+ 15Q"
2 aQr '
=0 0)
or
1 d%a _ _ _ ) .

since 9%a/9Q8q =0 for g=(, where Q 7s obtained from
(18 with ¢=0 by

e=2Q [1+t—2(m+m'+m") Q*+3Q"]. )]
If 3%/9Q*>d%/og? ie.,
1-2(4m’+3m")Q*>0 23

the phase boundary is determined by (1) and (2), while
if otherwise, by (17) and (0).

This is applied only to the second order transition,
With decreasing temperature and electric fiekd, the
first order transition may take place from a polar
phase to a semipolar phase when e¢ #0, from a
nonpolar phase to an antipolar phase when e =0 even
if both 3%a/9Q*? and 3%a/dq*® are still positive. The
determination of the phase boundary of the first order
transition is usually not easy even for such a simple
free energy as (17. Suzuki and Okada have already
presented several diagrams which are possible for
various combinations of m, m’ and m” values of the
free energy (17'?.

Let us consider the TCP related to the transition
from a P phase(Q+0, ¢=0) to a SP phase(Q+0, g+
0), which takes place with decreasing field ¢e. The
TCP is located on the second order transition line.
The relation (11) has to be satisfied, it is made use of
that @ is an even function of ¢, that is, (dQ/dq) =0
at ¢=0. If the second order transition is determined
by d%a/9Q*= ( the last term of (1)) is also zero, then
TCP is given only by the condition 8°g/3¢*=0. So
TCP is simply calculated from (1) and (18 as
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t=3m—m)H(3m+7m'+6m”)/ 15—1 (@4)
and ¢ is given by (2.
On the contrary, if the second order transition is
determined by 9%z /3g*= 0, the last term of (1) has a
definite value. The simple calculation of (1) gives
[4(3m—m")*+2(4m'+3m") (5m—3m'+m”)
—15—-60t] @
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Fig. 3 Calculated phase diagrams. The adopted values
of parameters (m m’ m”)are (a)(4,—2,0), (b)
(4,—2, 1). The open circles indicate the tricriti-
cal point and the solid and the dotted lines
indicate the second and the first order phase
transition lines, respectively. CRS and CXS
indicate the critical surface and the coexistence
surface, respectively (for details, see ref. 1).

+ [(m+m'+m"—2(4dm'+3m")t]=0. @5
Calculated phase diagrams are shown in Fig.3 for

various parameters.
4. Bragg-Williams Approximation Potential

We now consider the ferroelectric phase transition
in a two-sublattice model whose free energy is given

aSZI—ZG)

a(x, %,0)= —%b( 0+ 2%2)— bnx,— (60— %)
6
+52 {T+x) In(1+x)+

(I—x) In(1—x)—2Mn2} , (26)
where x and x, stand for sublattice polarizations, &
and b’ the effective constants of interaction between
dipoles belonging to the same and different sublatti-
ces, respectively, and 6 represent temperature. The
phase sequences to be obtained for various values of b
and b’ have been studied”~?¥. The coefficients b and
b’ can be regarded a some function of applied pressure
P or concentration y in a mixed crystal system
(such as K, (NH,),-, NaC,H,Os 4H,0).

On introducing order parameters p and q as

p=x+mx)/2 en

g=(a—x)/ 2 9
representing the total and the staggered polarizations,
the free energy a(x,, %, 6)can be rewritten as a(p, g,
6). The equilibrium state can be found by solving

8a __ b+¥
op 2
8, Ctp+C+p—q
ML & s 1o s @
oa__b-b
ag 2 ¢
+itn @CHp+p(2—-p+@) 80

4 C-p—2+qg—q

The paraelectric phase at high temperature is found
from 9 and B0) as
»=0,
(b—b)q+1=20 tanh™'q, @1
and as is seen from (8), the second order phase transi-
tion takes at 6, given by

bo

qu—z b+b 32
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Let us consider the TCP. Notice that the value of q in
the paraelectric phase (p=0) is determined by @0),
which is an even function of p, i.e., ¢ = g(»?). The
continuity of ¢ against the change of p around p=0,
where g and p satisfy

da — 2 2V —
2q =g(p% q(p) =0, 63
. dg o
is broken when a changes its sign. Therefore at
the TCP

d’g _ g ., 9% dg

dp* — op* T opaq  dp

o*%¢ .dq ., og dq _
+ o (_dp)+ aq ap’ =0 @4

is satisfied. Paying attention to that ¢ is an even
function of p, we obtain from @4

b
2q.

2180 g, 8 & o

o 36, 2 (1-g¢.

)

On combining this and §2), we find 4,”and 6, satisfy the
equation at TCP

IR b

= (b= b))+ 1)/ tanh™ ot

— (b b1 2 )
- t) 3b .

In Fig .4, several phase diagrams are shown in 6" —§6
plane.

2pb’
F /e
1
6
2
(a) b=1.25 (b) b=0,45 (¢) b=0

Fig. 4 Calculated b'—6 phase diagrams of the two
sublattice system whose free energy is given as
(1). P and F denote the paraelectric phase and the
ferroelectric phase, respectively. The solid and
the dotted curves indicate the second order and
the first order transition lines.(a) 6=1.25. The
open circle indicates the TCP. (b) #=0.45. The
figure in expanded scale is some what schematic.
The solid circle indicates the critical point. (¢)
b=0.

5. Discussions

In the previous section we have shown the method
for finding the TCP in the model two-sublattice
system, applicable to the antiferroelectric crystals and
ferroelectric phase transition. External force used to
obtain TCP’s is one which keeps the symmetry of
systems, as the Rochelle salt type system, where TCP”
s have been derived with changing the parameter
values representing strength of dipole interaction. So
the external force inducing such changes does not
break the symmetry of the system.

In contrast to the case, it should be noted that the
external electric field as adopted in the antiferroe-
lectric transition lower the symmetry of the system,
and the symmetry breaking term —eQ in (2) plays a
substaintial role in inducing TCP’. In the present
paper, we showed the analytical methed to get the
TCP’s for the systems with two order parameters.
Even the free energy is not expressed by the power
series, we showed that the TCP’s are calculated by
(1). The method showed in this paper may be powerful
to derive the TCP’s in different systems.

It will be of quite interest to study experimentally
the physical nature of TCP’s in antiferroelectric
crystals of the type discussed in the present paper? .
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