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Group Theoretical Analysis of Ferroelastic
Phase Transition in Squaric Acid CH,0,
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The ferroelastic phase transition in squaric acid C,H,0, is discussed from the group-theoretical
point of view following the Landau theory of phase transition and Birman's extended theory.
Observed ferroelastic twin structure is interpreted by the theories.

Introduction

The phase transitions with a change of symmetry
are divided into two classes. One is the transition
caused at the Brillouin zone center (k=0), and the
other at the Brillouin zone corner (¥#0) which
accompany the change of the volume of a primitive
cell?,

the incommensurate phase transition,

Recently, much attention has been paid to
which has a
modulated wave vector ky+x to the particular %, that
is, which are accompanied by the changing of the space
modulation of crystal?3,

The application of group theory to the second order
phase transition has been developed by Landau. The
method is based on the construction of the free energy
from order parameters, which are related to an irre-
ducible representation. The Landau method has been
applied to various phase transitions of ferroelectrics and
ferroelastics. Birman's extended method based on the
Landau theory provides a very useful means for deter-
mining the symmetry of the soft mode#. Lavrencic and
Sigenari applied the theory to the more general second
order phase transition®,

In this paper, a brief commentary for the case of
the phase transition in Gd, (My0,)s [GMO] is given at
first as an example, with the Landau theory® and the
Birman's extended method®’. The analysis of the fer-
roelastic phase tranmsition in squaric acid H,C,0, are
discussed at the latter half of this paper.

Landau Theory
The Landau and Lifshitz theory is described shortly
as following®"®, The symmetry of a crystal can be
described by means of a density function p,(r), if the

crystal consists of particles of several kinds, then one
must consider several functions p(r) for each kind of
atoms. In the following, we shall consider only one
function p(; (r) keeping in mind that we may understand
po(r) to be a function of several components. The
density function po(r) represents the full symmetry of
the crystal, and will be invariant under all operations
of the space group of the cryrtal. In a second-order phase
transition the density changes continuosly in such a way
that the new density function p(r) can be written as

p(r) =po(r) +dp(r) L
where 6p(r) is the small change due to the lowering
of symmetry of the crystal. We denote the space
symmetry group of the crystal by G, for a “high”
symmetry phase and by G, for a “low” one. Using
these symmetry groups Gq and Gy, po(r) and p(r) are
written as

P () =g%po(r), (=1,2,+,4d) 2

e(r)=g4p(r), (=1,2--,d) @3
where d and d’ are the order of the groups and g's
are symmetry operations {%|a} of each groups.
The symmetry group of p(r) cannot contain symmetry
operations which are not contained in the symmetry
group of py(r), that is, the group of p(7) is a subgroup
of the group of py(r).

The function Jp(r) can be expanded in terms of
the basis of the symmetry group G, which leaves p (r)
invariant, that is,

dp(r) =T’ TC"9" @
n

where the function ¢*; form a basis for the #~th irre-
ducible represention of group G, and the number of
function 7 for a particular representation # is equal to
the dimension of the representation. The prime of the
summation denotes omission of the identical represen-
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tation of the group G,.

It can be only by accident if two independent types
of change would set in at exactly the same transition
temperature. Therefore we may consider that a second-
order phase transition involves a change of the crystal
corresponding to a single irreducible representation.
Consequently, one can omit the summation over »
in eq. (4).

For small change of dp(r), therefore small values
of the coefficients C;, the thermodynamic potential is
expanded in a power series of C; Subtstiuting C,=nr
with Z7%,=1, one obtains

:

O=0p+anf P+ APfP4Bp3f @ +-Cptf @4, (5)
The coefficients ¢, A,B,C, etc.,, are functions of the
temperature and pressure, and f¢? is a function of order
! in the coefficients y, The thermcdynamic potential
@ is, of course, invariant under any symmetry operation.
According to eq. (4), this transformation of the basis
function @”, can be treated as a linear transformation
of the coeflicients C»,,
exist only for the identical representation, the linear

Because first-order invariants

term is omitted in eq. (5).

The actual stable state is found from the conditions
for stability 8G/dp=0, and 3G2/9%?*>>0. One finds easily
that the state 5=0 is stable for A>>(, whereas for
A< the stable state must have %70, Therefore a
phase transition could occur at the point where A=0,
However, for the crystal to be stable at the point where
A=0 and =0, ¢ must increase both for small positive
and negative changes of 5. Therefore a second-order
phase transition is possible only if third-order terms
are zero. It is necessary that no invariant can be
formed out of the terms of the third degree [Landau
Condition].

Furthermore, if in the expression for the density
we replace coefficients C, by certain slowly varying
functions of the coordinates, the density p will not
correspond to a crystal, since it will lose its property of
being periodic. It is necessary that the integral of @
over the volume of the crystal should not contain terms
that are linearly dependent on the derivatives 9C,/dx,.
Therefore, the antisymmetric square

crdie —c 0
should be omitted in the thermodynamic potential [Lif-
shitz condition],

In terms of the theory of group representations a
change of the symmetry of a crystal as a result of a
second-order phase transition can be related only to the
physically irreducible representations that satisfy the
following two conditions:

1. The antisymmetric square (T2} has no common
representations with vector representation V [Li-
fshitz Condition],

2. The symmetric products [ T3] does not comtain the
identity representation[Landau Condition] (8)

Birman’s Subduction condition

It is desirable to use a extended method to avoid
the lengthy Landau procedure, knowing the symmetry
of the final phase in advance.

Birman pointed out the criterion?’ that

“the representation D, (m) of G, subduces the identity
representation of Gy.” 9)

This statement, though originally included in the
work of Landau, provides a very useful means for
determing the symmetry of the soft mode. Lavrencic
and Shigenari provided the compatibility relation between
different space groups and different # points in the
Brillouin zone®, The concrete procedure is shown im
next chapter.

Structural Phase Transition in Gd;(MoO,) s[GMO].

As an example let us discuss Gd,(MoO,)s, which
exhibits symmetry change from Gy=D,3 to G;=C,,?
at the improper ferroelectric phase transition (7=
159°C). The unit cell vectors of D,,% can be chosen as.

a,=[a,0,0], @=[0,4,0], a=[0,0,¢c]. (0
The corresponding unit cell vectors in the reciprocal
Space are

b= (.ii’ 3 0), b= (0, 2{1_7!, 0), by= (0, 0, i:—)

ih))
From X-ray data it follows that in the ferroelectric
phase of GMO the unit cell vectors ¢; and @, should
be rotated by 45° about the z-axis and enlarged by a
factor of /2. At the ferroelectric phase we can chose
as upit cell vectors of Cyy®

@ \=81—0, & =0+, @' 3=a, (1]
The volum of the unit cell after the phase transition
will be doubled, It is easily found that the transition
occurs at k=2 (b,-+5;), M point in the Brillouin zone
of the simple tetragonal Bravais lattice I”, since
exp (tka;)=—1 for i=1,2, whereas exp (ik;a’;)=1
fori=1,2,3.

I Landau method

All irreducible representations of D,,* with k=£k,

are given in the text by Kovalev® and they are listed
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Table I. The small representation of the space group D, with k='1§ (b,+5,).
The partial translation « is equal to a:% (@1+ay).

{E]0} {S4]0} {S:2]0} {5210} {02} {Cyy |} {o'1]a} {Cocla}

I g 1 i -1 —i 1 —i -1 i

T3 1 7 —1 —7 —1 i 1 —1

T3 1 —i —1 { 1 i —1 —

7 1 —i -1 ) —1 —i 1 i
“ D) (-9 (8D 6D (289 (979 (38 (7
nolo6D) e () @) (6 (9T D) ()
o) (8 (5D @79 (B (L (F9(ey

in Table I, The representation t5 is a real two-dimen-
sional representation. T, and T, are two-dimensional
physically meaningful representations constructed from
complex-conjugate representations, using the unitary
transformation matrix

Since the star of T',=t5, T}, T, contains just ome
vector k;, the symmetric cube [73;] cannt contain
the identity representation® [Landau condition], The
star of T2 contains only %k=Q and therefore {7’} can
be reduced in terms of irreducible representions of the

U 1 /1 1 point group D,, (Table ). The character of the
V2 (i —1'). ©Q antisymmetric square calculated from the following
Table II, Character table of irreducible representions of the point group D,,,

D,, E 25, S 2C, 20, i)olar vector axial vector strain
A, 1 1 1 1 X1+%2, X3

A 1 1 1 -1 —1 R,
B, 1 -1 1 1 -1
B, 1 -1 1 -1 1 2 X6
E 2 0 -2 0 (%,9) (R, R,)
equation?-10’ representations.
With aid of eq. {6)
o) (R =1 e ®)—Lr . w“ '

‘Calculating the relation (4), we can easily reduce the
representation of {7%}, After straight forward calcul-
ation we get

{rsf} =By, (TH=A4, (j=1,2). 1)
Since the vector representation V(x,y,2z) is given as

V=B, (2) +E(x,7), {i6)
we conclude that 75, T', 7, are acceptable representa-
tions [Lifshitz conditon], Then we get three active
representation r5, 7, and T, In order to find out what
symmetry change is induced by a particular acceptable
representation, we have to minimize the corresponding
free energy.

Since the representation 77, correctly describes
Symmetry changés connected with the phase transition
in GMO at 159°C, it is of imterest to write down the
cotresponding expression for the free emergy by the

[V =A, (x2+%,?) A, (z%) +B, (x2—3?) B, (xy)
+E (y2, 2x), ' i)

we get the following reduction of [72],

[T¥]=A, (@:*+42%) +B2(01*—a) +B2 (192). B
The density function of the crystal can be written as
é=po-+-0p using the basis (¢, ¢;), where 6p is given by

Sp=q1$1+4202 19
Using the standard thermodynamical procedure it can
be shown that a state with spontaneous polarization is
possible.

II Birman’s extended method

From the character table for the small represen-
tation of D,* (M) (Table 1), we get three two-
dimensional representation 75, Ty and 7,. For a given
change of symmetry Gy—G);, we denote the symmetry
elements of the factor group Go/T, and G,/T, by g=
{kla}and g'=={h’'|«’} respectively. Here Ty and T,
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Table III. Character table of Dy at M= (_;_ 1 0) point.
{E]0} {Cs, 10} {o4]a} {04} {S¢]0} {5410} {Cocla} Gyl a)
g 2 2 0 0 0 0 0 0
T, 2 -2 2 -2 0 0 0 0
T, 2 -2 —2 2 0 0 0 0
are the translational subgrcup of G, and G;, and a’s - We have to express g’ in terms of the element of Gy, "

are the non-primitive translations associated with point
symmetry operations %4’s. The Birman-Worlock extended
the soft mcde must satisfy the

theory implies that

following equationl?,

L5 0@ 1P @) =150 &)

=posive integer, 0
where 7 is the order of the group Go/T,, and 2/,(g”)
is the character of g’ in the j-th representation in star
k. The translational subgroup T, of G, is given by

To=ma,+mya,-+myas (m;=0, -t1, ). @

g'={1'\a}={hlatto}. 2]
The displacement vector #,, which is defined by eq. (2
should always be an element of T, By taking into
account the difference between the position of the origin
0’ of G, and O of G,

to=a’ (h) —a (k) +s—bhs,
where s is a vector from O to O’
Using the equation (23, the character x/;(g’) can be
easily obtained as a product of x/;{#|a}) and a mu-
Itiplication factor exp (—ék-ty).

4]

Table IV, Partial character table of D%, Vector «’ are written in terms of (a’.}.

(El0) Culd i @iolo {o,1-0 0) "
expl—ik (tg+a) ] 1 -1 -1 1
T5 2 —2 0 0 0
T, 2 2 —2 —2
T, 2 2 2 2 2

The symmetry elements of C,,8 are listed in Table
V. The position of the origin O’ concides with O in
this case, the vector s=(, Therefore for #’'=g, we
get h=a’,, az(a’,,)=%a2 and @’ (a,)=%a,+%az_ From
eq. (3, we get f;=—a;, which give the the multipli-
cation factor exp [—¢k (t,-+a) ]=+1, for #’=0,, Similar
calculations for other elements, the partial character
table is given in Table IV, We can easily obtain the
result that the symmetry of the soft mode in GMO is
T, from the eq. (), where we used the relation

1 (g7) =exp[—ik- (tp+a)] (Lt,,’ ()] o

7.7 (B) is an (g, #¢’) element of the j-th multiplier
representation matrix for the operator A, In this theory,
we can get the final symmetry representation without
examination of the symmetric cubes and the antisym-

metric squares.

Ferroelastic phase transition of squaric acid H,C,0,

[H,8Q]

Squaric acid H,C,0, [H,SQ] is a ferroelastic cry-

stal, which takes the phase transition at 98°C from
Cyu5—1I4/m to Cy2—P2,/m'? At the room temperature
one can easily observe the ferroelastic twin structure
under the polarizing microscope, which move by ap-
plication of the mechanical stress!®, The space group
of this crystal at a high temperature phase is a body-
centered tetragonal system. As is shown in Fig. 1, new
primitive translation vector are given by
ao'\=—a,—a;, @';=a,+a; a'3=a,-}a,, [v:3)

It is easily found that only %k vector at z-point in Br-
illouin zone of the tetragonal bcdy-centered Bravais
lattice satisfies the following equations

z

Ly

dy— y Y

x” %2

Y

X ag

Fig. 1 Primitive translational vectors of tetragonal
body-centered lattice I ¥ and monoclinic cell [y, -
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€xXp (ikx' i) =—1 (i= 11 27 3) m
k2 exp ik, -a’) =1 (=1,2,3)
where k,= (_ZT 1 1)=1 (—b,+b,+by). The Brillouin

zone for I' )V (a) is shown in Fig 2, The small repre-
sentation is shown in Table V. From this table, it is
N seen that #;=7;* and #,=7s* where * denotes a complex
representation with a complex conjugate basis. T, and

T, are the physical representations produced by a
ky unitary transformation matrix (3, There are thus four
one-dimensional real representation #,7, #5 and 7,

Z C
kx
and two dimensional physically irreducibie representa-
tions T; and T,

The base of the representations #), #;, ¥5 and #; are
given by the following, respectively,

) T T T
Fig. 2 Brillouin zone for I'}Y. O1=CoS7 % COSTY COSTE

Table V. The small representation of the space group Cy,® with k,=-%—(-—b,+b2+b3),

E c, C o i 53 o s,
G 1 1 1 1 1 1 1
Ts 1 —1 1 —1 1 —1 1 —1
T2 1 1 1 1 —1 —1 -1 —1
T 1 -1 1 —1 —1 1 —1 1
T3 1 4 -1 —~1 1 z —1 —t
77 ,1 —t —1 z 1 —t -1 4
Ty 1 i —1 —F —1 —1 1 i
T3 1 —1 —1 i —1 3 1 —1
no| G (39 (6 079 (89 8 (8- (179
nol G (29 (D) 67D F-) (9 (6 ) (o
¢,=cos7z’r—x cos%y sin%z ¢5=sin%x s'm%y sin%z. 1]

The symmetric product [T3] of these one dimensional

ro 4 . T
=sin=x sin—y cos—z . . . . .
95 a a”’ ¢ representation can not have the identity representation.

Table VI, Character Table of irreducible represetnations of the point group Cy,.

Cun E C, C, ok i S8 A S,
A, 1 1 1 1 1 1 1 1 Rz x24-y2, 2%
B, 1 -1 1 -1 1 -1 1 —1 x2—y2 %y
1 i -1 —i 1 £ —1 —i
EL' 1 - _1 { 1 —s —1 7 (Rn R,) (xz: yz)
A, 1 1 1 1 -1 -1 —1 -1 z
B, 1 —1 1 -1 -1 1 —1 1
1 t -1 —i —1 —1 1
x’
Eu 1 i -1 ; -1 ; _ (*,9)
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One can also show that {72} (R)=0 for these one
dimensional non-degenerate representations. The chara-
cters of irreducible representation of the point group
C,, are listed in Table VI, The vector representation

is given as
V=A, () +E,{x,3), 2]
[Vi=A, (x*+y) +A4, (2%) +B, (x*—3?) +B, (x).

o}
The antisymmetric squares of {7,2} for two dimensional
representation 7', and T, can be reduced in terms of
irreducible representation of the point group C,,. From
the eq. (4), we find

{TA =4, (i=1,2). 80

Since the vector representation V is given by eq.
(9, and has no common representation, we conclude
that these representations are acceptable representations,
(that is, active representations), In order to find out
what symmetry change is induced by a particular
acceptable representation, we have to minimize the
corresponding free energy.

Since the representation 7T, correctly describes
symmetry changes connected with the phase transition
in H,SQ at 97°C, it is of interest to write down the
corresponding expression for the free energy. With the
following reduction of [T,%],

[TA]=A,(@*+27) +B, (6 —3%) +B, (), B8)
we get

P=a (@42 +46 @ +4:9) +4 buar'as?
+%/93‘1142 (32—a2?)
+01 (2:242:) (%1+%32) +02 (9,207 %5

+03 (91 —q5%) (%1—x3)
404 (91%—95%) %64-054195 (%1 — %5) +-550102%6
+%Cu (%124x27) +—%-c33x32+012x112+613 (%14+%2) %3

+%Csexsz+‘-‘1e (%)—%5) %s. 62

These coefficients a, 81, 52,
and temperature.
From the equilibrium conditions 8F/dx;=(, the

are functions of pressure

strains x; are given by

X=f1(@:*+a2) +f2 (0:*—a») +f3019:

%=F1 (0*+a%) —f2 (@*—a:2) —Fsq1 0

x3=f4 (@ ’+a?)

Zs=f5(@:2—4,%) +fed19: ’ &
where

fi 05€13—0Caa

€33 (C11+c12) —2614° ’

f= 04C15—03Cs6
2 ces (Ci—C12) —26167 ’
fo= 06€16—05Cs6
=616 CsCos
g6 (Cr1—¢12) —2¢16 ’
fi= 28161503 (€11 1)
Cs3(en-+c12) —2018% ’
205616—04 (c11—C12)
Ce6 (C11—C12) —2¢%6 ’
205¢16— 36 (€11—¢12)
fs €66 (€11—C€12) —2¢%56 ¢ o
Substituting these x; into eq. 8, we can rewrite the
free energy as

F= % a(q%+4.%) + —}7/9 1 (@ +g2*) +—%—ﬁ ‘od1?q2"

5

+%—ﬂ'3‘hqz (@P—qh), &

where the coefficients 8y, 8/, and 8’5 can be written in
1y 2 3

Table VIVI. Partial character table of C,,5,

£ G Elo) LIl wlll (2410} "
£ Go Elo) (Cal0) 10} (2410)
7 1 1 1 1
Ty 1 1 —1 -1
T5 1 1 1 1
Tg 1 1 -1 —1
T, 2 -2 2 -2
T, 2 —2. —2 2
exp[—ik- (tr-+e)] 1 —1 -1 1
7) 1 -1 —1 1 0
T3 1 —1 1 -1 0
T35 1 -1 —1 1 0
Tg 1 -1 1 -1 0
T 2 2 -2 -2 0
T, 2 2 2 2 2
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terms of the coefficients in eq. (3.

It is shown that the free emergy given in a form of @9

admits three types of stable solution.

{1) ¢1=9,=0. This corresponds to the high temperature
phase.

@) ¢4 =—a/f1=¢, g=0(Domain ),
Inetry operations which retain one solution p,=g.¢,
invariant are the following four elements (Table VI)
{El0}, {Cila}, {ila;}, {0,]0}. These are the
symmetry elements of the space group C,,2

Q) ¢2,=¢%, ¢1=0 (Domain )

We get the same symmetry elements of the space group

C,,% The spontaneous strains x;, for each domain can be

obtained from eq. 3, that is,

%s=f5¢% (Domain 1),

Feu="f5¢,> (Domain T), &
where g2 is given by —a/8,’. It is reasonably assumed
that ¥=a(T—7T,) and all other coefficicnts are constant
for simplicity. One obtains then the spontaneous strains
6.

The sym-

Using the Birman's extended method, the space
group have been investigated by Nakashima!®, The
results are shown in Table VI ard he showed that T,
mode at a-point in the paraelectric phase is compatible
to B, mode at I” point in the ferroeastic phase.
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