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The ferroelastic
phase transition in squaric acid C4H204 is discussed from the group-theoretical

point of view following the Landau theory of phase transition and Birman's extended theory･

Observed ferroelastic twin structure iS interpreted by the theories･

Introduction

The phase transitionswith a change of symmetry

are divided into two classes. One is the transition

caused at the Brillouin zone center (k-0), andthe

other at the Brillouin zone corner (k≠0) which

accompany the change of the volume of a primitive

celll). Recently, much attention has been paid to

the incommensurate phase transition, which has a

modulated wave vector ko+K tO the particular k, that

is, which are accompanied by the changing of the space

modulation of crystal2･3).

T血e application of group theory to the second order

phase transition has been developed by Landau. The

method is based on the construction of the free energy

from order parameters, which
are related to aJl irre-

ducible representation. The Landau method has been

applied to various phase transitions of ferroelectrics and

ferroelastics. Birman's extended method bas° oⅡ the

Landau theory provides a very useful means for deter-

mining the symmetry of the soft mode4). Lavrencic and

Sigenari applied the theory to the more generalsecond

order phase transitioⅡ5).

In this paper, a brief commentary for the case of

the phase transition in Gd2(MoO4) 3 [GMO] isgiven at

Grst as an example,with the Landau theory6)andthe

Birman's extended methods). The analysis of the fer･

roelastic phase transition in squaric acid H2C404are

discussed at the latter half of this paper.

Landau Theory

The Landau and Lifshitz theory is described shortly

as followingl･7･8). The symmetry of a crystal canbe

described by means of a density function po(r), if the
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crystalconsists of particles of several kinds, then one

must consider several functions p(r) for each
kind of

atoms. h the following, we shall consider only one

function po (r) keeping inmind that we may understand

p.(r) to be afunction of several components･ The

density function po (r) representsthefull symmetry of

the crystal. and will be invariant underall operations

of也e space group of the cryrtal･ In a second･order phase

transition the density changes continuosly in such a way

that the new density function p(r)
can be written as

p (r)-po (r)+8p (r) (1)

where ∂p(r) is the small change due to the lowering

of symmetry of the crystal･ We denote the space

symmetry group of the crystal by Go for a "high'

symmetry phase and by Gl for a %wp one･ Using

these symmetry groups Go and Gl,
Po(r) and p(r)

are

written as

p.(,) -go.･po(r), (i-1,2, ･･･, d) (2)

p(r) -gl,p(r), (i-1,2･･･,d') (3)

where d and d' are the order of the groupsand g's

are symmetry operations (hIα) of each groups･

The symmetry group of p (r) cannot contain symmetry

operations which are not contained inthe symmetry

group of po(1･),that
is, the group of p(r) is a subgroup

of the group of po(r).
Thefunction ∂p(r) can be expanded

in terms of

the basis of the symmetry group Go which leaves p (r)

血variant, that is,

∂p (r)-∑′∑C".1¢h,I
n i

t4)

where the functionダ′ form a basis forthe n-th irre-

ducible represention of group Go, and the number of

function i for a particular representation n is equal
to

the dimension of the representation.
The prime of the

summation denotes omission of the identicalrepresen-
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tation of the group G!｡.

It can be only by accident if two independent types

of change would set in at exactly the same transition

temperature. Therefore we may consider that a second-

order phase transition involves a change of the crystal

corresponding to a single irreducible representation.

Consequently, one can omit the summation over n

in eq. (4).

For small change of 8p(r), therefore small values

of the coe氏cients C,., the thermodynamic potential is

expanded in a power series of C.I. Subtstiuting CF町

with ∑r2,･-1, one obtains
l

¢ -

¢o+aヤア(1)+A72f(2)+B73f(3)+C74f(4)+ …, (5)

The coe氏cients a, A,B,C, etc., are functions of the

temperature
and pressure, and I(I) is a function of order

I in the
coe氏cients T. The thermcdynamic potential

¢ is, of
course, invariant under aDy Symmetry Operation.

According to eq. (4), this transformation of the basis

function ¢",･ can be treated as a linear transformation

of the coe氏cients C〃′. Because 丘rst-order invariants

exist only for the identical representation, tbe血ear

term is
omitted in eq. (5).

The actualstable state is found from the conditions

for stability ∂G/∂7?=0,and ∂G2/∂り2>o.Onefinds easily

that the state 7-0
is stable for A>o, whereas for

A<o the stable state must have
り≠0.

Therefore a

phase transition could occur at the point where A-0.

However, for the crystal to be stable at the po血t w血αe

A-0 andヮ-0, ¢ must increase both for small positive

and negative changes ofヮ. Therefore a second-order

phase transition is possible o山y if third-order terms

are zero. It is necessary that no invariant can be

formed out of the terms
of the third degree [Landau

Condition ].

Fnrtbermore, if in the expression
for the density

we replace coe氏cients C& by certain slowly varymg

functions of the coordinates, the density p wi11 not

correspond
to a crystal, since it will lose its property of

being periodic.
It is necessary tbat 也e 血tegral of ¢

over the volume of the crystal should not contain terms

thatare linearly dependent on the derivatives ∂Ch/ax.I.

Therefore, the anti8ymmetric square

ck% -C.･%
(7)

should be omitted
in the thermodynamic potential [Lif-

shiiz condition].
In terms of the theory of grollp representations a

change of the symmetry of a crystal as a result of a

second･order phase transition can be related only to the

physically irreducible representations that satisfythe

following two conditions:

1. The anlisymmelric square (T2) has no common･

rebresentaiions u)ith vector representation V [Li-

fshilz Condiilon].

2. The symmetl･t'c Products [TS] does not contain ihe･

identily representation [Landau Condition] (8)

Birman's Subduction condition

lt is desirable to use a extended method to avoid

the lengthy Landau procedure,knowng the symmetry

of tbe血al pbase血adva皿Ce.

Birrnan pointed out the criterion4) that

"the rebreseniaiion Dk (m) of Go subduces lhe ideniiiyl

rebreseniaiion of Gl.
"

(9)

This statement, though orlglnally included in the

work of Landau, provides a very useful means for

deter皿mg the symmetry of the soft mode. Lavrencic

and Shigenarl Provided the compatibility relation between

different space groups and different A
points in the

Brillouin zones). The concrete procedure is shown izh

next chapter.

StructtlralPha&e Transition in Gd2 (A4oO4)
3[GMq].

Asanexample let tis discuss Gd2(Mood)3. Which

e血ibits symmetry change from Go〒Du3 to Gl-C2VB

at the improper ferroelectric phase transition (To-

159oC). The unit cell vectors 0f D2d3 G皿be chosen a息

al-[a,0,0], a2-[0,a,0], a3=[0,0,c]. ㈱

The correspozlding unit cell vectors in the reciprocal

SPaCe are

bl-(%･0･0)･b2=(0･%･ 0)･b3-(0･0･%)･
ul)

From X-ray data it follows that in the ferroelectriB

phase of GMO the unit cell vectors al and a2 Should

be rotated by 45o about the z･axis and enlarged by a

factor of JIF. At the ferroelectric phase we can chose=

as unit cell vectors Of C2y8

a'1-ara2, a'2-a1+a2, a'3=a3. 伯

The volum of themit cell after the phase traASitioA

will be doubled. It is easily found that the transition

00curS at

k-与(bl+b2),
M point inthe Brillo血zone

of the simple tetragonal Bravais lattice r. Since

esp (ikla.･)--1 for i-1,2, whereas exp (iklα′L)-1

for ∫-1,2, 3.

I Landau method

All irreducible representations of Du3 with k1-k1

aregiven in the text by Kovalev9) and they are listed
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Table I･ The small representation of the space group D2L3with

k-与(bl+b2).
The partial translation a is equal to

α-与(al+a2)
･

129

(EIO)(S410)(S4210)(S.310)(o'2[α)fC2,I-α)(o'1Jα)(C2.fα)

一
でl13-1-i1-i-ll

r212-1-i-lil-i

T31-i-1111-1-2

T41-i-1t-1-ill

･5(去空)(昌一2)(去2)■(去_2)(字去)(?-去)(望去)(空一志
T】(古宇)し冒去)(~去_2)(冒-去)(去望)(冒-去)(-去_2)し曾去

I.''..●●..●●..._..
in Table I. The representation f5 is a real two-dimen-

sional representation. Tl
and T2 are two-dimensional

physically meaningful representa壬ions cozLStruCted from

¢omplex･conJugate representations, usizlg the umitary

transformation matrix

u-去(,Lき). 咽

Shce the starof T,･≡f5, Tl, T2 COntains just one

vector kl, the symmetric cube [T31] canzlt C血tah

the identity rcpre8entation6) [Londau condition], The

star of TI2 contaizIS Only k-o and therefore (T.1之)can

be reduced in terms of irreducible representions of the

point group D2d (Table I). The character of the

antisymmetric square calculated from the followlng

Table II･ Character table of irreducible representions of the point group D2d.

D2d E2S4S422C226J
polarVector

axialvectorfstrain
Al

A?

B1

β2

11111

111-1-1

1-11~1-1

1-ll-ll a

x1+X2,X3

R,

XF

(ち,R,)E 20-200 (x,y)

七quation7･10)

(x2)(R)

-与(I
(R)
)2一昔2(R2)

･ ㈱

Calculating the relation a4), we can easily reduce the

representation of (T.･2).After straight forward calcul･

･ation
we get

(rs2)-Bl, (Tj2)-Al ()I-1,2). 咽

Shce the vector representation V(x,y,a) isgiven as

V-B2 (I)+E(x, y) , 胸

we conclude that T5> Tl, T2 are acceptable representa-

tions [Lifshitz condiion]. Then we get three active

representationで8, Tl and T2. In
order to血d out what

symmetry chazlge is induced by a particular acceptable

representation, we have to minimize the corresponding

free eftergy.

Since the representation TI COrreCtly describes

symmetry changes connectedwith the phase transition

in GMO at 159oC, it iB Of interest to write down the

correspondhg既PteSSion for the free energy by the

representations.

With aid of eq. ㈲,

[V2] -Al (X12+x22) +Al (z2)+Bl (X2-y丑)+B2 (Xy)

+E (yz,zx) , 07)

wc get the following reduction of [T12L

[T12]-Al (q12+q22) +B2 (q12-q22) +B2 (qlq2). a8)

The density function of the crystalcan be written as

≠-po+8p using the basis (¢1,≠2),dhere8p isgiven by

∂p-ql≠1+q2h 胸

U血g the stazldard thermodynamical procedure
it 侃n

be shown that a statewith 8PntaneOuS POlarization is

possib le.

-
ⅠIBirman'B eエtended method

From the character table for the small represen-

tation of D2d3 (M) (Table Ⅱ), we get three two-

dimensionalrepre8entation T8? Tland T2･ For a given

change of symmetry Go-Gl, We denote the symmetry

elements of the factor group Go/To and G1/Tl by g-

(叫a)and g'- (h′Ld′)respectively. flere T6 and
Tl
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Table III. Character table of
D243 at M-

(E]o)(C2&lO)(ad1α)(q'dlα)(Silo)(S4310)(C2.[α)(C2,la)

で5 22000000

T1 2-22-20000

T2 2-2-220000

are the translational subgroup of Go and Gl, and a's

are the Don-primitive translations associated with poht

symmetry operations h's. The Birman-Worlock extended

theory implies that the soft mode must satisfy the

followlng equationll),

吉∑8/Xj.(g′)r,(1+I(q′)-吉∑g′x,'h
(g′)

-posive
integer, CO

where n is the order of the group Go/To, and ZJA(g′)

is the character of g'in the )'-th representation in star

k. The translational subgroup T. of G. is given by

To-mlal+m2a2+m之a3 (m.I-0, ±1, ･･･). 伽

Table IV. Partial character table of
D32d.

We have to express grin terms of the element of Go/

g′- (h′lα)-(hiα+toJ. 物

The displacement vector i., which is defined by eq･ (弥

should always be an element of
To. By taking into:

accountthe difference between the position of the origin･

0′ of (;1 and 0 of Go,

i.-α′ (h)-α (h)+s-hs, 餌

where a is a vector from 0 to O'.

Using the eqllation ¢カ, the character xJ.(g′) can be

easily obtained as a product of z''▲(hIα1)and
a mu-

ltiplication factor exp (-ik･lo).

Vector a'are written in terms of (a'.･).

The symmetry elements of C2Q8 are listed in Table

Ⅳ. The position of the origin O′ concides vitb
0 in

this case, the vector s-0. Therefore for h'-qp we

get h-o,a, a(O′d)
-与a2

and a′(q,)
-与al+与a2･

From

eq.鍋, we get io--ah Whichgive the the multipli-

cation factor esp [-ik(to+a) ] -+1,
for h'-q,. Similar

calculations for other elements, the partial character

table lSgiven
in Table Ⅳ. We can easily obtain the

result that the symmetry of the soft mode in GMO is

Tl from the eq.軌 where we usedthe relation

zノ(g′)-expトik･ (to+α)] [∑そ..i(h)] C4)
〝

I.p′J, (h) is an uL,jL') element of the )--th multiplier

representation matrix for the operator h. h this theory,

we can get the final symmetry representation without

examination of the symmetric cubes and the antlSym･

metric squares･

Ferroelastic phase transition of squaric acid Ⅱ2C404

[Ⅱ2SQ]

Squaric acid H2C404 [H2SQ] is a ferroelastic cry-

stal. wbicb takes the phase transiti皿 at 98oC from

C4.51I4/m to C2A2-P21/m12). At the room temperature

one can easily observe the ferroelastic twin stmct∬e

under the polarizing microscope, which move by ap･

plication of the mechanical stress13). The space group

of this crystal at a hightemperature phase is a body･

centered tetragonalsystem. As is shown h Fig･ 1, new

primitive translation ▼∝tor are glVen by

a'1ニーal-a3, a′2-a2十a3, a′3-al+a2. 餌

It is easily found that only
k vector at z-point in Br･

illouin zone of the tetragonal bcdy･centered Bravai昏

lattice satisfies the following equations

Fig. 1 Primitive translationalvectors of tetragonal

body･centered lattice T.'and monoclinic cell T.･
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exp(1-k.･a.･)--1 (1'-I,2, 3)

Fig･ 2 Brillouin zone for rqY･

exp(ik.･a',I)-1 (i-1,2,3)

where k.- (言与与)-与(-bl+b2+b3)･The Bri1lo血

zone for r.V(a) is shown in Fig.2. The small repre-

sentation is shown in Table v. From this table, it is

seen thatそ3-ぞ7* and f4-f8* where
+

denotes a complex

representationwith a complex conJugate basis･ Tl and

T2 are the physical representations produced
by a

unitary transformation matrix 03). Thereare thus fold

one･dimensional realrepresentation
子1, f2, f5 and そ6J

皿d two dimensional physically irreducibie representa･

tions Tl and T2.

The base of the representations子l∫そ2タf8andぞ6
are

given by the following, respectively,

¢1-COSヱx
ws言y

cosヱz
a aー C

Table V. The small representation of the space group C..5with

A.-与(-bl+b2+b3)･
E-′C4C2Cl33S43ohS.

♂▲ 11111111

T5 1-ll-ll-ll-1

ー2 1111-1-1-1-1

T6 1-ll-1-ll-ll

丁3 1S-1-ill-1-i

r7 1-L'-ill-i-ll

T4 1t-1-i-1-ill

で8 1-i-I一l-lil-i

T1

.●●..●●..●●..●告.
T2

.''..''..S'..''.

¢2-COS空-x
cos言ysin言za

¢5=Sin空一X
Sin言ycos言2α

46-Sin旦x
sin言ysin?a.

耶
α

The symmetric product [T.･3] of these one dimensional

representation can not'have the identity representation･

Table VI. Character Table of irreducible represetnations of the point group C4A.

1
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One can also show that (T{2) (R)-o for these one

dimensional Don-degenerate representations. The chara-

cters of irreducible representation of the point group

C4hare listed in Table Ⅵ. The vector representatio□

is given aS

V-A～ (I)+E. (x,y) , 鰯

[V2] -A, (x2+y2) +A, (z2)+B8 (X2-y2) +B. (xy).

e9

The antisymmetric squares of (T.2) for two dimensio血1

representation Tl and T2 Can be reduced in terms of

irreducible representation of the point group C4h. From

the eq. Q4), we find

(T12)-A8 (i-1,2). 軸

Since the vector representation V isgiven by eq.

餌, and has no common representation, we conclude

that these representations are acceptable representations,

(that is, active representations), h order to find out

what symmetry change is induced by a particular

acceptable representation, we have to minimize the

corresponding free energy.

ShlCe the representation T2 CQrreCtly describc&

symmetry changes connected with the phase transition

in H2SQ at 9rC, it is of interest to write down the

corresponding expression for the free energy. Witb也e

following reduction of [T22],

[T22] -A. (q12+q22) +B. (q12-q22) +B8 (qlq2), 8カ

We get

F-与α
(q12+q22)

+与β1
(q14+q24)

+与p2q12q22
+与β3qlq2

(q12-q22)

+81 (q12+q22) (∬1+x2)+82 (q12+q22)x3

+83 (q12-q22) (xl-X2)

+84 (q12-q22) x6+65qlq2 (Xl-X2) +86qlq2X6

+icll
(X12+x22)

+ic33X,2+c12XIX2+c13
(Xl+X2) x,

+与c66X62+c16
(Xl-∬2)x6･ 餌

These coe缶cients
a, β1,β2, are functions of pressure

and temperature.

From the equilibrium conditions aF/ax,･-o, the

strains x.･ are glVen by

xl-fl (q12+q22) +f2 (q12-q22)+f3qlq2

x2-fl (q12+q22)
-f2

(q12-q22) -f3qlL?2

x3-f4 (q12+q22)

x6-f5 (q12-q22) +f6qlq2 , 脚

where

8〆13-81C3只
fl-

c｡,

(cvl;7c-l■2v)T2cl,2
84C16-83C66

f,-
c66

(Cv:lTt531p2c1.J
f3-

f4-思㌫認二洛

fs-慧;F_8il(2C)1t-2Cc121)6

f6=思㌫認=詫
Substituting these xL into eq.

free energy as

I

事

I

I

l

.
軸

物, we can rewrite the

F-与α
(q12+q22)

+与β′1
(q14+q24)

+与β′2q12q22

+与β′3qlq2
(q12-q22) ,

where the coedicients β′1,β′2and β′3Can be written in

Table VIⅦ. Partialcharacter table of C4A5.

lI
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terms of the coe缶cients in eq.的.
It is shown that the free

energygiven in a form
of御

admits three types
of stable solution.

(1) ql-q2=0. This corresponds to the hightemperature

phase.

(2) q21≡-α/β′1-q2s, q2-0(DomaizI I). The sym･

metry operations which retain one solution pp-qs41
iJNariant早re the followhg fotlr

elements (Table Ⅶ)

(E101), (C2ra.･), (i(a,･), (qh[0). These arethe

symmetry elements of the space group CRAB.

¢) q228-q2" q1-0 (Domain I)

We get the same symmetry elements of the space group

C2A2･ The spontaneous strAms x,･, for each domain can be

obtai丑ed from eq. B9, that is,

x6,-f5q2, (Domain I ),

x6..--f5qs2 (Domain I), 餌

where q$2 isgiven by
-a/pl'.

I･tis reasonably assumed

that i-a(T-Tc) andall other coe丘cicnts are constant

for simplicity･ One obtains thenthe spontaneous strains

X6+

Using the Birman's extezlded method, the space

group have been investigated by Nakashimalヰ). The

results are shown in Table Ⅶ and he showed that T2

mode at α-point
in the paraelectric phase is compatible

to β. mode at J｢ point in the ferroeastic pbase･
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