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A semi･in血ite plate with a strip mound is analyzed as a plane elastic problemand a

thin plate bending
problem･ A rational mapping function of a sum

of
fractional

expressions is

used for the analysis･ The exact solution can be obtained for the shape represented by a

rational mapping function･ The analyticalresults, four cases for a plane elastic problem

and three cases for a thin plate be･nding problem, are discussed.

1. ⅠⅡtro血ctiom

Stresses in the neighbourhood of a joint of a

semi-infinite plate and a strip plate
are investigated.

The analyzed plate i8 a Sheet of plate made from

a semi-infinite plate and a strip plate with sarEle

elastic property, that is, a semi-in血ite plate with

a strlP mound. Such a plate is analyzed as a plane

elastic problem and a thin plate bending problem.

T九e rational mapping function for the stress analy･

sis is used. 1f a mapplng function is rational, the

closed solution can be obtained without solvhg

Fredform's integral equation. Therefore the solution

is exact for the shape which is represented by the

rational mapping function. The rational mapplng

function is formed as a sum
of fractional express･

ions. The mapping function
of

a
polytLOmin山

expression ha8 eXtenSively been used till now and

plateswith a上ole in the majorlty Of cases have

been analyzedl･2). However since a power series

of a conformal mapping function for shapewith

strip or convexity has very slow convergency, the

mapplng function of a polynomiⅡal expression can

not been used with good accuracy for such a shape.

However by using a rationalmapplng function of a

sun
of fractional expression, the analytical801ution

can be obtained even for the shape with a strlP Or

COnVeXlty.

Okabayashi3) and Hasebe4･6) have analyzed 80me

plane elastic problems and thin plate bending prob-

lems by the ratioⅡal mapplng function of a sum of

fractional expre88ions. The complex variable meth1

od6･1) is used for stress analysts.
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It seems that exact solution for a semi-infinite

plate with a strip mound which is de且ied in this

paper ba一dly has been
obtained.

A semトin丘nite

platewith a strip mound canbe found in somepart

of the joint of structure. It is considered to be one

of the fundamental elements of structure. Stress in

the neighbourhood of the corner is
of special inter･

eSt.

2. Comformal Mapplng FIInCtion

A conformalmapping function which maps a

semi-infinite region with a strip mound of infinite

length into a unit circle call be obtained by Sch-

warz-Christoffel's transformation. The conformal

mappmg f皿Ction is

a-KJ
､巧手苧

(1-() (1+;)2
a;. (2.1)

The shape on a plane and the corresponding unit

∫

A'

●

･rec.
A1

B

1CI

l

Fig. 1 Semi･in丘nite region with a strip on the a

plane and the unit circle on the ( plane
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circle
are shown in Fig. 1. If the width of the

strip is w, the coe伍cient
K of (2.1) i8 K-2J甘

w/7T.

A rationalmapplng
function of a sum of frac-

tional expressions
can be formed, since (2.1) is

anirrational function. The method to form the

rational mapplng function is discussed as follows･ If

(2.1) is separated into term wbicb converges rap-

idly and terms wbicb converge slowly･ the following

equation can be obtained,

zn/--J一隻一品+2J寸
JfTET2 Jす J 3:

軒i=訂-う下手∈平(1-() (1+;)2
dこ.

(2.2)

The first term corresponds to a stop with
an

in丘nite length and the second term corresponds to

a semi-infinite region. Rational functions are formed

for the respective terms in (2.2). When the first

term of (2.2) i8 expanded
into a power series, we

get,

J昌-真∈yn≡孟an∈n,(2･3)

where a.-1/n･

on the other hand, the followlng fractional expresI

sion to k terms is considered,

oo >

妻174旨-票o
,!1

A,･ α?こ〝･ (2･4)

The coencients A,･ and αj Of (2･4) are determined

in such a way that (2.4) is approximately equal

to (2.3). For this Purpose, equating the coe&cients

of.the power series in (2･3) and (?･4)I we can get･

去Ajα;.-a.. (2･5)
j=l

ln order to determine the values of Aj and aj･ it

is required to choose
2k numbers of α〝･Tbe

con･

vergence of the power series in (2･3) is very slow

and the coe缶cients a" decrease monotonously when

n increases. In this paper, the value of k is taken

as 12 and the following 24 terms ofa. are selected･

a2,a3,a4'a5; a2M'a3M'a4M'a5M; a2M2･a3M2･ a4M2･ a5M2; a2M3,

a3M3,a4M3,a5M3; a2M4･a3M4･a4M4･a5M4; a2Mき,a3M5･ a4M5･a5M5･

Here the value of M is taken as 8. The terms a"

and M=8 are Selected in such a way that the terms

in (2.4) agreewith those in (2･3) from the low

order to the high order･
The terms are also selected

to make the numerical calculation of (2.5)conven-

ient. Therefore M is not always equal to 8. Equa-

tion (2.5) is solved by repeating the calculation4'･

In order to make (2.4) regular in the unit circle,

lαjL<1 must be confirmed･ The last term･ a5M5=a5･85

is the coe氏cient of the 163840th order of ;･ Furth-

er, the terms with order higher than 163840 exist

in (2･4) and also agree with the fairly bigb order

terms of (2.3). Therefore we can conclude that

(2.4) is a fairly good approximate expression of

(2.3). Since the second term of (2･2) is rational･

the fractional expressions
for the third term of

(2.2) is formed next･

The following expression
is considered,

j!l裁-真｡鼻B)･脚
(2･6)

The third term of (2.2) is expanded
into a power

series.
This series converges rapidly and the de-

crease in the coe缶cients of this series is not mono･

tonous. There･fore Bj and P,I in (2･6) are deter-

mined in such a way that the coefBcients of the

power series of (2･6) agree with the coencients
in

the power series expanded
from the third term in

(2.2) from the second to the 2m+1th term･ Then

the coe-&cients
B, and Pj Can be determined by

solving the e･quation of m degrees.and m linear

simultaneous equations･7)
1n this papery m is taken

as 14. Also lβ,･1<1 (i-1,2-,14) mustbe satisfied･

The terms with order of ( higher thap 30 exist

in (2.6) and fairly agree with the power Series

旺Panded from the third term in (2･2)･ Therefore

(2.6) is a fairly good approx血ate expression of

the third term iⅡ (2.2).

Fr.m the above discussion, the rational mapplng

function for (2.2) becomes

a-a (a

-=(E+岩紘一A7･-Ajα,,こ))
2w . 2J甘w

玩+ 7T (xIE･岩(読

-B,-BjP,･こ))+与≡E-1+Eo∈

･

A2ilて吾r.藷･
(2･7)

h the above equations,
xl is the coe&cient of the

first term of power series expanded
from the third

term in (2.2). The last constant term, 2w/7r, is

added in such a way that the rimof thesemi･

infinite region coincide with the y axis (see Fig･1)･
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1f the values on theunit circle are substituted

into (2.7), a diagram can be drawn･ Then the ac-

curacy of (2.7) can be investigated･ The length of

the strip is finite, since the mapping function is

rational. The length of the strlp lS about
4･5 times

itswidth. It is assumed that the length of the strlP

is long enough for the investigation of the strlP ln

the neighbourhood of the corner･ The radius of cur-

vature atthe pointB' and B shown in Fig･1 is

2.053･10-4w. Therefore we can say that the radius

of curvature is very small and the corner is sharp･

The γ-coordinate of the strlp rim exists between

o.4987w and
0.5003w,

which
form a boundary line

wave. However the amplitude of the wave is very

small
as compared to the width of the strlP W･

Therefore we can say that the boundary line of

the strip IS a fairly straight line･

The above discussion shows that the accuracy

of the rational mapp皿g function is good･

3. Method of Analysis

Tbe methods of analysis
for a plane elastic

problem and thin plate bending problem by the

complex variable method6･l)
are brie丑y discussed in

the following.

A) Plane elastic problem

lf the regular complex stress function in the

unit circle are denoted by ≠(;) and ¢(;), the stress

components are

6.+q,-4Re[Q'(こ) /w′(こ)]

q,-Q&+2iで∫,-2[a･Tq(〟(()
/w′(E))′+4'(こ)]/al′(こ)

q,+6o-q.+q,
(3･1)

qe-6,+2iT,e-e2''? (6,-q.+2iT∬,) ,

whereRe[ ] is the realpart of [ ]･o" qoand
I,e

denote the stress components in the curvilinear

coordinates expressed by a mapplng function z-

w(こ) and exp(iP)-こw′(こ)/T;w′(E) L･可否 denotes

the conjugate complex function of w(;).
The boundary condition on theunit circle 6-e''e is

represented by

帥)

+新前訂-iJ
(px･iby) ds

≡H(o) , (3.2)

where the integral with respect to s shows the inte-

gration along the boundary line.んand ♪, are fo-

rces in the direction of the respective x and y

axes. When (3.2) is multiplied by do/[2冗i(o-こ)]

and the Cauchy integral is carried out on the unit

circle, the following equation can be obtained,

")

+去r
空也
才一両普do+弼
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-去J普do≡A(こ)
･ (3･3)

on the other hand, the mapping
function (2.7) i8

regular inside the unit circle, and has Poles of the

如st order at ;-(A (A-1,2,･･･,26) outside theunit

circle, and at (ニーl on the unit circle･ The first

derivative, w′((),
has nO Zeros aS inside theunit

circle and so首(1/こ) has no ze.ro卓 outside the unit

circle.

since the first derivative of the complex 8tre88 f11n･

ction,〆(;),
i8 regular inside theunit circle, ¢′(こ)

can be expanded into a Taylor 8eries･
Therefore

when the point of reAection of (kwith respect to

the unit circle i8 represented byこ一′ (-1/(7 (k-

1,2,-,26), Q'(;) may be written
a8

≠′(()-Ak+A.1 (C-こ.′)+A.2(E-;/)2+･･･ (3･4a)

and at the orlgm,

4'(こ)-Ao+Aolこ+Ao2こ2+･･･. (3.4b)

声(1/() is regular outside the unit circle･

From the above discussion, we can write the

following expre88ion for the region outside the

unit circle,

讃‰F(I/∈)

-eoAoE+澄j碧十R(1/∈)･
R(1/() i8 a regular function outside the unit circle･

a.-E./研節and eA-E./W). In the above

expression, the point 〔--1 is regular･7-1/a
holds

on theunit circle. Whe.n the above expression i8

8ub8tituted
into the integral term on the left-hand

side of(3. 3) , the following equation can be obtained

by earring out the Cauchy integral･

¢ (∈)

+eoA-oこ+岩接+constant-A
(∈)･

(3.5)

when (3.5) i8 diHere･ntiated once, and then (-;A′

(k-1,2, ･･･,26) and (-0 are 8ub8tituted, 27 linear

equations With unknown quantities of Ao,Ao, AA and

Ak Can be obtained since ¢′(こ.′)-Akand 4'(0)-Ao

hold in (3.4a) and (3.4b). When these equations

are separated into the real and imaginary Part, We

can obtain
54 linear equations･ Thus the real and

imaginary parts of Ao and
AA are determined by

solving these linear si=rlultaneous equation8･ How-

ever, if loading condition is symmetric about
one

axis(in this paper, x axis), A. and Ak Can be deter-
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mined by solving 27 linear simutaneous equations.

From the above discussion,申(;) is determined.

When the conjugate equation of (3.2) i8 multiplied

by do/[27rt(or-∈)] and the Cauchy integral is carried

out on the unit circle, the complex stress function

¢(;) can be obtained as follows,

¢ (∈)

-去J雷do一撃静〆(∈,

･coAo/E･星賢一両町
(3･6)

The constant terms in (3.5) and (3.6) can be det･

ermined from the condition of di8Flacement. How-

ever the constant terms are independent in the calcu-

lation
of the stress components since the derivatives

of ¢(こ) and ¢(∈) are used in (3.1).

B) Thin plate bending problem

If the regular complex stress functions in the unit

circle are denoted by 9～(;)and中(こ), bending mo-

ments M,I Mリ tWisting moment MJ" and shearlng

forces Nx, N, are

Mx+M,--4･D (1+u) Re[〆(() /w′(;)]

M,-Mx+2牝ソニ2D(1-u) [w(;) (〆(()/w′(;))′

+4'(;) ]/w′(;)

Nx-iNJU--4･D (申′(;)/al′(E))′/w′(;)

M,+Me-Mx+M, (3.7)

Mo-M,+2l'M,e - e2''β (M, -M.+2iM;,)
N,-iNe-eJ-β (N&-l'N,) ,

where "D" is
the 8exural rigidity and

u i8 the pol-

sson's ratio. M" M(-, Mr(, N, and Ne denote the stress

components in the curvilinear coordinates expressed

by a mapping function z-a(こ).
The boundary condition on theunit circle 6-eL8 is

repre8ente･d by

Sw ･詰和~+捕

-DTitJos[m
(s)

+ilosp
(s)ds]dz=M(q) ･ (3･8)

where the integral with respect to s shows integra-

tion along the boundary line. m(s) i8 the bending

moment andp(s) is the be･nding forces per unit

length along the boundary line･ The complex functions

¢(;) and ¢(こ) can be obtained in the same manner

as the plane elastic problem by obtaining ¢(;) and

¢(;) from (3.2). In this case, ¢(こ) and 4･(;) are

静(∈)+eoA-oE･真弓藷･con8tant

-去J嘗do
(3.9)

･

(引-去J欝do⊥舘¢,
(こ,+CoAo/∈

･

hf61竿宗一諾州･The values of Co, Ck and ;k′ are the same as those

in the plane elastic problemt Tbe皿known qllanti-

ties Ao,Ao,Ah and Ak Can be determined by solving

linear sinultaneou8 equations Which can be obtained

by substituting ;-0 and ;-∈h′ (k-1,2, -･,26)
into

the first derivative of (3.9) Since ¢′(o)-Ao and

¢′(;点′)-Akhold. The constant terms in (3.9) and

(3.10) can be determined from the condition of dis-

placement. However these constant terms are inde-

pendent in the calculation of the stress components.

4. Analytical Result

Four loading conditions for the plane e･1astic

problem and three loading conditions for the thin

plate bending problem are
considered. The analytlCal

results for the respective loading condition are dis-

cussed in the following.

(a) Uniaxial tension in the plane

The concentrated load P, as shown ln Fig. 2,

acts at the tip of the strip. In this case, A(;) in

the right-band side of (3.3) is

01j6.

‰‰
P

o.55W-yw

o.5SoTRES3Suo=vw
1上111111111＼

ayuo

03yu.
fー7rーJ

.0.-0;50
●●.

Fig.21 Stress distribution8 along the boundary and

on the x axis lュnder a concentrated load P

at也e tip of the strlp

A(こ) -P/ (27r)log[ (;+1) / (;-1) ]

and if the first term in the right-hand side of (3.6)

is denoted by B((), we can write B(;)ニーA(().

The range of the stress concentration at the corner

is small and the stress, ♂♂/♂∂,along the boundary

in the neighbourhood of x/w-0. 2 is nearly equal to

1.0. The
region of in触ence of the stress, oJqD,

on the x axis exerts far into the semi-infinite plate.

(b) Perld壬l]g in the plane

A couple M-P･e, as shown in Fig. 3, acts at the
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tip of the strip. h this case, A(()-M/(27ri)log[(o2

-()/(61-;)] and B(;)ニーA((), where ol and q2

are the pouts On the unit circle wbicb correspond

to the 玉oading points.

%

ywVw
P

o.55yw

●.I....

7:xvu.×5

-6.56

lJJJJJ.lllIJl
●;l.

ywO.5l;0

Fig.3 Stress distributionsalong the boundary and

on the xaxis under a coupleMat the tipof

tbe strip

The value of the stress, a small distance away from

the corner and a)one the boundary of the strip,

agrees with qx-My/I-6M/w2. The value of 6.-

My/I can be
calculated from beam theory. The

shearing stress on the x axis exists below x/w%0.5.

The maximum shearing stress occurs at x/w≒-0.18.

(c) Concentrated load P-1.0 acting on the side of

tbe strlp

ln this case, A(;) -P/ (27ri)log [(こ+1)/ (;-ql)],

and B(()-A(こ), where ql is the point on the unit

circle which corresponds to the loading point. Ⅰェ

this paper, three cases of load acting at the respec･

tive x/w-0.5,
2.5

and 4.5 as shown in Fig.4 are

considered. The dashed line in Fig. 4 shows the

Fig･4 Stress distributions along the boundary and

on the x axi8 under a concentrated load P

on the Side of the strlP
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stress distributions obtained from beam theory. We

can血d the applicable range of beam theory from

Fig.4. The loading point at x/w-0.5
is not applica-

ble for beam theory since it is too near the corner.

(d) Uniform tension of the semi-in丘nite plate

Uniform tension of the semi-inf血ite plate, as

shown in Fig･5, is considere-d･ The re.quire-d complex

stress function, ≠(() and ¢(;), are represented by

勉
巾
1~

/W

1.5q.=

1.OoT.=一

o斬○ST2

Ⅱ※
-0.5o

0

%x10

0二5ー二0

(x^
Fig.5 Stress distributions along the boundary and

on the x axis under uniform tension oro

¢(()-≠o(こ)+¢1(;) and ¢(()-4･o(E)+¢1(;), (4･.1)

where ¢1(;) and ¢1(() are the complex stress func･

tions due to the uniform tension 6o ln the direc-

tion of the y axis, and are
given by

≠1(()-Cow(∈) /4 and 4･1(()-Oo(〟(;)/2･

The externalload does not act on the boundary.

When (4.1) is substituted into (3.3), we get the

function

A(こ)ニーoo [2w(;) - (Eo+Eo)/(1+こ)]/4

wbicb is required to determine ¢o(()･ β(;) wbicb

is required to determine 4o(こ) is equal to A(()･

The stress 6e/6oalong the boundary of the strip

sndde山y decreases at a po皿t a Small distance away

from the corner and becomes the ccmpressive stress.

(e) Transverse bending of the strip

A moment M, as shown in Fig.6, acts at the

tip of the strip. If the right-band side of (3.9) and

tbeむst term on the right-band side of (3.10) are

respectively denoted by C(() and D((), we can

wrlte

C(() -M/[27rD(1-u)] log[(;+1)/ (こ-1)] and D(;)

ニーC(;).

The bending moments along the boundary and on

the 〟 axis for the respective poISSOn's ratio O･O and

o.5 are shown in Fig.6. The relation between the
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RATlOU.〇コ
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I

I

I

.i.tKoMo-M;wy-
@;MyMo

0.5ーーー~~~~ー---__-___-----------------~~R-I

･5eMyMol.
yw

Fig.6 Bending moment distributions along the

boundary and on the x axis under
a moment

M at the tip oS the strip

poISSOn's ratio and the bending moment may be

considered to be linear5). Therefore the stress dis-

tribution for poISSOn's ratio between 0.0 and 0.5 can

be found by the method of proportionalallotment.

The bending moment which produce tension at the

back of the plate, as shown in Fig.6, is positive.

The maximum bending moment for poISSOn's ratio

0.5 at the corner is larger thanthat for poISSOn's

ratio 0.0. The values of the bending moment 8ud-

denly change from positive to negative at the corner.

The values of bending moment along the boundary

of the semi-infinite plate for po1880n's ratio 0.0 are

larger than those poisson's ratio 0.5.

(f) Torsion of the strip

A torsional moment T, as shown in Fig.7, acts

at the tip of the strip･ In this case, C(() and D(()

are

C(() -T/[7rtD(1-u)]
log [(;+1)/(;-1)] and D(;)

-C(;).

Ⅳ
一

〟
一I
一
『
l

r-

一

%iLL
一
▲ー

′
′

■-
′

畿yw

..6-狩≡TT,wyWMOMENTPOISSlcN§RATtO
o～2--0.0

.一...

__--/

----0.5
F=

'6-%MxyTo

TTTTH
0.5 ●

●
.

Fig.7 Bending momentalong the boundary and the

twisting moment on the 〟 axis under a tor-

sional moment T

The bending moment along the boundary of the

semi-in血ite plate is fairly large, whereas that

along the boundary of the strip IS not SO.

(g) Uniform bending of the semi･infinite plate

Uniform bending of the semi-infinite plate. as

shown in Fig.8, is considered. The required complex

stress fllnCtions, ¢(こ) and ¢(こ), are represented by

Fig.8 Bending moment along the boundary and on

the x axis under tlniform bending mome･nt

〟o

¢(()-4o(;)+Ql(() and ¢(こ)-4o(;)+¢1(4), (4･2)

where ¢1 (() and 4･1(;) are the complex stress func-

tions due to theuniform bending moment M3 about

the x axis, and are given by

Ql(こ)ニーMow(;)/[4D(1+u)] and ¢1(;) -Mow(;)

/[2D(1-u) ].

The external load does not act on the boundary.

when (4.2) is substituted into (3･8), we get the

function

c(;)ニーMo[2w(() - (Eo+Eo) / (1+こ)]/[4D(1-u)]

which is required to determine 4o(;)･ D(;) which

is required to determine ¢o(;) is equal to C(;)･

The very bigb stress concentration occtlrS at the

side of the semi-infinite plate, but at the side of

the strip the bending moment suddenly decreases

and becomes the negative bending moment.

5. CorLClusion

A rational mapping function of a sum of frac-

tional expressions can be formed for a comparatively

arbitrary shape. It can be formed even for a shape

with convexity or strip which can not be analyzed

by a mapplng function of
a polynominal expression1

Once the coe氏cients of fractional expressions for a

strip (Aj and α,I
of (2･4)) are determined, the coeBi-
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cients
can always be used for the analysis of the

shape with a strip. Accordingly to form the

fractional expression
is required only for a term

with quick convergency (see the third term oⅡ

the right-hand side of (2.2)). If the mapping

function is formed in the type of (2.7), the stress

functions for a plane elastic problem or a thin

plate bending problem are given by (3･5) and

(3.6), or (3.9) and (3.10) respectively･ Therefore

once the mapplng function is formed, it is easy to

calculate the stress components. The method using

the rational mapplng function is particularly e氏cient

for obtaining the stress distributions at the place of

stress concentration since the solution is analytically

obtained in the closed form. This method can be

applied for crack problem, and has been used for

obtaining stress distrib11tioⅡs in the neigbbourbood

of a crack and stress intensity factor which is

important in fracture mechanics8･9)･
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