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In this paper we consider the optimization of the transportation network Rows for multiclass

travel modes which share the same roads. In building a model we divide travel units into

several classes each of which has an individual cost function and an individual route selection

criterion.

We show that the optimization problem of such multimodal network丑ows can be stated
as a combined problem of the optimal modal split and tra凪c assignment

in the network. In

the last part of this paper we solve some
problems for the 2-mode single OD network in

order to illustrate the solution procedure and the application of the model.

I. INTRODtJCTION

The minimum cost network Row problem can be

stated as art Optimal tra用c assignmnt problem and

has been dealt with many authors. The general form

of the problem can be written as the problem that

mi_nimizes the total travel cost (e.g. travel time) in

agiven network for afixed OD table. The previous

W_orks were, however, based on the assumption that

all the tripmakers evaluated the network and selected

their own route~ in the same manner. However, in the

actual street network we can see different types of

vehicles w血icb share the same roads, for instance,

trllCks, passenger cars, buses, etc. Tらe value of time

and the operating cost of these vehicles are not same

to allth6 tripmakers, and moreover,
while some types

of vehicles operated by a compally may try to mini･

mile their total travel cost, some may try to minimize

eacll individual travel cost by using the cheapest

route tbrougb the network.

The ordinary tra缶c assignment problems for mull

ticlase user transportation network have been already

dealt with by Dafermosl), Netter2), and Jeevananthan3).

In this paper assumlng that all the tripmakers are

given a free choice of not only the routes but also

the modes we consider the optimization of the trans-

portation network 丘ows for multiclass travel modes,
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each of wbicb has an individual cost function on

each link and/or an individual route selection criterion.

For the route selection criterion we will consider

two types of assignment principle: the system10Pti-

mized and the user-optimized tra&c pattern, which

were丘rst enunciated
by Wardrop4). Tbe丘rst pattern

is such that minimizes the total travel cost over the

network and the second is such that minimizes each

illdividual travel cost, It is known that both the

assignment principles can be treated as mathematical

programming problems.

Tbe- model developed here can be formulated as

a multilevel optimization problem decomposed into a

cente･r problem that minimizes the total travel cost

over the network
by

optimizing the modal split and

some local problems that glVe the tra丘c asslgnment

pattern to each mode. We w-ill show that this multil-

evel optimization model is overcome by combining

the tra氏c assignment and the modal split
into one

stage and describing them by one model.
The

combined

model is then reformulated as an equivalent optimiza-

tion problem wbicb is solved.

2. PROBLEM FORMtJLATION

Let us consider the minimum cost network
月ow

problem for two travel modes.
It is easy to see that
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the problem could be extended
to any number of

travel modes.

To formulate the problem, the followlng notations

are used:

Ni -

the i-th OD且ows (i-1,2,･･･,n)

Ⅹi -

tらe i･tb OD且owsby mode 1

yi - the i-th OD且ows by mode
2

Ⅹチエthe
i･th OD且owsby mode 1 alongroute k

(k-1,2, -,r‡i)

y?
-

the i･th ODflows by mode 2 along route k

(k-1, 2, ･･･, r,i)

tx) - the 丘ows by mode 1 on link j (j-1,2,･･･,h)

tyi -

the flows by mode 2 on link j

cxj - the travel cost perunit且ow by mode 1 on

link j

cyj - the travel cost per unit 且ow by mode 2 on

link j

Among the above notations the following relations

must be satis丘ed:

Ni-Xi+yi

xi-∑ Ⅹ苦
k

yi-∑ y㌢k

tx】-∑∑ 8ijkxチ
i 汰

t,i-字書8ijkyt

∂ち-i:
where

(1)

(2)

(3)

(4)

(5)

if link i is on route k between the i-th

OD pal一

otherw
ise

we assume that the link travel cost is a monotone

increasing function of the link且ows

cxi-Cx】 (tlJ,㌧J), C,J-C,) (tl),t,J) (6)

The problem
can be divided into seveialcases

corresponding
to the conbinations of different tra血c

modes.

Minimize lndividual Cost to Mode I but MiTLimi2:e

Total Cost to Mode 2

For this case the且ow pattern to mode 1 can be

expressed as the following millimization problem:

Mini-ize Fx

-?I:Ⅹjclj
(Ⅹ)dx (7)

subject
to ∑ Ⅹぎ-Ⅹii-1,2, ･･･,n (8)

k

and x字≧o i-1,2,･･･,n, k-1,2,･･･,rxi (9)

It is well known that the solution of this problem,

which we will call local problem 1, is interpreted as

the user-optlmized tra缶c pattern･

similarly the 丘ow pattern to mode 2 can be defined

by the following minimization problem:

Minimize F,-i: ∑∑ 81?jyikcyj (10)
1 j i

subject to ∑ y号-yi i-1,2,･･･,n (ll)
k

and y亨≧o i-1,2,･･･,n, k-1,2,･･･,r,i (12)

The sollltion of this problem, which we will call

local problem 2,gives the system-optimized tra缶c

pattern･

on the other hand the center problem that mini-

mizes the total travel cost to all the modes over the

network can be formulated as follows:

Minimize
F-早手写∂ikj(xfcxj+y㌢cyj)

(13)

subject to ∑ Ⅹ誉+∑yぎ-Ni (14)
k k

and xモ≧o, yチ>=o (15)

The solution of the center problem also must satisfy

也e necessary conditions for the optimal sohtions of

the previous two local problems･ That is to say, the

minimum cost problem
for multimodal network Rows

canbe treated as a two-level optimization problem

decomposed into a center problem and
some local

problems corresponding to the number of modes･

It should
be noted that the local problem to mode

1 canbe recast as that of minimizing the following

Largrange function:

¢-打:l'czj(x)dx-宇スi(写xf-Ⅹi)
(16)

where
li (i-1, 2, ･･･, n) are the Lagrange multipliers.

From the Kuhn-Tucker theorem we can write the

necessaryand sufficient conditions
for theminimun

solution of the above problem
as

if x亨>o, then

昔-弼clj-li-0】

if xF-o, then

各-=恥j-,i≧Oj

-一生=-∑ Ⅹ!+Ⅹi=0∂li 也

and

for all i andk (1丁)

where it is noted that ∑i 8tlCx)givesthe average travel

cost on route k between the i-tb OD pal一.

These conditions imply that the average travel

costs on all the routes actually used are equal,and

anyunused routes have average costs greater than

or equal to routes with positive 且ow, wbicb just

satisfies the definition of the user･optimized tra血c
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p atte rn･

Similarly, for the local problem to mode 2 we

can have the following LagraⅡge function:

¢-芋苧写∂!3yikcyj一石pi(∑ y卜yi) (18)
1 k

For this case we can see that the minimization of

the function (18) is equivalent
to the following equi･

librium conditions:

if y㌢>0, then

港-写∂fj(cyj+y号c′yj)-Pi-0
J

if yF-o, then

鼻-写8的j+y号c′yiト〃i≧OJ

且=-∑
yt+yi=0∂〝i 也

md

for alli and k

(19)

where c′yj is the first partial derivative withwith

respect to y㌢.

The above conditions are very similar to the

previous conditions (17). The only substantive diffe-

rence is that we have substituted

写8ik)(c,メ+yチc′,j)for Z: 6iちcxj.Z:∂iki(c,i+yFc′,j)is called
J J J

the marginal cost offlow on route k between the

i-th OD pair.

We can now reformulate the center problem by

using the equivalent conditions (17)and (19) as

additional constraints.

Minimize
F=芋宇写∂ik3(XFcxj+ytc") (13)

subject to ∑ Ⅹ;:+∑yモ-Nik k

∑ 8ikiCxrli-0
j

∑ 8iklCxrli≧O
j

(14)

(20)

2;8毒(c,j+y㌢c′,))-FEZ-0 (ifyぎ>o)
J

∑ 8ikl(c,j+y㌢′c,))-FLi≧0 (ifyチ-o)
Fl

and x㌢≧0, y㌢≧0

Iithe routes used by mode 1 and by mode 2 are

glVen in advance, we can obtain the solution by

solution by solving the above minimization problem.

Minimi2:e lrLdividual Cost to Each Mode

Next we consider the case where the users of

each mode try to minimizetheir individuel costs. For

this case the localproblem to mode 1 is the same as

local problem 1 described by (7), (8) and (9), and
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the local problem to mode 2 can be defined similarly

by replacing tx), cx), Ⅹ至and xi by t,∫, C,j,y㌢and yi

in local problem 1.

In consequence we can have the center problem

of minimizing (13) subject to the constraints (14),

(15), (20) and

Z:8ikiCyj-FLi-0 (ify㌢>0)
J

Z:∂ihrjLi≧0 (ifyチ-o) ‡ (22)

Minimize TotalCost to to Each Mode

For this case the local problem to mode 2becomes

the same as local problem 2 described by (10), (ll)

and (12), and the local problem to mode 1 can be

given by replacing t,∫, cyj, yモand yi by tlj, Cxj, Ⅹチ

and xi respectively in local problem 2 reversely
to

the preceding case･ We now have the center problem

of minimizing (13) subject to the constraints (14),

(15), (21) and

i: ∂1,!(cxj+Ⅹ㌢c′Ⅹj)-)i-0 (if
∫

2: Si‡(cxj+Ⅹモc′xj)-]i≧0
(iL

】 ;;≡.o;ド(23,
Minimi2:e Total Cost to All Modes

In the above case the total cost to each mode

has been minimized as the local problems before

minimlZlng the overall travel cost in the network as

the center problem. Here weminimize the total cost

to all modes more directly. It is obvious that the

solutions of this problem and the previous problem

will not (always) bethe same. Moreover the objective

function for this problem will never have a larger

value than any of the ob3ective function8 for the

other problems mentioned above.

This problem can be formulated as that of mini･

mizing (13) subject to the constraints (14) and (T5)

only.

Mathematicallyall the multimodal network 且ow

problems stated above can be dealt with
as a nonlinear

programmlng and canbe solved by recent nonlinear

programmlng techniques. If we use linear increasing

cost functions, then the problem can be recast as that

of minimizing the quadratic objective function Subject

to the linear constraints.

3. NUMERCAL EXAMPLES

In order to illustratethe solution procedure and
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the application of the models proposed above, we will

solve two example problems pertaining to the network

丘ows
of passenger cars and buses. In tbe丘rst example

we consider the problem that minimizes the overall

travel time in the network,
based on the assumption

that buses try to minimize their total travel time

while passenger cars prefer to choose the shortest

route. In the second example we consider the problem

that simply minimizes the total travel time to both

the modes without constraints related to route choice.

We will consider a Single OD network shown in

Fig.1.

route 1

∫oute 2

Fig.1.

Tbe following notations
are used:

N -

the nllmber of person trips from A to B.

[trips/hour]

xi - the flows of passenger cars along route i,

i-1, 2. [vehicles/hour]

yi - the flows of buses along route i･

[vehicles/hour]

CIi- the travel travel time by passenger car

on route i. [minutes]

C,i- the travel time by bus on route i･

[minutes]

SI -

the average occupancy rate for passenger

car. [persons/vebicle]

Sy -

the average average occupancy rate for

bus. [persons/vebicle]

E -

the passenger car equlValent of for bus.

Let us denote by ti the total丑ows along route

i. Then the following relation exists:

ti-Ⅹi+Eyi i-1, 2 (24)

Moreover, we assume that the travel time on route i

isgiven by the linear function of the route 丘ows ti.

cxi-axi号+bxi,C,i-ay七+byi
i-1･ 2 (25)

where aェi and a,i are empirically derived constants,

bxi and byi are COnStantS representing travel time at

free flow conditions and ci lS Capacity of route i.

We also assume that

Sx - 1.2, S,-50, E-1.75, cl-C2-2000,

and

axl
-

45, a‡2-49.5, ayl-30, ay2=33,

bxl- 15, bェ2-16.5, byl-30, by2-33,

then we have

C11 - 0_ 0225xl+0. 03938yl+15

Cx2 - 0. 02475Ⅹ2+0. 04331y2+16. 5

C,1 - 0. 015Ⅹ1+0. 02625yl+30

C,2 - 0. 0165Ⅹ2+0. 02888y2+33

Example 1

Tbe objective function to be minimized is given

by

F - Sx(Ⅹ1Cxl+Ⅹ2Cx2) +Sy(ylC,1+y2Cy2) (26)

This may be worked out

F -

o. o27Ⅹ壬+0. 0297x22+1. 3125y…+1. 4438y…

+7. 5473Ⅹ1yl+0. 877Ⅹ2y2十18Ⅹ1+19. 8x2

+1, 500yl+1, 515y2 (27)

Ⅹi and yi (i-1, 2) must satisfy the conservation laws

Sx (Ⅹ1+Ⅹ2)+S, (yl+y2) -N (28)

T血is is then

l. 2 Ⅹ1+1. 2 Ⅹ2十50 yl+50 y2-N-o (29)

Iithe passenger cars are present on both routes, the

travel time by passenger car on the two routes are

equal. That is

Cxl-Cx2 for xl′ Ⅹ2>0 (30)

This may be rewritten as

O. 0225 Ⅹ1-0. 02475 Ⅹ2+0. 03938 yl

-0.
04331 y2-1. 5-0 (31)

Similarly if the buses use both routes, the marginal

travel time by bus on the two routes are equal, then

C,1+ylC′,1-C,2+y2C′,2 for yl, y2>0 (32)

This may be rewritten as

O. 015Ⅹ1-0. 0165x2+0. 0525 yl

-o.
o5775 y2-3-0 (33)

Hence tbe丘rst example problem can be recast

as that of minimizing the quadratic objective function

(27) subject to the linear constraints (29), (31) and

(33) and easily solved with Lagrange multipliers.

It should be noted that both routes are not always

occupied
by the passenger cars and buses as the

number of the total users N varies. If xl-0 and/or

x2-0, we may neglect the constraint (31), and also

if yl-0 and/or y2-0, we may neglect the constraint

(33).
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The solutions for this example are given as

follows:

for o≦N <80

Ⅹ1-0. 8333N

X2=yl=y2-0

F-o. o1875N2+15N

for 80≦N <1,164

Ⅹ1-0. 4365N+31. 7

x2-0. 3968N-31. 7

ylエア2-0

F-o. oo9822 N2+15. 7143N

for l164≦ N <1375

Ⅹ1ニー0. 4798N+1098. 3

x2--0. 3718N+862. 9

yl-0. 04044 N-47. 1

y2-0

F--o. oo3 N2+45. 5628N-17370. 8

for 1375≦ N <7502

Ⅹ1-y2-0

Ⅹ2-0. 02069 N+266. 0

yl-0. 0195N-6. 4

F
-o. ooo512 N2+29. 6656N-2154. 3

for 7502≦N

Xl=Ⅹ2-0

yl-0. 01048 N+27. 2

y2-0. 009524 N-27. 2

F -o. ooo275 N2+31. 4283 N-2040. 8

Figure 2 sbows the variation in percentago of

the users by modes and by routes as the number of

the total users varies･ We see that in this case xl

and yi (i-1, 2) are not positive at the same time.

However, this does not imply that such a
so)ution

does not exist in gereral.

TOTAL PERSON-FLOW: N

Fig･ 2. Relationship between route assignments by

mode and total person-flow
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Example 2

Here we consider the problem of minimizing the

previous objective function (27) subject to the coIISt-

raint (29) and the non-negativity restriction

xi≧0, yi≧O
i-1, 2 (34)

For this problem we have the following solutions:

for o≦N<40

Tbe solutions are the same as those for o≦N<80

in the previous example.

for 40≦N<1147

Ⅹ1-0. 4365N+15. 9

Ⅹ2-0. 3968N-15. 9

yl-y2-0

F -o. oo9821 N2+15. 7142 N-14. 3

for l147≦N<1584

xl--i. 179N+1867. 8

Ⅹ2ニー0. 3204 N+806. 3

yl-0. 05599 N-64. 2

y2-0

Fニーo. oo7928 N2+56. 4091 N-23341. 3

for 1584≦ N <7502

The solutions are the same as those for 1375≦N

<7502 in the previous example.

for 7502≦N

The solutions are the same as those for 7502≦N

in the previous example.

Figure 3 shows the variation in percentage of the

users by modes and by routes as N varies for the

second example.

Fig･ 3. Relationship between route assignments by

mode and total person･8ow

4. CONCLtJSION

By the model proposed in this paper we can

obtain not only the optimal tra丘c assignment but also
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the optimal modal split simultaneously
for the multi･

modal network丑ows. However, the major aim of the

model may prefer to determine the optimal split of

travel modes wbicb share the same transportation

netvork.

The typical application may be the optimization

of the street network 8ows of passenger cars and

buses in peak-hour,
as shown in the example problems･

By the model we canevaluate the optimal bus use

of urban roads and, moreover, the planning of bus

priority treatments such as bus l･anes
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