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As the generalizations of the Riemann’s mapping theorem in a complex variable, three types

of canonical domains of a bounded domain in C* are studied by S. Bergman, M. Maschler and

others.

The purpose of this paper is to investigate various properties, relations and distortion theorems

on these canonical domains and the canonical mappings of the biholomorphic equivalent class of

a bounded domain.

Unfortunately, the uniqueness of each one of these canonical domains of the biholomorphic

equivalent class does not hold. In order to avoid this difficulty, lastly we shall define another canon-

ical domain, i. e., the normal domain.

1. Introduction

By the Riemann’s mapping theorem in a complex
variable, we can get a disc as the canonical domain
of the conformal equivalent class of a simply connected
domain in C. But in several complex variables, it is
known that a ball is not biholomorphically equivalent
to a polycylinder. Therefore, even simply connected
domains in C” do not necessarily have the same
canonical domain. This suggests complicated circums-
tances on the canonical domain of a bounded domain
in C* (n=2).

Using extremal functions expressed in terms of
the Bergman kernel function, three types of canonical
domains of a bjunded domain in C* are defined and
studied by S. Bergman[1], M. Maschler [7], [8], ].
Mitchell [11] and others [9], [10], [12], [13].

The purpose of this paper is to investigate the
various properties, relations and distortion theorems
on the canonical domains and canonical mappings of

the biholomorphic equivalent class of a bounded

domain.

Unfortunately, the uniqueness of each one of
these canonical domains of the biholomorphic equivalent
class does not hold, since they depend on the initial
conditions and the distinguished point. In order to avoid
this difficulty, lastly we shall define another canonical

domain, i. e., the normal domain.
2, Minimum problem and canonical domains

Let D be a bounded domain in C* and H,,,2
(D) be the class of p-tuple vector functions f (2) =
HF@), e, fp(2)), z=*'(zy,-,2,) such that f,(z)
(=1, -+, p) belong to the class H2(D)
square integrable holomorphic functions and [, f=A

f Lebesgue

(A: a given constant matrix of the type of [, f),
where [, denotes a bounded linear functional evalu-
ated at ¢, which is called a distinguished point.

vol (D), #p(2, ), Tp(z, f) and My 4(2, t) denote
the Euclidean volume of D, the Bergman kernel
function of D, the Bergman metric tensor and the

minimizing function ¢H, ,,2(D) such that

[ 1Monte O [P0 11/@) ] 2,
feH, 4,0 % (D), respectively. o, denotes the Euclidean
measure and

Tp(z, 7)=D,*D,log kp(z, i)

= (k(z, Dky (e, 1) —ky (3, E)k (2, 1)) /R (2 ©),
where D,=0d/0z= (9/02, ---,0/02,), D *=* (3/3Z)
and

ki3, 1) = (DX (D) ikp (2, §).

Lemma 2,1 The minimizing function in H, 4 2
(D) is given by

2.1 Mpz )=A@*O0®)'0*®)¢(2),
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where ¢ (z) denote an orthonormal base of the complex
Hilbert space H2(D) and @ (t) denotes [, .
The L2-minimum value of My 4(z, t) s given by

(2.2) Z,4(0) =Trace| Mpa(z, 1) (Mp.a(s )%,
= Trace[A(®* (1) @ (1)) "LA*).

Here and after A* denotes the transpos:d conjugate
matrix of A. It is clear that ®* () ® () =L*Likp (e, )
and O* (8) ¢ (2) =L kp (3, ).

The proof of this lemma is given by the same
manner as in [10], so we omitt this.

First, we enumerate some known resuls on mini-
mum values (see [10]).

(2.3) dpn (&) =1/kp(t, T), LSf=(F)=(),
(2.4) Ap.co,n(t W)=1/Tkp(t, Du*Tp(t, Bul,
Lif=(@),8,f/@#)=(0, 1), where d, (-) denotes ((3/

6z) «)u=(D,*)u.
For an n-tuple vector function f(2)eH, 0.5, (D)
with [, f=(1, D) f=(0, E),

unit matrix E, of order #, the minimizing function

where E denotes the

and the minimum value are given by

(2.5) Mp.cor> @ t) =T '[kky(z, &) -kk(z £)1/F
and

(2.6) 2p,c0.m () =Trace[kT]71,
where &, (z, )= (D.*)"(D.)%kp(z, 1), ky=rk;@, 1)
and T=T, (¢, ). (2.6) is given by

k k7t
en [, o)
1/k-+koy (RT) Yhyo /by, —ko (RT)71/E

:{— (kT) ko /k, (*,T)™ }

(i) Minimal domain in C”

A bounded domain D is called the minimal comain
with center at = eD (with respect to a distinguished
point t) if vol (D) <vol(f (D)) holds for any holomorphic
map f(2) =*(f1@), -, f,(2)), 2="(21,*";2,), whichis
locally one-tc-one expect in a denumerable number
of analytic segments of manifolds of complex dimen-
sions <<n—1, with 2 single-valued Jacobian and (f (2},
det(D,f (1)) = (v, 1) [7], [81.

It is krown that a domain D is a minimal domain
with center at ¢ if and only if

(2.8) Mp,1y(z, ©)=kp(z, 7)/kp(z, T)=1, 2D,
or

(2.9) 1/vol(D)=ky(zr, 7)=<kp(z,2), z D,
where the equality ot (2,9) holds only for z=7 [6].

A holomorphic map w(z), which maps a bounded
schlicht domain D onto a minimal domain 4 with
center at v under the initial conditions w(f) =z, det
(D (2)) =1, satisfies

(2.10) det(Dw(2)) =kp(2, &) /kp(t, ), 2 eD.
This minima!l function w(z) may not be unique.

For n=1, w(z) = :kD(z, t) /kp(t, t)dz denotes
the caronical mepping of the Riemann’s mapping

theorem in C.

(ii) Representative domain in C*

For a bounded schlicht dcmain D, the image
cdomain 4 of D under the mapping (representative
Sfunction)

(2.11) w @) =Mp.co.5>(2s 8) /Mp,c1y (3 B)+7

=Tot(t, B[ Tole, Ddate
is called the representative domain with center at r
(with respect to a distinguished roint ¢),
A domain D is a representative domain with

center at ¢ if and only if

(2.12) Mp, 0,55, ) /Mp,cy @, T)
=Ty (s, f)ijD(z, ) dz=z—1, 2D
or
(2.13) Tp(z, 7)=Tp(r, ), z D,
Because of the biholomorphic relative invariance:
(2.14) Tolz, 1) =Dx®))*Ts(x(), x))D:x @
under any biholomorphic map x(z) with x (D) =4, the
repre‘sentative function (2,11) is biholomorphic in-

variant under D x (f) =FE.

(iii) Minimal domain of moment of inertia in C*
(shortly moment minimal domain)
Such a minimizing map w(z)eH, .5, *(D)
that

PRI IS D AR

where 4(0) and 4 are image domains under the map-
rings w(z) and f(z) of D, respectively, is called the
minimal function of moment of inertia (shortly,
moment minimal function) and the image domain
4(0) =w(D) is called the moment minimal domain
with center at r=w(¢) (with respect to a distinguished
roint ¢). The moment minimal function w(2) satisfies

(2.15) (w(z) —7)det (Dw(z)) =Mp.co.;> 3 ?).

A domain D is a moment minimal domain with
center at v ¢D if and only if
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(2.16) Mpom (2, ©)=Tp (s, f)f'f‘u @ 7)dz
=z—r1, zeD, ’

or

2.17) Tote, D =Ty(r, 2)=Tp(r, 7), 2¢D,
where

2.18) Tote, )=k ku(z, ) —kio k(2 7)1/R2,
ki=k;;(r, 7).

It is known that there exists a representative
but nonminimal domain with the same center.

Definition 2,1 We call a point f ¢C®, which
satisfies

219 [ G—De=0,
to be the center of gravity of D,

f is the center of gravity in the ordinary sense
in E2#, A bounded domain D has only one center of
gravity:

(2.20) i= f _20,/vol (D)

and it holds that for any ¢ «C*
2.21) 1(D, §=I(D,{)+|t—i|*vol(D),
where (D, t) denotes the moment of inertia of D

with respect to t:f | lz2—t] |?w,.
D

Notice that for a moment minimal domain D with
center at ¢, ¢D I(D, t)=I(D, f) holds, where the
center of gravity £ of D may not belong to D. The
equality holds if and only if f=1#) D,

3. Relations among the canonical domains

Lemma 3.1 Arbitrary two conditions among the
following
(i) D is a minimal domain with center at t,

(ii) D is a representative domain with center at v and
(iii) D #s a moment minimal domain with center at
are sufficient to the remainder [9],

We call a domain D with (i) and (ii) (conseq-
uently (iii)) a standard domain with center at r,
Necessary and sufficient conditions that D is a standard
domain with center at t are k, (2, 7)=c and kp (3,
7)=c" in D, Complete Carathéodory circular domains
and in particular the classical Cartan domains with
center at the origin are standard domains with center
at the origin.

Hereafter, without loss of generality we shall treat
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canonical domains with center at the origin, since
parallel transformations preserve the canonical prop-
erties.

Further, if confusions will not occur, without notice
we shall sometimes use the abbreviated notations %;
(2, f)and k;; instead of (D,*)*(D,)%k, (2, ) and (D,*)!
(D) kp (¢, ), respectively.

Lemma 3,2 Lot D be a bounded minimal domain
with center at the origin tn D, then we have
(i) for any function f(z) ¢H?(D) with f(0) =0,

[ f@o=0,

(ii) the center of a minimal domain D is the center of
gravity of D.

(i) shows that thz center of a minimal domain is
uniquz (cf. [7]) and I(D, 0)<I(D, t), t<C", holds,
where the equality holds when and only when t=(,

Proof. By (2.8) and the reproducing property of
the Bergman kernel function we have

[f@o=[ f@re 0/t0, 0o,

D D

which shows (i), We have, from (i), szw,=0,
which shows (ii) (see (2.21)).

Theorem 3.1 Let D bz a bounded minimal domain
with center at the origin, then the following conditions
are equivalent.

(1) D is a represzmtative domain with center at
the origin,

(i) D s @ momznt minimal domain with center
at the origin,

(i) ky1(z, 0) =411 (0, 0) or ky(z, 0) =k (0, 0)z
in D,

(vi) I(D, 0)=vol(D)Trace[Tp(0, 0)],
which is equivalent to p*=Trace[ Tp™1(0, 0)]. p denotes
the radius of rotation of D,

Proof. (i) <> (ii) is clear from Lemma 3,1,

A minimal domain D with center at the origin
is also a representative domain with the same
center if and only if T, (z, 0)=T5(0, 0), i.e., k(3
0) /£(0, 0)=F; (0, 0)/£(0,0), since kp(z, 0) =k (0,
0) holds in D. This shows (i) <= (iii),

Finally, we shall show that (ii) <= (iv), Let D
be a minimal and also moment minimal domain with

the same center at the origin, then we have from
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(2.6), (2.9) and (2,16)

10, 0 ={ 1zl 12o={ [1Ms.0.00 011%,
=p,c0,py (0) =Trace[k, (0, 0) T5(0,0)]7"
=vol (D) Trace[ 7,71 (0, 0)]=vol(D)e?,

since 0 is the center of gravity of D from Lemma
3.2. Therefore, we have (ii) = (iv).

The converse is true, since

I(D, 0) =vol (D) Trace Tp™' (0, 0) =2p,co,z (0)
and for any f(2) in (0, E)-class

16£0),0 = [1f1120,= |1f @)et®.f) | %,
Z2p,0.5 (00 =1(D, 0)
hold, where 4=f(D), This shows (iv)= (ii),

Example 3.1 In B,= {z ¢C*|z*2<{1}, we have
kp(z, 0) = (1—L*2)~**Dp! /nn | o=n!/z"
=1/vol(B,),
Tp(z, 0)=(n+1) (E—2l*) 7L (1—L*2) oo
= (n+1)E,
kp11(z, 0) = (n+1) | E/n",
I(B,, 0)= f :rZS () dr=nz"] (n--1) | =g?vol (B,)
and
Trace[ Tp1(0, 0)]=Trace[(n-+1) E]=n/(n+1) =p?,
where vol (B,) =="/n! and S(r) denotes the volume of
=72 (0=r=1).

Lemma 3,3 Lzt D bz a momzant minimal domain
with contzr at the origin, thon the following conditions
are equivalent.

(i) thz origin is thz canter of gravity of D,

(i) kp,01(0, 0)=0 or kp,1,(0, 0)=0.

Proof. From the Risez’s theorem we have

J‘ za’z=f My, 0.5 (2, 0)o,
D D

=750, 0) [,k kio (2, 0) —kuok (2, 0)1/Ho,
=—(BTp(0, 0)) ik,
which shows that (i) < (ii).

Theorem 3,2 Let D bz a moment minimal domain,
whosz center at the origin is also the center of gravity
of itself, then

kp,10(2, 0)=Fkp,11(0,0)2, z &D
holds. The converse is true.

Proof. For a domain D as above, from Lemma
3.3 and (2,16) we have

2=Mp o5 (2, 0)={[k11/k] 0z, 0)/F.
Therefore, we have %y, (2, 0) =k, in D.
On the other hand, if D satisfies (2, 0) =ky2,

then we have k=0 and %, (z, 0) =k, in D. Therefore,
we have
Mp,co,5 (2, 0)=Tp71(0, 0)kio(2, 0)/k
=ky k=2,
which shows that Dis a moment minimal domain
with center at the origin. From Lemma 3, 3 the origin

is also the center of gravity of D.

Remark 3,1 The Christoffel symbol is expressed
by the matrix Tp,™'(z, 2)D,Tp(z, z) [6]. If Dis a
representative domain with center at ¢, then we easily
have, from (2,13),

Tp71(¢, £)D,Tp(t, I)=0 (i. e., flat at ¢ D).

If D is a moment minimal domain, whose center
at ¢ is also the center of gravity of itself, then the

Christoffel symbol equals to Q at ¢ Indeed, differentiating
2—t=Mp 0,5, (3, ?)
= (kTp) k(2 #) f Tz, fde
i

two times with respect to z, we have the result.

Theorem 3,3 Let D be a bounded homogencous
Lu Qi-Keng domain (kp(z, {) %0 in DX D*)and also
a representative domain with center at the origin, then
D is @ minimal domain with the same center if and
only z'f the biholomorphic invariant

(3.1) Jo(z, Q)=det Tp(z, {)/kp(z, {)=constant
holds in DX D*,

In particular, homogencous standard domains, say
classical Cartan domains, have the property (3.1) (cf.
[7] Corollary 1).

Proof. If D is a refresentative and also minimal
domain with center at the origin, we have

Jb(z, 0)=det Tp(z, 0)/kp(2, 0)

=det Tp(0, 0) /kp (0, 0)=Jp(0, 0), 2 eD.
For any transitive map A (z) with & (0)=¢, C eD,
we have, from the biholomorphic relative invariances
of ky(z, f)and det Tp(z, ),

Jo(z, 0)=det Tp(z, 0)/kp(z, 0)

=det Tp(h(2), {)/kp(he(2), Q)
=Jplh(z), O=Jp(w, §), (w, {)eDXD,
which shows (3,1).
Converse is true from (3.1), (2.13) and (2,8).

4, Distortions in canonical domains

We define the sets of points
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c(Dy={t eD|kp(t, I)=1/vol (D)}
and
mD)={t eDiky (2, T) émig kp(z, 2)} [3].

If kp(z, 2) becomes infinite everywhere on aD,
say D is a pseudoconvex domain of holomorphy or a
homogeneous domain [2], [6], then

m (D) #¢ and m (D) Dc (D),
The set ¢(D) consists of at most one point of D, and
is nonempty if and only if ¢ (D) =m (D).
D is a minimal domain with center at ¢ if and
only if ¢t=c(D) ¢ as is stated before.

Theorem 4,1 Let D be a bounded homogensous
domain and F(2) be a bikolomorphic map of D onto
4=F (D), If f(2) is a holomorphic map of D into 4,
then we have the gencralized Schwarz lemma

4.1 |det(D.f(2)) 12<kp (2, 2) /ks(f(2), fR))

=det Ty (z, 2) /det Ty(f(2), F@), 2D,

Proof. Let G(z) be a holomorphic map of D into
itself with a fixed point ¢ eD, then we have

(4.2) |det(D,G (1)) |<1,
since (DGO *(D.G M) *<RTo(t, §), k=1,2, -,
hold from the fundamental theorem of K.H. Look (see
[101). Set G(z) = (F~loh,of)(z) for a transitive map
h,{(w) of 4(4: homogeneous) with h(a) =8=F(f) and
a=f(t), then G(z) maps D holomorphically into D
with G(¢) =¢, From (4.2) we have

[det(D,G (?)) | =|det (D, (F Lok of )(8)) | <1.
Noting that dF-!/dF= (D.F(2))71, we have

[det(D,f(#)) |<|det(D,F (#)) | /|det (Dh,(a)) |.
The biholomorphic relative invariances of the Bergman
kernel function and the Bergman metric tensor

give us

kp(t, ©)=ks(8, B)|det(DF @))% -

ka(a, @)=k;(B, P)|det(D.h,(a))|?
and

det Tp (¢, ) =det T4(5, B)|det(D.F()) |2

det Ty (e, a)=det T,(B, B)|det(Dh,(a))|?:
Therefore, we obtain the result, since we may take
¢ to be an arbitrary point in D.

Corollary 4,1 If f(2) maps a bounded homogene-
ous domain D into itself, them we have

4.3) |det(D.f @) |°<ks(z, 2)/kp(f(2), T),
z eD [2], [6].

In particular, for vy em (D), which is nonempty,
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we have

(4.4) | det(D.f(r)) =1 (¢f. (4.2).

Corollary 4,2 In Theorem 4.1, since v, em(d)
exists, wz have

(4.5) |det(D.f(2)) |*=<kp (2, 2)/ka(zo, To), 2D,

In particular, if v, belongs to c(4), wz have

(4.6) |det(D,f(2)) |2=<vol(d) kp (2, 2), z D,

Theorem 4,2 Lot D be a bounded domain with t,
em (D) and F(z) bz a bikolomorphic map of D onto
F(D) with ©w=F () em(F(D)) ({+£4,), then we have

(4.7) |det(D,F (%)) |2=kp (to, fo) /kreos (to, To)

= |det(D.F (%)) |

In particular, if D is a bounded homogencous
domain and w=f(z) maps D holomorphically into
F(D), then we have (4.7) and further

(4.8) |det(DF () |=max(|det(D,f (D)1,
|det (D f (k) |}.

Proof. We easily have, for r=F({,),

| det (D.F(2)) |2=kp (¢, ) /krcpy (Tos %)

=kp (o, o) [kreny (tos To) Zhp (to, £0) /Erepy (z, 7)

=|det(D,F (%)) |2.

If D is a bounded homogeneous domain, (D) is
nonempty and F(D) is homogeneous with m (F (D))
#¢. Therefore, we have, for F () =z,

|det (D, F(#)) |2=kp (s, £) /kpery (F(8), F(@))

ko (b, &) [Rpeny (f(2), F@))

=(kp(t, 1) /kp(2,2)) (kp(z, 2) [krepy (f(3), f@)

= (kp(t, 7)/kp(z, 2))|det(D,f(2)) (% zeD,
since from Theorem 4, 1 for 4=F (D)

|det (D, f (2)) |12<kn (2, 2) /kpcoy (f(2), F (@)
holds. Hence from %, (2, 2) =k, (4, Z,) we easily have
4.8).

Theorem 4.3 Let D and F(D) be bounded mini-
mal domains with center at &y ec(D) and ty ec (F (D)),
respectively, where F(z) maps D biholomorphically onto
F(D) with F(t) =y, then we have

(4.9) \det(D.F(2)) |2=vol (F (D)) /vol (D)

=|det(D,F(t)) |2,
where the equality signs hold if and omly if t=t,,

In particular, if F(z) is a volume preserving
biholomorphic map, then we have

(4.10) |det(D,F(8))| =1z |det (D,F (%)) [7].
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Proof. From (4,7) and (2.9) we have (4.9) and
4.10).

Remark 4.2 If det(D,F(t)) =1, F(z) is a min-
imal map of D with center at r,, Therefore, vol (F
(D))<vol(D). Then we have |det(D.F(%))I=1,
where equality holds if and only if vol (F(D))=vol(D).

Corollary 4.2 Let D and 4 be bounded minimal
domains with center at t, e«c(D) and v, ec(d), re-
spectively. If there exists a biholomorphic map of D
onto 4 with F() =1y, then we have

(4.11) det(D,F(z)) =det(D,F(8))kp (2, 1) /kp(t, ?)

=det (D,F (1)) Mp,> 2, 1)
and
(4.12) ckp™i(t, D) |kp(2, ) |=|det(D,F(2))|
Zclkp(z, 1)1 (¢f. (4.5) and (4.6)),
where c="[vol (D)vol (4) ]2 and the equalily signs in
(4.12) hold when and only when t=t,.

In particular, when t=t, and F(t)) =1, hold, we
have

(4.13) det(D,F(2)) =det(D.F (L)), z D,
and

(4.14) |det (D.F (t,)) | =[vol (F(D)) /vol (D) 1V2,

Further, if vol (D) =vol (4) holds, we have

(4.15) det(D,F(2)) =e*, zeD,

where i= —1 and 0 denotes a real constant.

Theorem 4.4 Let D and 4 be representative
domains with center at ty and v, respectively. If there
exists a biholomorphic map F(z) of D onto 4 with
F(t) =z, thenm we have, from (2,11) and (2.14),

4.16) F@&)=DFO) T D To, Ddst
F ). '

In particular, for t=t, and F(t)) =1, we have

(4.17) F(2) = (D.F (%)) (2—%) +ro.

Corollary 4.8 Let D be a bounded homogeneous
standard domain with center at t,, them D can not
have more than ome center as a represemtative domain.

Proof. Suppose that D is a representative domain
with two centers ¢, and ¢, in D, and k(2) isa transi-
tive map of D onto itself with #(f)=¢,, then we
have from Theorem 4,4

Dlh (8) =D.,h (¢), zeD,

On the other hand, since D is a minimal domain
with center at ¢, we have, from (4.9) for ¢ #1,

[det(D,k (2;)) [>1>{det (D2 (%)) |.
This is a contrdiction.

Remark 4.3 For a minimal and also moment
minimal domain the similar result holds, since the
differential equation w (z)det (D,w (z)) =z with w (0) =0
and D,w (0) =FE has a unique solution w=z,

Theorem 4.5 Let D be a bounded homogeneous
domain and the biholomorphic image domains 4, and
4, of D be the representative domains of D with center
at the origin with respect fo t eD (w(f)=0) and t
eD (C(z) =0), respectively. Then the map {(w) of 4,
onto 4; with §(0) =0 s given by the linear map

(4.18) L= (D,h: (%)) w, w &4,
where h,(2) denotes the transitive map of D onto itself
with h, (t) ==,

Proof. The representative functions are given by

w=Tp,"1(t, t’)f:TD(z, f)dz and

C=Ty 1 (z, %) f :T,,(x, 7)dx.
For a transitive map x=#,(z) of D with 4,(t) =z,
we have, from (2, 14),

Tp(z, 1)= (D, (8))*Tp(x, 7)(Dki(x)).
So, we obtain

(=T, O Totx, 0)dx

= (D, (1)) Ty (8, B) f : Ty (2, £)dz= (D,h, (t)) w.

Remark 4,4 Under the same situation in Theorem
4,5, for two minimal domains 4, and 4, the map
{={ (w) of 4, onto 4, with {(0) =0 satisfies

det (DL (w)) =det (D.h,(t)), wed,.

Example 4,1 Let B, be the unit ball in C*, then
B, is a representative domain with center at the

origin. For the representative functions w (z) with

“w(f) =0 and { (z) with {(z) =0 we have {= (D,k, (%)) w,

where 4,(z) denotes the transitive map of B, onto
itself and

D.h (&) =[(A—|lc| | E—re®) I2UL(1—12]1?)

(E—tt%) 172,
where U is a constant unitary matrix.

This shows that the representative domains 4,
with w(t)=0 and 4; with {(r) =0 have the slight
distortion between them. On the other hand, for the
unit disc we have

g=e?(1—|<|3) (1— ||} w,
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which gives a similar transformation of the unit disc.
5. Normal domain

If Dis a minimal domain with center at the
origin, the image domain of D under any map w=Az
with det(A)=1 is also a minimal domain with center
at the origin because of the biholomorphic relative
invariance of the Bergman kernel function and (2. 8).
Thus, even minimal domains belonging to a biholom-
orphic equivalent class of a ball under the conditions
f(0) =0 and det(D,f(0)) =1 are not unique.

The image domain of a representative domain D
with center at the origin under any map w==Az is
also a representative domain with center at the origin.
Therefore, representative domains belonging to the
same biholomorphic equivalent class are not unique.
But the representative domain belonging to the equi-
valent class under the conditions f(0) =0 and D, f(0)
=F is uniquely determined (see Theorem 4,4).

Further, any one of the three types of canonical
domains of a domain D depends on a distinguished
point ¢ in D and the initial conditions with respect to
t (see Theorem 4,5),

Now, we wish to define the normal domain (a
sort of a representative domain) as a natural canonical

domain.

Definition 5,1 The image domain 4, of a bounded
domain D under the map (normal map)

(6.1) w=T,12(t, t‘)f:TD @ Ddz
is called the normal domain of D with center at the
origin (with respeat to a distinguished point #), where
Tpl2(t, £) denotes a regular matrix P such that
P*P=Tp(t, t) (positive definite Hermitian Matrix)
holds.

Lemma 5,1 For a biholomorphic map ((z) of a

bounded domain D onto 4 with C(f) =t we have
(5.2) Tprl2(, f)f’ Tp(z, #)dz

=V (50 [T D,

where U denotes a constant unitary matrix.
Proof. As dz*Tp*(z, §)Tp(t, &) Tp(z, £)dz is
biholomorphically invariant from (2, 14), then we have
(5.2) with a constant unitary matrix U. Indeed, U is

a unitary matrix and must be holomorphic with respect
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to z, and thus U*=U-! must be holomorphic with
respect to z. Therefore, U must be a constant unitary

matrix.

Lemma 5,2 A necessary and sufficient condition
that a domain 4 is a normal domain with center at the
origin is

(6.3) T4(L, 0)=T47%(0, 0)U* { &4,

. e.,

(5.4) T4(C G)=T4(0, 0), C ¢4, and
T4(0, 0)=FE, which shows that 4 is a sort of a rep-
resentative domain.

Proof. For a normal map (=T, 172 ;TD (2, 0)dz

we have

(=T Tota, 0dz=UT2[ Tu(C, 0L,
Differentiating both sides of this, we have
E=UT/2(0, 0)T4(, 0).
Hence we have the result. Converse is true.

Theorem 5,1 Normal domains of the biholo-
morphic equivalent class of a bounded domain with
respect to the corresponding distinguished points are
uniquely determined up to unitary matrices.

Theorem 5.2 Normal domains of the biholo-
morphic equivalent class of a bounded homogenecous
domain with r spect to arbitary distinguished points
are uniquely determined up to unitary matrices.

Proof. Let 4, and 4, be normal domains with
center at the origin with respect to distinguished points
t and 7, respectively, then we have the normal maps

w=Ty12(t, ) f "To (2 B)dz,
t
(=T (e, 0 T fda
and
T2, f)f’ Ty (2, Bdz
t
—UT,12(z, %) f "To(x, 7)dx

for a transitive map x=h,(z) of D onto itself with
h, () =7z, Therefore, we obtain w= U¢,

Example 5,1 (i) If D is a bounded homogeneous
domain, then a transitive map {={(z) with {() =7 is
given by

T2, 1) f "To(z, D)

=UT 2, 0 To, D4,



90

Geometry on Canonical Domains in C?

(i) For the unit ball B,=B in C", we have a

normal map w(z) of B with w(f) =0 as

w=T512(t, 7) I'TB(Z, f)dz
= VAL (E—1t*) 712 (2—1) (1—1*2) 7 (1—1*) 2

w(B)

is a ball of radius «/#-+1 with center at (.

(iii) The normal domain w(B) of the unit ball
is also a ball with T,z (0, 0) =E.
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