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Stress at the Joint of a Semi-Infinite Plate
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A semi-infinite plate with a strip mound is analyzed as a plane elastic problem and a
thin plate bending problem. A rational mapping function of a sum of fractional expressions is
used for the analysis. The exact solution can be obtained for the shape represented by a
rational mapping function. The analytical results, four cases for a plane elastic problem
and three cases for a thin plate bending problem, are discussed.

1. Introduction

Stresses in the neighbourhood of a joint of a
semi-infinite plate and a strip plate are investigated.
The analyzed plate is a sheet of plate made from
a semi-infinite plate and a strip plate with same
elastic property, that is, a semi-infinite plate with
a strip mound. Such a plate is analyzed as a plane
elastic problem and a thin plate bending problem.
The rational mapping function for the stress analy-
sis is used. If a mapping function is rational, the
closed solution can be obtained without solving
Fredform’s integral equation. Therefore the solution
is exact for the shape which is represented by the
rational mapping function. The rational mapping
function is formed as a sum of fractional express-
ions. The mapping function of a polynominal
expression has extensively been used till now and
p lates with a kole in the majority of cases have
been analyzed!?. However since a power series
of a conformal mapping function for shape with
strip or convexity has very slow convergency, the
mapping function of a polynominal expression can
not been used with good accuracy for such a shape.
However by using a rational mapping function of a
sum of fractional expression, the analytical solution
can be obtained even for the shape with a strip or
convexity.

Okabayashi® and Hasebe*® have analyzed some
plane elastic problems and thin plate bending prob-
lems by the rational mapping function of a sum of
fractional expressions. The complex variable meth-
od®? is used for stress analysis.

It seems that exact solution for a semi-infinite
plate with a strip mound which is dealed in this
paper hardly has been obtained. A semi-infinite
plate with a strip mound can be found in some part
of the joint of structure. It is comsidered to be ome
of the fundamental elements of structure. Stress in
the neighbourhood of the corner is of special inter-
est.

2. Conformal Mapping Function
A conformal mapping function which maps a
semi-infinite region with a strip mound of infinite
length into a umit circle can be obtained by Sch-

warz-Christoffel’'s transformation. The conformal
mapping function is
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Fig. 1 Semi-infinite region with a strip on the z
plane and the unit circle on the { plane
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circle are shown in Fig. 1, If the width of the
strip is w, the coefficient K of (2.1) is K=2J72
w/m.

A rational mapping function of a sum of frac-
tional expressions can be formed, since (2.1) is
The method to form the
rational mapping function is discussed as follows. If
(2.1) is separated into term which converges rap-

an irrattonal function.

idly and terms which converge slowly, the following
equation can be obtained,
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The first term corresponds to a strip with an
infinite length and the second term corresponds to
a semi-infinite region. Rational functions are formed
When the first
term of (2.2) is expanded into a power series, we

for the respective terms in (2.2).
get,

[Z=Erm=Farn (2.3)
where ¢,=1/n.

On the other hand, the following fractional expres-
sion to %k terms is considered,
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The coefficients A; and «, of (2.4) are determined
in such a way that (2.4) is approximately equal
to (2.3). For this purpose, equating the coefficients
of the power series in (2.3) and (2.4), we can get,
k

x Aai=a,. (2.5)

=

In order to determine the values of A; and a, it
is required to choose 2k numbers of @, The con-
vergence of the power series in (2.3) is very slow
and the coefficients a, decrease monotonously when
n increases. In this paper, the value of # is taken
as 12 and the following 24 terms of g, are selected,
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Here the value of M is taken as 8. The terms e,
and M=8 are selected in such a way that the terms
in (2.4) agree with those in (2.3) from the low
order to the high order. The terms are also selected
to make the numerical calculation of (2.5) conven-

ient. Therefore M is not always equal to 8. Equa-
tion (2.5) is solved by repeating the calculation®.
In order to make (2.4)
la;| <1 must be confirmed. The last term, a5,>=ass®
is the coefficient of the 163840th order of {. Furth-
er, the terms with order higher than 163840 exist
in (2.4) and also agree with the fairly high order
terms of (2.3). Therefore we can conclude that
(2.4) is a fairly good approximate expression of
(2.3). Since the second term of (2.2) is rationmal,
third term of

regular in the unit circle,

the fractional expressions for the
(2.2) is formed next.
The following expression-is considered,
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The third term of (2.2) is expanded into a power
series. This series converges rapidly and the de-
crease in the coefficients of this series is not mono-
tonous. Therefore B; and g, in (2.6) are deter-
mined in such a way that the coefficients of the
power series of (2.6) agree with the coefficients in
the power series expanded from the third term in
(2.2) from the second to the 2m--1th term. Then
the coefficients B; and §; can be determined by
solving the equation of m degrees and m linear
simultaneous equations.” In this paper, m is taken
as 14. Also |8,1<1 (=1, 2..., 14) must be satisfied.
The terms with order of { higher than 30 exist
in (2.6) and fairly agree with the power series
expanded from the third term in (2.2). Therefore
(2.6) is a fairly good approximate expression of
the third term in (2.2).

From the above discussion, the rational mapping
function for (2.2) becomes
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In the above equations, ¥, is the coefficient of the
first term of power series expanded from the third
term in (2.2). The last constant term, 2w/m, is
added in such a way that the rim of the semi-
infinite region coincide with the y axis (see Fig.l).
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If the values on the unit circle are substituted
into (2.7), a diagram can be drawn. Then the ac-
curacy of (2.7) can be investigated. The length of
the strip is finite, since the mapping function is
rational. The length of the strip is about 4.5 times
its width. It is assumed that the length of the strip
is long enough for the investigation of the strip in
the neighbourhood of the corner. The radius of cur-
vature at the point B’ and B shown in Figl is
2.053-10~4w. Therefore we can say that the radius
of curvature is very small and the corner is sharp.
The y-coordinate of the strip rim exists between
0.49087w and 0.5003w, which form a boundary line
wave. However the amplitude of the wave is very
small as compared to the width of the strip w.
Therefore we can say that the boundary line of
the strip is a fairly straight line.

The above discussion shows that the accuracy
of the rational mapping function is good.

3. Method of Analysis

The methods of analysis for a plane elastic
problem and thin plate bending problem by the
complex variable method®? are briefly discussed in
the following.

A) Plane elastic problem

If the regular complex stress function in the
unit circle are denoted by ¢({) and ¢ (), the stress
components are

o, +0,=4Re[¢’ (£) /o’ (0)]
0y—0,+2it,,=2[ Q) {¢’ €) /&' €)} +9' ©)1/e’ (€)
o,+05=0,-+0, 3.1
04— 0,207, =e¥? (0,— 0+ 2i.,)
where Re[ ] is the real part of [ J.0,, 0, and 7,
denote the stress components in the curvilinear
coordinates expressed by a mapping function z=
() and exp(if) =Co () /1o’ (€)|. @(@) denotes
the conjugate complex function of ().
The boundary condition on the unit circle ¢=—=e" is
represented by

$(0) + ,() 0+ (o) =i f (p,+ib,) ds
=H({o), 3.2)

where the integral with respect to s shows the inte-
gration along the boundary line. p, and p, are fo-
rces in the direction of the respective x and ¥
axes. When (3.2) is multiplied by do/[2xi(c—()]
and the Cauchy integral is carried out on the unit
circle, the following equation can be obtained,

(0 ¢'(9
s+ Zntf ' (0) a—( do+ ¢ O
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On the other hand,
regular inside tke umit circle, and has poles of the
first order at {=(, (k=1,2,+-,26) outside the unit
circle, and at {=—1 on the unit circle. The first
has no zeros as inside the unit

the mapping function (2.7) is

derivative, o’ ({),
circle and so @ (1/{) has no zeros outside the unit
circle.

Since the first derivative of the complex stress fun-
ction, ¢’ (0), is regular inside the unit circle, ¢’ (£)
can be expanded into a Taylor series. Therefore
when the point of reflection of {, with respect to
the unit circle is represented by &y (=1, (k=
1,2,---,26), ¢'({) may be written as

¢’ (€) =Au+A4u L)) + A, C—8) 24+ (3.4a)
and at the origin,
¢ () =Ag+Anl+ApL? . (3. 4b)

& (1/%) is regular outside the unit circle.

From the above discussion, we can write the
following expression for the region outside the
unit circle,
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R(1/%) is a regular function outside the unit circle.
Co=FEy, /o’ (0) and C,=E, /o @ /). In the above
expression, the polnt {=—1 is regular. “6=1/0 holds
on the unit circle. When the above expression is
substituted into the integral term on the left-hand
side of (3.3), the following equation can be obtained
by carring out the Cauchy integral,

CA" +-constant=A({).

$(0) +Codil+ ﬁ“
(3.5)

When (3.5) is differentiated once, and then {={,
(¢=1,2,---,26) and {=0 are substituted, 27 linear
equations with unknown quantities of Ay, 4o, A; and
A, can be obtained since ¢’ () =A, and ¢’ (0) =

hold in (3.4a) and (3.4b)., When these equations
are separated into the real and imaginary part, we
can obtain 54 linear equations. Thus the real and
imaginary parts of A, and A, are determined by
solving these linear simultaneous equations. How-
ever, if loading condition is symmetric about one

axis (in this paper, x axis), A and 4, can be deter-
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mined by solving 27 linear simutaneous equations.

From the above discussion, ¢({) is determined.
When the conjugate equation of (3.2) is multiplied
by do/[2ri(6—C)] and the Cauchy integral is carried
out on the unit circle, the complex stress function
¢ () can be obtained as follows,

¢ Q=[] da—ww(l/% ©
+Cvo/c+2 %A*g,* —50). (3. 6)

The constant terms in (3.5) and (3.6) can be det-
ermined from the condition of displacement. How-
ever the constant terms are independent in the calcu-
lation of the stress components since the derivatives
of ¢(£) and ¢ ({) are used in (3,1).

B) Thin plate bending problem

If the regular complex stress functions in the unit
circle are denoted by ¢({) and ¢ ({),
ments M,, M,, twisting moment M,
forces N,, N, are

M, 4-M,=—4D (1-+-v) Re[¢' () /o’ ()]

M, M,,sz,,—zD(l—u) [0 @ (¢ @ /o &)
01/ ()

N, —zN =—4D{¢’ (£)

M, +M,=M,+M,

bending mo-
and shearing

/e’ ©)} /" (©)

—M,+2iM, =2t (M,—M,+2iM,,)
N,—iN,=e#(N,—iN,),

where “D” is the flexural rigidity and v is the poi-
sson’s ratio. M,, M., M,,, N, and N, denote the stress
components in the curvilinear coordinates expressed
by a mapping function z=w(g).

The boundary condition on the unit circle o=¢? is
represented by

0+ ST+ @

D (11_—0) f [ (s) +"f :1’ (s) ds]dz=M (o), (3.8)

where the integral with respect to s shows integra-
line. m(s) is the bending
the bending forces per unit
length along the boundary line. The complex functions
¢ (&) and ¢ ({) can be obtained in the same manner
as the plane elastic problem by obtaining ¢({) and
¢ (€) from (3.2). In this case, ¢({) and ¢ ({) are

tion along the boundary
moment and p(s) is

u+3¢ @) +CoA oC+Z} C k1 constant
1 (M)
el R (3.9)
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The values of C,, C, and {,’ are the same as those

4 (0). (3.10)

in the plane elastic problem. The unknown quanti-
ties Ay, Ay,A; and A, can be determined by solving
linear simultaneous equations which can be obtained
by substituting {=0 and {={,’ (k=1,2,.--,26) into
the first derivative of (3.9) since ¢’ (0)=A, and
¢’ (€) =4, hold. The constant terms in (3.9) and
(3.10) can be determined from the condition of dis-
placement. However these constant terms are inde-
pendent in the calculation of the stress components.

4. Analytical Result

Four loading conditions for the plane elastic
problem and three loading conditions for the thin
plate bending problem are considered. The analytical
results for the respective loading condition are dis-
cussed in the following.
(a) Uniaxial tension in the plane

The concentrated load P, as shown m Fig. 2,
acts at the tip of the strip. In this case, A({) in
the right-hand side of (3.3) is

v
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Fig.2 Stress distributions along the boundary and
on the x axis under a concentrated load P
at the tip of the strip

A{@Q) =P/ (2r)log[ ({+1) / €—1)]

and if the first term in the right-hand side of (3, 6)
is denoted by B({), we can write B({) =—A({).
The range of the stress concentration at the corner
is small and the stress, o,/d; along the boundary
in the neighbourhood of x/w=0, 2 is nearly equal to
1.0, The region of influence of the stress, a,/a,
on the x axis exerts far into the semi-infinite plate.
(b) Bending in the plane

A couple M=P.¢, as shown in Fig. 3, acts at the
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tip of the strip. In this case, A({)
—8)/(e—0 ] and B@) =—A(0),
are the points on the unit circle which correspond

=M/ (2n%) log[ (o
where ¢; and o,

to the loading points.
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Fig.3 Stress distributions along the boundary and
on the x axis under a couple M at the tip of
the strip

The value of the stress, a small distance away from
the corner and along the boundary of the strip,
agrees with ¢,=My/I—=6M/w?. The value of ¢,=
My/I can be calculated from beam theory. The
shearing stress on the x axis exists below x/w=0.5.
The maximum shearing stress occurs at x/w=—0.18.
(c) Concentrated load P=1.0 acting on the side of

the strip

In this case, A ({) =P/ (2z) log [ (+1)/ (C—a) ],

and B({)=A(l), where ¢, is the point on the unit
circle which corresponds to the loading point. In
this paper, three cases of load acting at the respec-
tive x/w=0.5, 2.5 and 4.5 as shown in Fig.4 are
considered. The dashed line in Fig. 4 shows the

Y.
___ Beam < C B Mo10
Theory 055 . w :
A/Jll sTRESS !
056 20 40

Fig.4 Stress distributions along the boundary and
on the x axis under a concentrated load P
on the side of the strip

stress distributions obtained from beam theory. We
can find the applicable range of beam theory from
Fig.4. The loading point at x/w=0,5 is not applica-
ble for beam theory since it is too near the corner.
(d) Uniform tension of the semi-infinite plate
Uniform tension of the semi-infinite plate, as
shown in Fig.5, is considered. The required complex

stress function, ¢({) and ¢ ({), are represented by
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Fig.5 Stress distributions along the boundary and
on the ¥ axis under uniform tension g,

STRESS

6 @) =g (@) +¢:1(0) and ¢ Q) =¢o Q)+ &), (4.1)
where ¢,(() and ¢, () are the complex stress func-
tions due to the uniform tensicn ¢, in the direc-
tion of the y axis, and are given by

61 () =g ({) /4 and ¢, (§) =00 (§) /2.

The external load does not act on the boundary.
When (4.1) is substituted into (3.3),
function

ARy =—00 [20@)— (Es+Ed)/(1+0)]/4

which is required to determine ¢({).

we get the

B({) which
is required to determine ¢, ({) is equal to A ().
The stress o,/0, along the boundary of the strip
suddenly decreases at a point a small distance away
from the corner and becomes the ccmpressive stress.
(e) Transverse bending of the strip
A moment M, as shown in Fig.6, acts at the
tip of the strip. If the right-hand side of (3.9) and
the first term on the right-hand side of (3.10) are
respectively denoted by C() and D({), we can
write
C&)=M/[2zD (1—v)] log[ (E+1)/
=—C(@Q.
The bending moments along the boundary and on

the x axis for the respective poisson’s ratio 0.0 and
0.5 are shown in Fig.6. The relation between the

€—13J and D)
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Fig.6 Bending moment distributions along the

boundary and on the x axis under a moment
M at the tip of the strip

poisson’s ratio and the bending moment may be
considered to be linear®. Therefore the stress dis-
tribution for poisson’s ratio between 0.0 and 0.5 can
be found by the method of proportional allotment.
The bending moment which produce temsion at the
back of the plate, as shown in Fig.6, is positive.
The maximum bending moment for poisson’'s ratio
0.5 at the corner is larger than that for poisson’s
ratio 0.0. The values of the bending moment sud-
denly change from positive to negative at the corner.
The values of bending moment along the boundary
of the semi-infinite plate for poisson’s ratio 0.0 are
larger than those poisson’s ratio 0.5.
(f) Torsion of the strip

A torsional moment 7, as shown in Fig.7, acts
at the tip of the strip. In this case, C({) and D ()
are

CQ =T/[xiD(1—v)] log [(£+1)/(E—1)] and D)

=C ().
K
07
T 5
=T
06 To=2v
MOMENT  POISSONS RATIO
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Fig.7 Bending mcment along the beundary and the
twisting moment on the x axis under a tor-
sional moment 7

30 (1978)

The bending moment along the boundary of the

semi-infinite plate is fairly large, whereas that

along the boundary of the strip is not so.

(g) Uniform bending of the semi-infinite plate
Uniform bending of the semi-infinite plate, as

shown in Fig.8, is considered. The required complex

stress functions, ¢({) and ¢ (), are represented by
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Fig.8 Bending moment along the boundary and on
the x axis under uniform bending moment
M,

@) =0 @) +¢:1(Q) and ¢ Q) =¢o(Q)+¢1(¢), (4.2)

where ¢; () and ¢, ({) are the complex stress func-

tions due to the uniform bending moment M, about

the x axis, and are given by

$1(8) =—Mo () /[4D (1+v) ] and ¢, ()
/12D (1—v) 1.

The external load does not act on the boundary.

=M ()

When (4.2) is substituted into (3.8), we get the
function
C () =—My[ 20 (€) — (Eo+Eo) / (14€) 1/[4D (1—v) ]

which is required to determine ¢, (). D({) which
&) 1is equal to C(§).

The very high stress concentration occurs at the
side of the semi-infinite plate, but at the side of

is required to determine ¢,

the strip the bending moment suddenly decreases
and becomes the negative bending moment.

5. Conclusion

A rational mapping function of a sum of frac-
tional expressions can be formed for a comparatively
arbitrary shape. It can be formed even for a shape
with convexity or strip which can not be analyzed
by a mapping function of a polynominal expression.
Once the coefficients of fractional expressions for a
strip (4; and «; of (2.4)) are determined, the coeffi-
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cients can always be used for the analysis of the
shape with a strip. Accordingly to form the
fractional expression is required only for a term
with quick convergency (see the third term on
the right-hand side of (2.2)). If the mapping
function is formed in the type of (2.7), the stress
functions for a plane elastic problem or a thin
plate bending problem are given by (3.6) and
(3.6), or (3.9 and (3.10) respectively. Therefore
once the mapping function is formed, it is easy to
calculate the stress components. The method using
the rational mapping function is particularly efficient
for obtaining the stress distributions at the place of
stress concentration since the solution is analytically
obtained in the closed form. This method can be
applied for crack problem, and has been used for
obtaining stress distributions in the neighbourhood
of a crack and stress intensity factor which is
important in fracture mechanics®®.

References

1. Savin G.N., “Stress Concentration Around Hol-
es,” Pergamon Press 1961.

2. Heller SXK., Brock ].S. and Bart R., “The Stre-
sses Around a Rectangular Opening with Rou-
nded Corners in 2 Feam Subjected 1o Bending
with Shear,” Proc. 4th U.S. Nat. Congr. Appl.

Mech. 1962, pp. 489-496.

. Okabayashi M.,“The Solution of Two Dimen-

sional Elastic Problem Where the Region is
Conformally Mapped on the Semi-Infinite Plane
by the Rational Function and its Application to
the Infinite Thin Plate with Wedge-Shaped Slit,”
JSCE No.119, 1968, pp. 10-18.

. Hasebe N., “Stress Analysis of the Cross-Shaped

Plate,” JSCE, No. 185, 1971, pp. 9-20.

. Hasebe N., “Stress Analysis of a Semi-Infinite

Plate with a Triangular Notch or Mound,” JSCE,
No.194, 1971, pp. 29-40.

. Muskbelishvili N I, “Some Basic Problems of

the Mathematical Theory of Elasticity,” P. No-
ordhoff Ltd., 1963.

. Okabayashi M., “The Stress Concentration of

the Semi-Plane with a Notch Having a Roundish
Cusp,” Bull. of Nagoya Institute of Technology,
Vol.20, 1968, pp. 165-176.

. Hasebe N. and Horiuchi Y., “Stress Analysis

for a Strip with Semi-Elliptical Notches or Cra-
cks on Both Sides by Means of Rational Map-
ping Function,” Ingenieur Archiv 47(3), 1978.

. Hasebe N. and lida J., “A Crack Originating

from a Triangular Notch on 2 Rim of a Semi-
Infinite Plate,” Engng. Fracture Mech. 104),
1978.



