溶鉄中の硫黄の活量

林 昭 二·鵜 野 達 二*

金属工学科 (1981年8月18日受理)

The Activity of Sulphur in Liquid Iron

Shoji HAYASHI and Tatsuji UNO Department of Metallurgical Engineering (Received August 18, 1981)

The equilibrium of a reaction between liquid iron and a H_2S-H_2 gas mixture was examined using a resistance furnace at 1500 ~ 1600° C.

The gas mixture could be preheated sufficiently and be prevented from thermal diffusion by adjusting the flow rate of the gases.

The effect of an argon addition to the gas mixture on the equilibrium of the reaction was also investigated. It was found from the results that a gas mixture can be fully at a state of thermal equilibrium.

The equilibrium of the reaction was obtained as follows.

$$\begin{split} & H_2(g) + \underline{S} = H_2S(g) \\ & \log K_1 \, (= p_{H2S}/p_{H2}a_s) = -1169/T - 1.963 \\ & e_s^{(S)} = -120/T + \, 0.017 \end{split}$$

1. 緒 言

溶鉄中の硫黄の活量を知ることは鉄鋼製錬での脱硫を 熱力学的に解明するうえに重要であり,主に溶鉄と H_aS $-H_a$ 混合ガスとの化学反応の平衡を測定することによ り溶鉄中の硫黄の活量が多くの研究者によって求められ てきた¹⁻¹⁰¹。しかし得られた各測定値にはかなり不一致 が認められている。これは測定方法が各研究者間で多少 異なるためと思われる。つまり加熱炉,混合ガスの調整, ガス流速および試料採取などに違いがみられる。石井 6^{21} は加熱炉の違いに注目し,誘導加熱と抵抗加熱によ る結果を比較検討した。その結果, H_2S-H_2 混合ガスの ように熱分離しやすいガスを用いる時にはガスの予熱が より効果的におこなえる抵抗加熱炉を採用して測定すべ きことを結論した。そこで抵抗加熱炉を用いた5者^{2,3,4,} 6^{30} の全測定値の平均値が推奨値として日本学術振興会 製鋼第19委員会より提出されている¹¹¹。しかし抵抗加熱 炉を用いたとしても混合ガスの流量が適切でないとガス が予熱不足になり熱分離を起す可能性もあるわけである ので、本研究では混合ガスの流量の影響について詳細に 調べた。

また将来, 例えば $H_2S-H_2O-H_2$ 混合ガスと溶鉄間の 反応の平衡を測定し、溶鉄中の硫黄と酸素の活量を求め る場合には, H_2S の熱解離平衡の計算結果が水蒸気ある いはアルゴン添加によりかなり低下するので, H_2S の熱 解離平衡達成についての知見が不可欠となる¹²⁾。しかし このことについては高温でのガス反応のためその反応速 度は速く十分に熱解離平衡が成立していると仮定される のが普通であり, 測定値を示しての議論はほとんどなか った。そこで H_2S-H_2 混合ガスにアルゴンを添加した 場合の影響を調べることにより H_2S の熱解離平衡達成 について検討した。

本研究では上述のような観点に立ち,より信頼性ある 測定値を得ることを期待しておこなわれた。

261

* 大同工業大学機械工学科

2. 実験装置,実験方法

実験装置はガス洗浄系と反応系から成る。

2.1 ガス洗浄系

Fig. 1 のように H₂S を 1 あるいは 2 vol.% 含む H₂
 S-H₂, H₂ および Ar の各市販ボンベガスを用い,それぞれ洗浄系,流量計を通し使用した。

Fig. 1 Gas purifying system

1:H₂S-H₂ gas cylinder 2:bleeder 3:CaCl₂ + P₂O₅ 4:flow meter 5:Pt asbestos furnace (250°C) 6:H₂ gas cylinder 7:Chromic acid mixture 8:sodalime 9:gas mixer 10:Ar gas cylinder 11:Cu net (550°C) 12:Mg chip (600°C) 13:H₂S absorbent 14:gas pump 15: water vapor saturator 16: soap film flow meter 17: Ar-5%H₂ gas cylinder 18:silicagel 19:P₂O₅ 20: to Pt6%Rh-Pt30%Rh couple 21:Hg manometer 22:to Mo furnace 23:to reaction tube

2.2 混合ガスの調整

各洗浄系を通過したガスは流量計とブリーダで正確に 所正の混合ガスに調整された。流量計の検定は石ケン膜 法でおこ な う。混合ガス中の H_2S はヨウ素滴定法で決 めた。 H_2S の吸収率は 99.7% であった。 分析は 3 回の 値が ± 1 % 誤差内に入るまでおこ な う。 H_2S-H_2 混合 ガスは 3 h 以上流すと組成が正常になることがわかった。

2.3 溶解実験

反応系を Fig. 2 に示す。試料の加熱溶解には モ リ ブ デン線抵抗加熱炉を用いた。反応管は純アルミナ管(内 径 42mm,長さ 800mm)である。ルツボは純アルミナ 製(内径 33mm,高さ 45mm)のものを用いた。

Fig. 2 Reaction furnace.

1: silicon rubber cap 2: gas mixture 3:Pt6% Rh-Pt30%Rh couple 4:Pt-Pt13%Rh couple 5: guide tube (Al_2O_3) 6:Ar gas 7:glass window 8:Ar-5%H₂ gas 9:Al₂O₃ protective tube 10: cooling water 11:Al₂O₃ reaction tube 12: brick 13:Mo heater 14:Al₂O₃ powder 15:crucible (Al_2O_3) 16:liquid iron 17:Al₂O₃ supporting tube 18: supporting tube 19:porcelain tube 20:Mo radiation shield 21:quartz tube 22: terminal

試料は市販の電解鉄と自作の硫化鉄粉を用い, 適当量 を秤量しルツボに入れた。硫化鉄は還元鉄粉と硫黄華を 等モル比に混合しガラス管内に真空封入し約 350°C, 3 days 保持し作製した。

溶解操作は以下のようにしておとなう。まずルツボを 炉中央に置き、管内を真空にした後にアルゴンで満す。 アルゴン気流中で炉を昇温する。反応温度まで上げた後 ガス導入管(純アルミナ製,内径10mm,長さ580mm) 上部から内径3~4mmの石英管で溶鉄を数g吸引採取 水中急冷し初期試料を得る。石英管はあらかじめアルゴ ンで十分置換して用いた。その後ガス導入管と溶鉄表面 間距離を2~3mm に調節する。所定の混合ガスにされ 正常に流されている混合ガスに切換える。以後所定の温 度,混合ガスで溶鉄が十分に平衡に達するようにし、石 英管で溶鉄を採取し平衡試料を得る。さらにその後,混 合ガスの組成を変えて溶解を続けた場合もあった。なお 溶解の途中で真温度の確認をする。

Pt-13% Rh 熱電対を溶鉄中に入れて反応温度の確認 をする。この熱電対の検定は Au と Pd を用いて線溶融 法でおこなった。 Pt6% Rh-Pt30% Rh 熱電対が温度制

262

御用に使われた。PID 制御により温度誤差を ±2°C に 保った。

2.4 硫黄の定量

硫黄は凝固に際し偏析しやすいので棒状試料を研磨, 洗浄後,全量を粉砕しその一部を秤り取った。硫黄定量 は全て硫酸バリウム重量法でおとなった。誤差は±1% 内にほとんどが入っていた。

3. 実験結果と考察

溶鉄と H₂S-H₂ 混合ガスとの反応の 平衡関係は次の ように表わせる。

$\mathrm{H}_{2}(g) + \underline{S} = \mathrm{H}_{2}S(g)$		(1)
$\mathbf{K}_{1} = \mathbf{p}_{\mathbf{H}_{2}\mathbf{S}} / \mathbf{p}_{\mathbf{H}_{2}} a_{\mathbf{S}}$		(2)
$K'_{1} = p_{H_{2}S} / p_{H_{2}} [\%S]$		(3)
$a_{\rm S} = f_{\rm S}^{({\rm S})}[\%{\rm S}]$	ан на 1	(4)
$\log f_{\rm S}^{\rm (S)} = e_{\rm S}^{\rm (S)} [\% {\rm S}]$		(5)

とこで K_1 は (1) 式反応の平衡定数, a_s は重量%で表 わした Henry 基準の溶鉄中の硫黄の活量, K'_1 は (1) 式 反応の見掛けの平衡定数, $f_s^{(s)}$, $e_s^{(s)}$ はそれぞれ溶鉄中の 硫黄の自己相互作用係数,自己相互作用助係数である。

なお溶鉄中の水素は硫黄の活量に影響しないものとし た。

3.1 混合ガスの熱解離平均値の計算

H₂S は高温で熱解離し HS, S₂, S などの各ガスが生成

Fig. 3 Effects of temperature and argon addition on the thermodynamically corrected values of pH_2S/pH_2 in gas mixture.

すると考えられるので以下の各式を用いて反応温度にお けるガス比 $p_{H_{2}S} / p_{H_{2}} を計算した³⁾$ 。 $H_{2}S(g) = 1/2H_{2}(g) + HS(g)$ $\Delta G^{0} = 40090 - 15.40T, K = p_{H_{2}}^{1/2} p_{H_{2}} / p_{H_{2}S}$ (6) $H_{2}S(g) = H_{2}(g) + 1/2 S_{2}(g)$

 $\Delta G^{0} = 21530 - 11.73T, \quad K = p_{H_{2}} \cdot p_{S2}^{1/2} / p_{H_{2}S}$ (7) $H_{2}S(g) = H_{2}(g) + S(g)$

 $\Delta G^{0} = 74000 - 26.33T, K = p_{H_{2}} \cdot p_{s} / p_{H_{2}s}$ $\underbrace{\text{number of atoms of hydrogen in inlet gas}}_{\text{number of atoms of sulphur in inlet gas}}$ (8)

$$=\frac{2p_{H2S}+2p_{H2}+p_{HS}}{p_{F2S}+p_{HS}+2p_{S2}+p_{S2}}$$
(9)

 $p_{H_2} + p_{H_{2S}} + p_{H_S} + p_{S_2} + p_{S} + p_{Ar} = 1$ (10) ただし p_i はガス成分 i の熱解離平衡分圧で, 炉内圧 は 1 atm とした。Fig. 3 に補正した p_{H_2S} / p_{H_2} の一例を 示す。高温ほどそしてガス比, p_{Ar} が増すほどその値は 減少することがわかる。

3.2 反応の平衡到達

溶鉄中の硫黄濃度と反応時間の関係を Fig.4 に示す。 D-1,2,4,5 をみると硫化方向で平衡に近づけるのには かなり長時間を要している。脱硫方向からでは初期硫黄 濃度が平衡硫黄濃度よりも約0.3%高めなら約10hで 平衡に達した。アルゴンを混合ガスに添加した場合はA -7,8,16のように約20hは必要であった。

Fig. 4 Approach to equilibrium

Heat N	IO	Heat	Gas (0	s flow r cc/min)	ate	p _{Ar}	р _{н2S} р _{н2}	-×10³	$\left(\frac{p_{H2S}}{p_{H2}}\right)_e$	%	S	Impu- rity	logK'	log K' ₁
iicat iv		(h)	${}^{\mathrm{H_2S}}_{\mathrm{H_2}}+$	Ar	Total	p _{H2}	inlet	equil.	$\left(\frac{p_{H2S}}{p_{H2}}\right)_{i}$	initial	equil.	%Si	logix ₁	$-(\log K'_1)_{Ave}$
G-1		12	736	0	736	0	4.91	4.69	0.956	2.58	2.38		-2.704	0.017
G–2		, ,,	600	. 0	600	0	4.96	4.74	0.956	2.38	2.34	0.092	-2.700	0.020
G-3*		,,,	400	0	400	0	4.78	4.57	0.956	2.72	2.42	-	-2.723	0.001
G4*		**	300	0	300	0	4.84	4.63	0.956	2.42	2.47	0.076	-2.732	-0.005
G-5*		,,,	100	0	100	0	4.93	4.71	0.956	2.63	2.52	0.090	-2.734	-0.005
H1		,,,	200	400	600	2.00	5.11	4.68	0.916	2.56	2.31	0.058	-2.698	0.021
H-3*		,,,,	200	200	400	1.00	5.10	4.76	0.934	2.86	2.50	0.058	-2.725	0.003
B-6*		, , , ,,	200	0	200	0	4.90	4.69	0.956	2.78	2.43	0.094	-2.721	0.003
A-1*		,,	70.2	348	420	4.99	5.30	4.63	0.873	2.43	2.46		-2.725	0.001
A-4*		13	80.2	240	320	3.01	5.29	4.76	0.900	2.60	2.60		-2.737	-0.004
A-5*		18	70.7	280	351	4.00	5.30	4.69	0.886	2.60	2.52		-2.731	-0.002
A-12		17	200	350	550	1.76	5.08	4.67	0.920	2.66	2.41		-2.712	0.011
A-13		8	220	430	650	1.97	5.07	4.65	0.917	2.41	2.35		-2.704	0.016
A-15		8	200	350	550	1.76	5.08	4.67	0.917	2.35	2.40		-2.711	0.012
A-16*		19	80.2	240	320	3.01	5.29	4.76	0.900	2.58	2.54		-2.726	0.003
A-21*		20	70.1	420	490	6.02	5.41	4.65	0.859	2.64	2.46		-2.724	0.002
b) 1	.600° (С												
A-6*		25	70.4	350	420	4.99	4.26	3.60	0.846	1.76	1.66		-2.663	0.002
A–7*		24	100	300	401	3.01	4.25	3.72	0.876	1.87	1.73		-2.667	0.001
A-8*	1.1	24	79.9	323	403	4.06	4.25	3.65	0.859	1.80	1.67	1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	-2.661	0.005
A-9*		20	70.4	422	492	6.02	4.21	3.50	0.832	1.67	1.59		-2.658	0.004
A-10*		23	200	0	200	0	3.96	3.74	0.944	1.93	1.76		-2.672	-0.003
A-11*		19	140	281	421	2.01	3.98	3.57	0.896	1.76	1.66			-0.002
A-22		18	201	399	599	2.00	4.39	3,93	0.894	1.87	1.78		-2.656	0.014
A-23		8	229	419	649	1.84	4.37	3.92	0.897	1.78	1.74		-2.648	0.021
C-4*	ан. 1911 - 1911 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914	12	200	0	200	0	4.27	4.03	0.943	2.02	1.89	0.092	-2.676	-0.001

Table 1 Effects of gas flow rate and argon addition on the equilibrium of the reaction at 1550°C and 1600°C. a) 1550°C

*mark: used as equilibrium results.

3.3 反応の平衡におよぼす混合ガス 流速とアルゴ ン添加の影響

本研究のような混合ガスを用いる時には混合ガスが溶 鉄表面に達するまでに反応温度に十分に達していること が重要である。この点でガスの予熱が良好な抵抗炉を用 いているわけであるが、ガス流速が増すと予熱が不十分 となり抵抗炉を用いたとしても正しい測定はできないと 考えられる。そこで溶鉄と混合ガスを平衡させ、溶鉄中 の硫黄を定量することによって調べた。実験結果を Table 1 に 1550、1600°C の場合について示す。混合ガ ス流速を 100 ~ 736 cc/min と変えた時の log K₁の平均 値からのずれの変化を Fig. 5 に示した。混合ガスにア ルゴンを入れた場合も含めて示したが、約 500 cc/min 以上で K₁が増す傾向が見いだされた。これはガス流速

が増すと予熱不足になり溶鉄表面上のガス境膜でガス温 度に差を生じるため $H_2S \ge H_2$ 分子の拡散速度に 差が できる。そして H_2S の方が低温部へ移動しやすい ため 溶鉄表面の H_2S 濃度が予熱十分 な 時の熱解離平衡値よ りも低くたるためと考えられる。このことを略図で示す と Fig. 6 のようになる。Sunderland ら¹³⁾ は浮揚溶解炉 を用いて $H_2S - H_2$ 混合ガスの熱拡散について研究した。 その中で熱拡散の結果として起る逆向きの H_2S 分子の流 速はガス境膜でのガスの温度勾配に比例して増すことを 示しており、Fig. 6 に示した考え方と一致している。な お溶鉄中の硫黄は溶鉄表面のガス組成と平衡するので分 析硫黄濃度は低くなり K_1' は増すことになる。また Fig. 5 で, $(\log K_1')_{Ave.} = \log K_1 + e_{S}^{(3)}$ [%S] であり Table 3 の結果を用いた。

次に混合ガスへのアルゴン添加の影響についての実験 結果を同じく Table 1 に示す。水素に対するアルゴン添 加比 Ar/H₂ が 0~6 について調べた。これらのうちで Fig. 5 よりガスの予熱が十分におこなわれるように流速 が 100~490 cc/min のものを用いて Fig. 7 に logK₁ へ の影響を示した。1550, 1600°C ともアルゴン 添加量が 増していっても log K₁ には影響しないものとなった。 このことは Fig. 3 のようにアルゴン添加量が増加するほ ど H₂S の熱解離の程度は大きくなる が、その補正され たガス組成と溶鉄が常に平衡していたことを意味する。 A-9 のように Ar/H₂ = 6, 1600°C の条件で H₂S は約16 %熱解離するという計算になるが、この程度までは十分 に混合ガスが熱解離平衡に達していたと推定される。ま

た熱力学数値の信頼性も相当高いことが認められた。

3.4 反応の平衡関係

(1) 式反応の平衡を 1500, 1550 および 1600°C で予熱 十分な H_2S-H_2 混合ガス流速として 200cc/min を用い て、ガス比 $p_{H_2s} / p_{H_2} = 0.936 \times 10^{-3} \sim 7.38 \times 10^{-3}$ の 範囲で測定した。その結果を Table 2 に示す。アルミナ ルツボから溶鉄へのシリコン汚染が一部に認められたの で $e_s^{(Si)} = 0.065^{14}$ を用いて (3) 式の $K'_1 \ge f_s^{(Si)}$ で割るこ とにより補正した。(2), (3) および (4) 式より

$$\log K'_1 = \log K_1 + \log f_s^{(5)}$$
 (11)
であるので Fig. 8 に各測定値を $\log K'_1$ と硫黄分析値[%
S] の関係で示した。約4%の範囲までを測定 し た が,
これらは各温度とも直線とみなせた。それらの関係を最
小2 乗法で求めた。(11) 式で [% S] $\rightarrow 0$ の時 $\log K'_1 \rightarrow 0$
 $\log K_1$ であるので Fig. 8 の縦軸切片の値から $\log K_1$ が.
また (5) 式であるので直線の勾配から $e_s^{(5)}$ がそれぞれ各

Fig. 8 Relation between $\log K'_1$ and [%S] at $1500^{\circ}C_r$ 1550°C and 1600°C.

Bulletin of Nagoya Institute of Technology Vol. 33 (1981)

	11e3. 1000 C)				to an anna a	nen an	4
Heat NO.	Heat time	P _{H2}	<u>s</u> -×10 ³	%	бS	Impurity	log K'
	(h)	inlet	equil.	initial	equil.	%Si	
F-1-4	18	4.82	4.66	2.90	2.62	0.136	-2.758
F-1-5	20	4.82	4.66	2.90	2.59	0.152	-2.754
F-2-5	22	2.99	2.90	2.08	1.40	0.240	-2.700
F-3-6	30	2.99	2.90	1.97	1.31	0.353	-2.679
F-5	12	4.25	4.12	2.52	2.24	0.040	-2.738
F-6	12	4.44	4.29	2.23	2.30	0.106	-2.736
F-7	12	5.08	4.92	2.95	2.79	0.085	-2.760
F-9	12	5.60	5.42	3.42	3.25	0.095	-2.785
F-11	12	5.81	5.62	3.94	3.60	0.020	-2.808
F-12	12	5.85	5.66	3.60	3.50	0.139	-2.801
F-13	12	6.36	6.15	4.48	4.26	0.024	-2.842
F –14	12	6.43	6.21	4.26	3.99	0.155	-2.818
F-15	12	3.96	3.84	2.21	2.02	0.030	-2.724
F-17	12	3.31	3.21	2.20	1.64	0.020	-2.709
F-19	12	2.79	2.71	1.48	1.36	0.00	-2.701
F-20	12	2.63	2.55	1.36	1.20	0.078	-2.679
M-8	16	5.78	5.58	4.09	3.42	0.201	-2.800
B-1	12	3.16	3.03	1.37	1.32	0.420	-2.666
B-2	12	2.77	2.66	1.32	1.15	0.510	-2.669
B5	12	5.23	5.00	2.87	2.78	0.00	-2.745
B-6	12	4.90	4.69	2.78	2.43	0.094	-2.721
B-7	12	6.28	5.99	3.55	3.55	0.030	-2.774
B-8	12	5.97	5.70	3.55	3.24	0.195	-2.767
B-10	11	6.71	6.39	4.53	3.82	0.233	-2.792
B-15	12	2.39	2.29	1.18	1.05	0.00	-2.661
B-17	13	3.48	3.34	1.77	1.60	0.00	-2.682
B-18	12	2.99	2.86	1.60	1.33	0.022	-2.667
B-19-1	18	6.60	6.29	4.11	3.99	0.097	-2.809
B-19-2	20	6.60	6.29	4.11	3.74	0.142	-2.783
B-23-2	20	2.35	2.26	1.09	0.955	0.258	-2.643
B-24-1	19	1.89	1.82	0.917	0.762	0.146	-2.633
.B-24-2	21	1.89	1.82	0.917	0.789	0.207	-2.652
B-25	19	1.46	1.40	0.674	0.604	0.063	-2.639
B-26	20	0.936	0.901	0.458	0.375	0.043	-2.622
B-27-1	20	2.80	2.69	1.50	1.23	0.048	-2.662
B-27-2	23.5	2.80	2.69	1.50	1.25	0.059	-2.673
B-28-2	22	3.30	3.16	1.82	1.51	0.053	-2.681
B-29-2	21	3.83	3.67	2.16	1.84	0.015	-2.701
R-30-1	. 17	4.44	4.33	2.31	2.24	0.00	-2.713
B-30-2	20	4.44	4.33	2.31	2.18	0.009	-2.703
G-3	20	4.78	4.57	2.72	2.42	0.00	-2.723
G-4	20	4.84	4.62	2.42	2.47	0.076	-2.732
G-3	20	4.93	4.71	2.63	2.52	0,090	-2.734
H–3	20	5.10	4.76	2.86	2.50	0.058	-2.725

Table 2 Experimental results at 1500°C, 1550°C and 1600°C (F,M series: 1500°C, B, G, H series: 1550°C, C series: 1600°C)

名古屋工業大学学報 第33巻(1981)

	Heat time	$\frac{P_{H_{2S}}}{P_{H_{2}}}$	×10 ³	%	S	Impurity	$\log K'_1$
Heat NO.	(h)	inlet	equil.	initial	equil.	% S	
	12	2 36	2.24	1.00	0.868	0.469	-2.622
C-2	12	4.27	4.03	2.02	1.89	0.092	-2.676
C-4	12	3.27	3.09	1.85	1.39	0.00	-2.651
C-6	12	1.06	1.01	0.41	0.412	0.013	2.610
C-8	12	1.00	1.14	0.412	0.458	0.086	-2.610
C-9	12.5	1.20	1 43	0.688	0.560	0.337	-2.615
C-10	12	1.50	1.61	0.560	0.600	0.670	2,615
C-11	12	6.27	5.97	2.93	2.69	0.975	-2.717
C-14	12	7.22	6.76	3 29	3.77	0.178	-2.758
C-15	12	7.22	6.01	3.77	4.02	0.317	-2.785
C-16	12	1.38	6.91	3.16	3.17	0.160	-2.732
C-17	12	6.41	6.02	3.10	3.00	0.256	-2.731
C–18	12	6.17	5.79	3.17	5.00	0.250	

Fig. 9 Comparison of the temperature dependence of logK₁.

温度で得られ、これらを Table 3 に示す。

Fig. 9 に log K₁ と絶対温度の逆数 1/T の関係を示 す。他の測定値とよく一致したが,多少温度依存性の少 い結果となった。

Fig. 10 に e^(S) と 1/T の関係を示す。その温度依存式 は log K₁ とともに Table 3 のように得 ら れ た。e^(S) の 値が負であることより溶鉄中の硫黄原子間に引力が働い ていることがわかる。そしてその力は高温ほど弱くなる 傾向を示しており妥当な結果といえる。 e^(S) については 同じく抵抗炉使用の石井ら²⁾ の結果にきわめてよく一致 した。彼らは混合ガス流速を 100~400 cc/min と変えて も本反応の測定値には影響しないことを示した¹⁵⁾。この 結果は 3.3 で示したものとよく一致したが,熱解離平衡 や熱分離についての解釈で彼らは著者らと多少異なった 考えを示している。つまりガス流速が小さいと熱分離が 起るとしているが,本研究では Sunderland ら¹³⁾の考え と同様に熱分離はガス境膜でのガスの温度勾配に関係す

- © Sherman, et al (Ⅰ)⁹) Ishii, Fuwa (Ⅰ)²)
- ♦ Adachi, Morita (R)⁶⁾ 🛛 Ishii, Fuwa (R)²⁾
- Yoshii, Takahashi (1)⁷⁾ 🔹 Ikada , Hayashi , Uno (1)¹⁾
- O Ban-ya, Chipman (R)³⁾ ⊽ Ichise, etal (K)¹⁶⁾
- △ Yoshii, Takahashi (R)8) @ This work (R)
- (I: Induction furnace, R: Resistance Furnace, K: Knudsen cell mass spectrometer)
- Fig. 10 Comparison of the temperature dependence of $e_8^{(S)}$.

るとし、また熱解離平衡はガス温度に従って常に達成されているものとした。そのようにして本研究では熱解離 平衡と熱分離効果をうまく2つに分け、測定値の内容を 解釈した。しかしながら彼ら¹⁵⁾と本研究の測定条件が低 とんど同一なため e^(S)のよい一致は当然の結果といえ る。また Knudsen cell と質量分析計の組み合せという 本測定とは異なった測定によって得られた一瀬ら¹⁶⁾の値 にも近いものとなり興味深い。

なお得られた各温度での平衡定数と相互作用助係数に

Temperature	log	K ₁	$e_{ m S}^{(m S)}$		
°C		a		a	
1500	-2.622	0.0024	-0.051	0.0009	
1550	-2.604	0.0016	-0.049	0.0007	
1600	-2.587	0.0016	-0.047	0.0007	

 Table 3 Equilibrium constants and interaction parameters

a: probable errors of experimental values (reliability, 50%)

ついて確率誤差(信頼限界50%)を用いてそれらからの ばらつきの程度を Table 3 に合わせて示した"。

4. 結 言

溶鉄と H₂S-H₂ 混合ガスとの反応の平衡を抵抗加熱 炉を用いて 1500~1600°C で測定した。この時,特に反 応の平衡に及ぼす混合ガスへのアルゴン添加と混合ガス 流速の影響について検討し,混合ガスの熱解離平衡達成 を確認しまた予熱十分な混合ガス流速範囲を知った。そ して以下のような反応の平衡関係を得た。

$$\mathrm{H}_{2}(\mathrm{g}) + \mathrm{S} = \mathrm{H}_{2}\mathrm{S}(\mathrm{g})$$

$$\log K_1 (= p_{H_2S} / p_{H_2}a_S) = -1169/T - 1.963$$
$$e_S^{(S)} = -120/T + 0.017$$

終りに本研究の遂行に一部御協力下さった今井潔工学 修士(現,日本フィッシヤ),坂井秀輝技官(現,名古 屋市立工芸高校),そして有益な御助言を賜わりました 本学平尾次郎助教授,および名古屋大学坂尾弘教授に心 から感謝いたします。 献

- 1)
 (7) (7) (1975), p. 2321
- 2) 石井不二夫, 不破祐:学振19委-9095(1970)

文

- S. Ban-ya and J. Chipman: Trans. Met. Soc. AIME, 242 (1968), p. 940.
- 4) J. P. Morris and A. J. Williams: Trans. ASM, 41 (1949), P. 1425
- 5) J.A. Cordier and J. Chipman: Trans. AIME, 202 (1955), p. 905
- 6) 足立彰, 森田善一郎:鉄と鋼, 44 (1958), p. 637
- 7) 吉井周雄, 高稿護:学振19委-8528(1967)
- 8) 吉井周雄, 高稿護:学振19委-9038(1970)
- C. W. Sherman, H.J. Elvander and J. Chipman: Trans. AIME, 188 (1950), p. 334
- 10) 吉田浩二, 萬谷志郎, 不破祐: 鉄と鋼, 53(1967) p. 783
- 11) 松下幸雄, 坂尾弘:鉄と鋼, 58(1972), p. 1535
- 12) 林昭二, 鵜野達二:同上, 投稿中,
- 13) M. Sunderland, A.E.Hamielec, W.K.Lu and A. Mclean: Met. Trans., 4 (1973), p. 575
- 14) H. Schenck und E. Steinmetz: Wirkungsparameter von Begleitelementen flussiger Eisenlösungen und ihre gegenseitigen Beziehungen, 2 erg. Aufl. Stahleisen Sonderberichte Heft 7 (1978), p. 37
- 15) 石井不二夫, 不破祐:鉄と鋼, 67(1981), p. 736
- 16) 一瀬英爾, 北尾幸市, 盛利貞: 鉄と鋼, **60**(1974), p. 2119