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Tbeoretical calculations of a tricritical point were derived from an energy function with two

order parameters such as the Landau
type free energy and the

Bragg-Williams approximation

energy. Several
possible phase diagrams are presented as examples,

for the antiferroelectric phase

transition and the Rocbelle salt type systems.

1. Introduction

ln tbemodynamic equilibrium, a physical system

consists of one or more subsystems. They are charac･

terized by the values of the extensive variables, which

are detemined by the values of the intensive thermo-

dynamic variables like the temperature T, the pre･

ssure P, the electric field E etc. Griffiths et al. intro･

ducedthe terms density and jield,instead of the exten-

sive and
intensive

variables, respectively.13)
There･

fore, phases are characterized by macroscopic
bomo･

geneous values of
densities.

The typical phase diagram for a pure substance in

the pressure P, temperature T plane is indicated sche-

matically in Fig. 1. The points, for which there can be

coexistence of
two or more phases, are called coexis-

tence
points, and the set of these points receive the

name of coexistence su,カce (CXS).

A triple point (Tt,?t) is a point where three

phases coexist, and ( Tc, pc) is a critical point which is

a boundary point of a first-order phase transition

surface with the property that all discontinuities in

densities across this surface go continuously to zero

upon approaching this point. The tricritical point

(TCP) is a point where three critical lines come

together.

In ferroelectric and antiferroelectric phase transi-

tions, the TCP is of great interest from a viewpoint of

related anomalies observed in physical properties.

When the free energy is expanded in the Landau-type
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Fig. 1 Phase diagrams for typical substances. The solid

lines indicate the CXS C and T are critical and

triple points.

power series in terms of a single transition parameter,

the TCP is simply recognized as the point in a phase

diagram, wbere也e coefficients to the second order

and fourth order terms vanish simultaneously.
But, in

the case where the free energy
lS
Written

in terms of

more than two transition parameters the situation is

rather different, and the procedure for finding TCP is

a little more complicated. In the present paper, we will

discuss the case of the antiferroelectric phase transi-

tions, and the fe汀Oelectric phase transitions, on chang-

ing values of parameter in the free energy, where the

free energy is given in two
-

sublattice polarizations.
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2. Phase Diagrams

The set of all phase transitioll points, the phase

transition surface (PS), is equal to (PPS U SPS),

where PPS and SPS are the first order and the second

order phase transition surface, respectively3). The set

of first order phase transition surface is equal to the

coexistence su7face (CXS) and the second order phase

transition surface coincideswith the critical su,face

(CRS). The phase diagram is then the set (E, PS),

where E is the set of control variables.

Recently, a classification of phase diagrams was

discussed on the basis of the qualitative shapes of their

phase transition surfacesト7).
The
critical points of the

phase diagram for ferroelectrics have equal qualita-

tive shapes around the critical points (Tc, bc) and

( T'c, 0), respectively,

In this section we introduce a general family of

energy potential V(c., c2, -, Ch, Xl, Xb, -, Xn) depend-

ing on density
variables or order parametersx E rnand

A control parameters c ∈ Rh. The state of the physical

system is described by the value of xI Which minimizes

the potential, locally. Therefore, the equilibrium and

stability properties of the potential V(c, x) isgiven ;

aV/aXi-0 (1)

and

Hl,, - ∂2V/∂Xt∂Xj >0, (2)

where Hl･j is the Hessian matrix. The
equilibrium

points, or critical points, of a smooth potential function

V are the points at which △Ⅴ
- 0. Thecritical points

at which det H,I,･ + 0 are called isolated,non degene-

rated, or Morse critical points3). A phase transition

occurs when the point X
E Rn describing the state of

a physical system jumps from one critical branch to

another. If the Maxu)ell Convention is adopted, phase

transitions will occur when the ct汀Ve passes through

the component of the Maxwell set on which
two or

more global minima are degenerate. Systematic
caト

culations have been made by using the Catastrophe

theory for one order parameters-7). In the present

paper, we show an analytical method for the systems

with
two
order parameters.

3. Antiferroelectric Phase Transition

The phenomenological theories of Lntiferroelec-

tric phase transition have been developed by many

investigators, in which the free energy is expanded

into a power series in terms of two subla■ttice polariza-

tions8~20). In some cases the expansion is truncated at

the fourth order and then the second order transiton

comes out. On the other band, the first order antife汀0-

electric phase transition can be obtained when the

expansion is carried out
tp the sixth order. Moreover,

the free energy with sixth order
term may give rise

to

a qualitatively
new feature, that is, appearance of a

phase called
a semipolar phase, which

is
polar from

the symmetry viewpoint but has bomogeⅢeous
and

staggered polarization components simultaneously

even at no external field12).

When external field is applied to such a system,

illtereSting phase diagrams are drawn in the electric

field vs. temperature axis, for various values of

the coefficients of the free energy expansion. Espe-

cially, one may encounter the case where the first

order transition changes into the second order transi-

tion on applying electric field, that
is to say, one may

get the tricritical point(TCP) in the phase
diagram.

3. I Second Order Antiferroelectric Phase Tran･

8ition

We take the Kittel's expression of
free energy as

a function of polarization of two sublattice Pa and

Pb;8)

A-I(Pal+Pb2 )+gPaPb+h(.Pa4+Pb4 )-E(Pa+

Pb), g>0, h>0. (3)

On introducing two new order parameters Q- (Pa+

Pb)/V2 and q-(-Pa+▲(, /v2 which represent

the macroscopic alld staggered polarization, respe-

ctively. Eq. (3)is rewritten introducing new variables

aS;

a
-

(1+i)Q2+勿2+Q4+q4+6 Q2q2-eQ. (4)

Equilibrium condition of free eI一ergy
are given by

∂a/∂Q-2Q[1+i+2Q2+句2]-e-0(5)

and

aa/aq - 2q(i+勿2+6Q2)-0. (6)

There are several physically
different phases

obtained and to
distinguish them in this paper, we

adopt the following nomenclature ;

(I) Nonpolar (N):Q- 0,q-0,

(II) Polar (P) : Q +0,q -0,

(III) Antipolar (AP) : Q -0, q +0,

(IV) Semipolar (AP) : Q ≠0, q ≠0.
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We use the words
'polar'and 'antiz)olar'rather than

ferro'and rantlferroelectn'c

'
,

respectively. The values

of Q and q are determined by the external field like

the temperature and the applied field.

The stability of the equilibrium state is assured if

(7)

where the values representing the concerned equili-

brium state have to be substituted for Q in I Hij I

The second order phase transition takes place
to some

other phase when

l Htj I -0. (8)

The phase boundary between the states q+0 and q-

O isgivenbyeq.(8) as:

(1+t + 6Q2+6q2)(t+6Q2+6q2)-144Q2 q2;0. (9)

In this equation the second order phase transition

botmdary is given by putting q -0. The other lines

indicate the spinodal lines. The second order phase

boundary is determined by (5) and (9).

Let us consider the TCP where three critical lines

come together, Needless to say, TCP is located on the

second order transition line, where (5),(6)and (8) are

satified.

Notice that the value of Q in the P phase is deter-

mined by (5)(but not by(6) which is satisfied by any ¢

if q -0), which is an even function of q, that is, Q
-

Q(q2), when Q and q satisfy the relation

g(Q(q2), q)
- ∂a/∂Q -

g(Q(0), 0)+q2(d2g/

dq2)/2+･･･- 0, (10)

the continuity of Q against the change of q around

q - 0 is broken when d2g/dq2 changes its sign. At

the tricritical point, therefore, the relation

%･2-
･ (i)(

∂2α

才一-+普

∂2g

aQaq

dQ

dq

- 0, (ll)

has to be satisfied, where it is made use of that ¢ is an

even function ofq,thatis, (dQ / dq)-0 at q
- 0.
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If the second order transition
is determined by ∂2α /

aQ2 -Othe lasttermof (ll)is also zero, then TCP is

%:n:2:::idOtnbhdyei;;:ne,asgi;:adqo2?:fireIprnhe;a:t:i.tc:aa(s::∂¢2

ー2 t ー1/60

Fig.2(a) Calculated phase diagram for the second order

antiferroelectric phase transition. TCP is shown
in open circle.

Fig.2(b) Three dimensional phase diagram･
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is reduced

l + i-30Q2 -0,
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where d2Q/dg2 is calculated from (6). If we put

F-i +勿2 + 6Q2, d2Q/dq2 isgiven byFqq/FQ,

where F.q- ∂2F/aq2 and FQ- ∂F/∂O. So TCP is

simply calculated from (9) and (12)as20)

t-
-1/6.

(13)

The other critical lines should be considered, because

at TCP three critical lines come together. In case of

existing the staggered field e', the equilibrium condi-

tion (6)gives the field eras

e'-∂a/aq-初(i+6Q2 + 2q2). (14)

Therefore the other two critical lines are deduced

from (5),(9) and (14),which is easily calculated by

determining the enveloping of the spinodal lines. The

derivative (14)respect to qgives the critical
lines erin

the function of q as

e'- [-(3-1句2)q ±qv'(3-16d2)2+2048q4]/4.(15)

The critical lines e'are given by (14),(15)and (9). The

calculated phase diagrams are shown in Fig. 2.

3.2 The First Order Antiferroelectric Phase

Tramsition

The free energy for the first order antiferroelec-

tric phase transition has been already given and ana-

lyzed in details12)･14). Let us assume the free ellergy aS

A
-I(Pa2+Pp2) + gpapb + h(Pad+Pb4) +6Pa2Pb2

+ E(Pa2+Pb2)PaPb+i(Pa6+Pb6)

-E(Pa+Pb), (j>0), (16)

where Pa and Pb are Sublattice polarizations. Since

the alltiferroelectric phase transition is of interest

now, we assume that g>0. On introducillg two new

order parameters LQ- (Pa+Pb) / v,2 and q-(-Pa+

Pb)/V2, eq. (16)is rewritten

a-(1+i)Q2+tq2-m(Q4+q4+6Q2q2)

-m'(Q4+qL2Q2q2)

-m′′(Q4-q4)
+ Q6+q6+15Q2q2(Q2+q2)

- eQ.
(17)

The equilibrium state can be found by solving a set of

simultaneous equations :

%-2(1･t,Q

-4mQ(Q2+3q2)-4m′Q(Q2-q2) -4m′′Q3

+ 6Qs+ 60Q3q2+ 30(bしe- 0, (18)

% -2*-4-q(q2･3Q2,-4-,q(q2- Q2,

+ 4m′′q3 + 6d5+60Q2q3+ 30Q4q
- 0･ (19)

If q vanishes continuously on the phase boundary

between the polar and semlpOlar, the transition is of

the second order and the condition for it is expressed,

using (8),as

言｣富--let-6(-+-,I-′′)Q2･15Q4

=0
価)

Or

措-i-2(3---つQ2+15Q4-0･Ql,

since a2a/aQ8q-0 for q-0,where Q & obtained from

(18)with q-o by

e-2Q [1+i-2(m+m′+m′′)Q2+3Q4]. 留2)

If a2a/aQ2>a2a/ag2, i.e.,

1-2(4m′+3m′′)Q2>o セ3)

the phase boundary is determined by ¢1)and任2), while

if otherwise, by (17)and伽).

This is applied only to the second order transition,

With decreasing temperature and electric fiekl, the

first order transition may take place from a polar

phase to a semipolar phase when e ≠0, from a

nonpolar phase to an antipolar phase when e
-0
even

if both a2a/aQ2 and a2a/aq2 are still positive. The

determination of the phase boundary of the first order

transition is usually not easy even for such a simple

free energy as (17).Suzuki and Okada have already

presented several diagrams which are possible for

various combinations of m, m'and m" values of the

free energy (17)12).

Let us consider the TCP related to the transition

from a P phase(Q+0, q-0) to a SP phase(Q*0, q+

0), which takes place with decreasing field e. The

TCP is located on the second order transition line.

The relation (ll)has to be satisfied, it is made use of

that Q is an even function of q, that is, (dQ/dq)
- 0

at q-0. If the second order transition is determined

by a2a/aQ2- o the last term of(ll) isalso zero, then

TCP isgiven only by the condition a2g/aq2-o. So

TCP is simply calculated from (ll)and (18)as
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t-(3m-mつ(3m+ 7m′+6m′′)/ 15-1 伽)

and e isgiven by位2).

On the contrary, if the second order transition is

determined by a2a /aq2-o, the last termof (ll)has a

definite value. The simple calculation of (ll)gives

[4(3m-m)2+2(4m'+3m")(5m-3m'+m")

-15-60t]
02

PHRSE □JRGRRM ｡-I

PHRSE DIRGRRM e-I

-10 0 10 t

Fig. 3 Calculated phase diagrams. The adopted values

of parameters (m m'm")are (a)(4,-2,0), (b)

(4,-2, 1). The open circles indicate the tricriti･

cal point and the solid and the dotted lines

indicate the second and the first order phase

transition lines, respectively. CRS and CXS

indicate the critical surface and the coexistence

surface, respectively (for details. see ref. 1).
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+ [m+m'+m′′-2(4m'+3m′′)t]-0. ¢5)

Calculated phase diagrams are shown in Fig.3 for

various parameters,

4. Bragg･Williams Approximation Potential

We I10W COnSider the ferroelectric phase transition

in a two-sublattice model whose free energy is given

as21-26)

a(xl･苑,e)
-

-‡b(
x12･苑2)- b,xIX2-(xl一箱)

･言∑
((1･xl)ln(1+xz･)I

(llX,.) ln(11Xz･)12ln2) ,
伽)

where xl and xb Stand for sublattice polarizations, b

and ∂′the effective constants of interaction between

dipoles belonging to the same and different sublatti-

ces, respectively, and ♂ represent temperature. The

phase sequences to be obtained for various values of ∂

and ∂′have been studied21~24). The coefficients ∂ and

∂′can be regarded a some function of applied pressure

P or concentration y in a mixed crystal system

(such as K,(NH.)I_, NaC.H.06 4H20).

On introducing order parameters p and q as

P- (xl+xb)/2

q-(xl一箱)/ 2,

¢7)

C8)

representing the total and the staggered polarizations,

the free energy a(Ⅹl,屯, e)can be rewritten as a(?, q,

0). The equilibrium state can be found by solving

(2+♪+q)(2+I)-q)

b-b'

2

β

+了In

(2-♪-q)(2-♪+q)

q-1

(2+♪+q)(2-P+q)

- 0 e9)

(2-?-q)(2+q-q)
- 0. OO)

The paraelectric phase at hightemperatuTe is found

from伽) and伽) as

♪-0,

(b-bつq+1-e h2nh-lq, ol)

and as is seen from (8),the second order phase transi-

tion takes at eogiven by

&

1-q2
-∂+∂′ 82)
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Let us consider the TCP. Notice that the value of q in

the paraelectric phase (P-0) is determined by 80),

which is an even function of p, i.e., q -q(p2).
The

continuity of q against the change of ♪ around p-0,

where q and p satisfy

∂α

首≡g(p2, q(p2)) =0･

dP2

83)

is b,.ken when A changes its sign. The,ef.,e at

the TCP

d2g

dL)2 %･2% -
(な
dL)

･昔(i)2･著者--o
o4,

is satisfied. Paying attention to that q lS an even

function of p, we obtain from糾)

圭Ii--
4(b+b't)

Bet

qt

(llq,2)2
= 0.¢5)

On combining this and 82),we find b,rand e, satisfy the

equation at TCP

et-

[(b-bt′)v昔+1],由nh-lv音

-(b･bt′)(lp嵩)･
06)

ⅠⅢFig.4, several phase diagrams are shown in ∂′-♂

plane.

2 4 2 ▲

(a) b=1.25 (b) b=0.▲5

0.5 Ve
(c) b=0

Fig. 4 Calculated b'-e phase diagrams of the two

sublattice system whose free energy lS glVen aS

(1). P and F denote the paraelectric phase and the

ferroelectric phase, respectively. The solid and

the dotted curves indicate the second order and

tbe first order transition lines.(a) ∂-1.25. The

open circleindicates
the TCP. (b) b-0.45. The

figure in expanded ∝ale is some what schematic.

The solid circle indicates the critical point. (c)

∂=0.

5. DisctlSSions

ln the previous section we have showll the method

for finding the TCP in the model two-sublattice

system, applicable to the antiferroelectric crystals and

ferroelectric phase transition. External force used to

obtain
TCP′s is one which keeps the symmetry of

systems, as the Rocbelle salt type system, where TCP′

s have been derived with changing the parameter

values representing strength of dipole interaction. So

the extemal force inducing such changes does not

break the symmetry of the system.

In contrast to the case, it should be noted that the

extemal electric field as adopted in the antiferroe-

1ectric transition lower the symmetry of the system,

and the symmetry breaking term
-eQ
in (2)plays a

substaintial role in inducing TCP′s. In the present

paper, we showed the analytical metbed to get the

TCP′s for the systems with two order parameters.

Even the free energy is not expressed by the power

series, we showed that the TCP's are calculated by

(ll).The method showed in this paper may be powerful

to derive the TCP'sindifferent systems.

It will be of quite interest to study experimentally

the physical nature of TCP′s in antiferroelectric

crystals of the type discussedinthe present paper27-30)
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