BEBTRREEH F29% (1977) 275

Analysis of Effects of Fluid Viscosity on Sound
Propagation in Acoustic Wave Guide with
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An exact analysis about the sound propagation in the acoustic wave guide with circular

section is made and some numerical results concerning axisymmetric and non-axisymmetric
acoustic modes are shown. The effects of the fluid viscosity, especially the damping of the

sound, are discussed.

1. Introduction

The sound propagation in the acoustic wave guide
with circular section is an important problem.
However, in spite of many investigations about this
topic, there appears to be no exact discussion about
the effects of the viscosity of the fluid as the medium
of sound. For a more rigorous consideration of the
sound propagation, it is necessary to know the
damping of the sound.

In this paper, an exact analysis in the presence
of the fluid viscosity is presented, and some numerical

results obtained using a computer are also shown.

2. Analysis
The present analysis is based on the linearized
approximation of the Navier-Stokes equation

du
o= —Pb+ G 7 u—pp Xy Xu, )
and the equation of continuity that is also linearized
a
-%:—ky-u, (2

where u is the particle velocity vector, p is the
pressure, p is the density, % is the bulk modulus, #
is the coefficient of viscosity, ¢ is time and p is the
three dimensional nabla operator. The coordinates
(1) and Eq. (2) are
valid, if, and only if, the amplitude of the wave is

system is shown in Fig. 1. Eq.

Fig. 1 Coordinates system.

small. The velocity vector u can be divided into two
terms, irrotational term u; and rotational term u,,
u=utu, pXuy=0, p-u=0. 3)

The division of u by Egs. (3) is convenient not only
for obtaining solutions, but also for consideration of
physical meanings of u. Let us consider a plaﬁe wave
or a spherical wave in infinite space. In these waves,
the term u; is always necessary, but the term u,
does not appear. On the other hand, if the wave is
generated in a restricted space such as in a tube, both
of u; and u, are always necessary for satisfaction
of the condition that the velocity of the fluid in the
vicinity of the wall must be eqaul to that of the wall.
Therefore, we can conclude that the term u, is always
necessary for the wave caused by the compressibility
of the fluid, but u; appears only if the so-called
boundary layer exists.

Using the relation given by Egs. 3), Eq. (1)
and Eq. (2) are rewritten as the followings.
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Elimination of U, from both of Eqs. (4) gives
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where ¢ is the sound velocity «7%/p and v is the
kinematic viscosity pg/p. For a sinusoidal wavé
travelling along the x-axis, let

p=P(r) -cosnf- exp[jB (x—a™t) ]. (7)
In Eq. (7), a¥* is the complex phase velocity, 8 is
the longitudinal wave number and ; is the imaginary
unit. Substitution of Eq. (7) in to Eq. (6) gives an

ordinary differential equation.

(24l 2 -2 to)pn=0 ®
where ) '
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Since the pressure p should have a certain finite
value, we must choose the solution of Eq. (8) as the
following.

P(r)=AJ, (&) (10)
where A is an undetermined coefficient and J, ({r) is
nth order Bessel's function of the first kind. Now, let

uy=[Uy,cosnf, Uj,cosnd, U,sinng]

Xexp [jB(x—a*t)] (11)
Substitution of Eq. (11) with Eq. (7) and Eq. (10)
into the first of Eq. (4) yields

U1,=—A Zpﬁ [ Jae1(C) —Tna (Cr) 1, , (12)
Uyy=4’ 5 /3 B e [ o1 (1) T C1) ],

where
A A(1— ,Ba*) (13)

In the next place, let us consider about u,.
Let

up,=[Us,cosnd, U,,cosnf, U,,sinng)
Xexp [78{y—a*t)]. (14)

Eq. (14) is corresponding to u; given by Eq. (11).
Substituting Eq. (14) into Egs. (5) and rearranging
expressions, we have the following ordinary differen-

tial equations.

(—;,iz—-l——i— 7‘17——:'214—772) Uz.=0,
(%-i”% :’_ —%—!—772) U,,
o Un=0, (15)
( dr? + 11' a"i :1_:+772) Uz
=0,
where
=20 g (16)

v

The solution of the first of Eq.(15) is obtained as
Uz,=Bi1J, (yr), ’ (17)

where B; is an undetermined coefficient.
and the third of Egs.

relation. Therefore, solutions of these simultaneous

The second

(15) are evidently in a dual

equations must be in some dual relations. If we
assume that U,,= Uy, we obtain

Usr="Upy=By-J 11 (y7) (18)
and if we assume that Up,=—U,r, we obtain
Upr=—Uzy=Bs-J,_1 (y7) (19)

B, and Bj; are also undetermined coefficients. Thus, we

have
U2r=B2]u+1 (777') +B3]n—1 (7]7’) } (20)
Uzo=BaJ i1 (pr) —BsJ 1 (1)
The three coefficients, B;, B, and B; can not be
independent each other, because u, must satisfy the

second of Eq. (5). From this fact,

By=-'1-(B,—B;) (21)
Substitution of Eq.- (21) into Fq. (18) yields

Up= ’;;7 (By—Ba)J, () (22)

Now, we must consider about the boundary
condition. In this paper, any movement of the walk
of the wave guide is not permitted. Thus,

(U4 U2udr=s=0,

[T+ Uzpl,-0=0, (23)

[U16+ Uzsl,-0=0.
where @ is the radius of the wave guide. Substituting
the expressions about Uy, U, etc. derived so far
into the boundary conditions given by Eq.(23), we

have simultaneous homogeneous equations for A’ , B2
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and Bs,

I, (La) A+ ’g T, (za) - By

— {;’ J, (7@) - Bs=0

—g—gtf,_l (€2) —Jpe1 (C0) 1- A/ ()
+Jas1(na) « Bo+1,-1 (5a) - Bs=0

—;'7‘9- [t (€@) +T i1 (C) 1+ A7
+Jys1(na@) « Bo—J,-1 (a) - B3=0

According to the theorem of the linear algebra, there

are non-trivial solutions of Egs. (24), if, and only
if, the determinant of coefficient in Eqgs. (24) is zero.
Thus, we have

1 I 00

8 B
_;_Icg“[l/sa(n—l)’é_samé] Py 1/?(»-1):0 =0 (25)
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In Eq.(25), the following expression is used for
simplicity.
— Jyu(2a
SD”"Z—IL((ZZ)V)M (26)

Expanding the determinant of Eq. (25) and rear-

ranging the expression, we obtain

2 2 (P,,,! Pnst ! () =0 27
/3 Pn-1>9 +t [Sa(n—-l)fq l ‘P(n—l)ye] ( )

If »=0, namely, the wave is an axi-symmetric one,
Eq. (27) can be simplified as

Bipu,y+Cnpoe=0 (28)
Eq. (27) and Eq. (28) are the equations for obtaining
the complex phase velocity «*, when the value of
the wave number 8, consequently, of the wave length
A is given, These equations are the so-called complex
transcendental ones. Therefore, these can be solved
only by numerical methods. In this paper, the steepest
descent method is utilized. The phase velocity a and
the logarithmic decrement & can be calculated from
the value of a*, using the following relations.

a=Rea* (29)

0=—2zIma*/Rea* (30)

3. Numerical Resulis
On the sound wave in the presence of the fluid
viscocity, both of the phase velocity and the damping
modulus are matters of concern, The phase velocity
is slightly smaller than that in the absence of the
fiuid viscosity. However, the decline of the phase

velocity caused by the viscosity is negligiblly small,
moreover the phase velocity in the absence of visco-
sity can be calculated using the following simple

equaticn.
2z
a=cy| grt1 81

where ¢ is obtained from the roots of the following
equation

Ja-1(e@) —J 41 (e@) =0 (32)
For reference, the earlier ten roots of Eq. (32) are
given in the Table 1, In this table, » of (», m) in
the Mode Shape column is the number of the nodal
diameters of the pressure distribution and m is the

number of nodal circles. For example, Fig. 2 shows

Nodal Diameter

Nodal Circle

Fig. 2 Schematic illustration of mode shape. This
figure shows the mode (3, 1).

the mode of (3, 1).
Hence, attention will be given only to the damping
modulus. Let A=1/a and 5:=v/ac be dimensionless

parameters corresponding to 2 and v respectively. Fig.
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Fig. 3 Relation between & and 4. (v=1079)
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3 shows the relation between the logarithmic decre-
ment & and the dimensionless wave length A about
the earlier ten modes, when 5=1075. In this figure,
it appears that the modes can be classified into three
groups according to magnitude of & in the long wave
length region. The first group includes only the (0, 0)
mode, the second includes the modes of (1, 0),
(2, 0) and so on, and the third consists of the modes
(0, 1), (1, 1) and so on. Main reason of possibility
of this classification can be found in the profiles of
the axial component of the particle velocity u. Fig. 4
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Fig. 4 Rough schematic illustrations of distribution
of U,.

shows rough schematic illustrations of the profiles of
u,. If the profile of u, of one mode is similar to that
of another mode, the values of § of these modes are

evidently close each other.

In Fig. 5, d of the earlier three modes are shown,
when the value of » varies. The value of  of any
mode is not proportional to b, but it appears that ¢
is roughly proportional to /% in long wave length

region.
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Fig. 5 Relation between § and A, when o varies.

4. Conclusion
The modes of the sornd travelling in the circular
wave guide are classified into some groups according
to the value of 6 in long wavelength region, and ¢
of every mode is roughly proportional to « 5.

Table 1, Roots of Eq. (32)

No. Mode Shape ca
1 (0,0) 0
2 (1,0 1. 841183
3 (2,0 3. 054236
4 (0, 1) 3. 831706
5 (3,0 4.201189
6 (4,0) 5. 317553
7 1, 5. 331443
8 (5, 0) 6. 415616
9 (2,1) 6.706133

10 (0, 2) 7. 015587




