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In this paper we consider the optimization of the transportation network flows for multiclass
travel modes which share the same roads. In building a model we divide travel units into
several classes each of which has an individual cost function and an individual route selection
criterion.

We show that the optimization problem of such multimodal network flows can be stated
as a combined problem of the optimal modal split and traffic assignment in the network. In
the last part of this paper we solve some problems for the 2-mode single OD network in

order to illustrate the solution procedure and the application of the model.

1. INTRODUCTION

The minimum cost network flow problem can be
stated as an optimal traffic assignmnt problem and
has been dealt with many authors. The general form
of the problem can be written as the problem that
minimizes the total travel cost (e.g. travel time) in
a given network for a fixed OD table. The previous
works were, however, based on the assumption that
all the tripmakers evaluated the network and selected
their own route in the same manner. However, in the
actual street network we can see different types of
vehicles which share the same roads, for instance,
trucks, passenger cars, buses, etc. The value of time
and the operating cost of these vehicles are not same
to.all the tripmakers, and moreover, while some types
of vehicles operated by a company may try to mini-
mize their total travel cost, some may try to minimize
each individual travel cost by using the cheapest
route through the network.

The ordinary traffic assignment problems for mul-
ticlase user transportation network have been already
dealt with by Dafermos?’, Netter?’, and Jeevananthan?.
In this paper assuming that all the tripmakers are

-given a free choice of not only the routes but also
the modes we consider the optimization of the trans-

portation network flows for multiclass travel modes,

each of which has an individual cost function on
each link and/or an individual route selection criterion.

For the route selection criterion we will consider
two types of assignment principle: the system-opti-
mized and the user-optimized traffic pattern, which
were first enunciated by Wardrop®. The first pattern
is such that minimizes the total travel cost over the
network and the second is such that minimizes each
individual travel cost. It is known that both the
assignment principles can be treated as mathematical
programming problems.

The model developed here can be formulated as
a multilevel optimization problem decomposed into a
center problem that minimizes the total travel cost
over the network by optimizing the modal split and
some local problems that give the traffic assignment
pattern to each mode. We will show that this multil-
evel optimization model is overcome by combining
the traffic assignment and the modal split into one
stage and describing them by one mcdel. The combined
model is then reformulated as an equivalent optimiza-

tion problem which is solved.

2. PROBLEM FORMULATION
Let us consider the minimum cost network flow
problem for two travel modes. It is easy to see that
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the problem could be extended to any number of
travel modes.
To formulate the problem, the following notations
are used:
N; = the i-th OD flows (i=1,2, -, n)
the i-th OD flows by mode 1
y; = the i-th OD flows by mode 2

X

x¥ = the i-th OD flows by mode 1 along route k
(k=1,2, -, 1)

y* = the i-th OD flows by mode 2 along route k
(k=1,2, -, 1)

t,; = the flows by mode 1 on link j (j=1, 2, «s+, h)

t,; = the flows by mode 2 on link j

c,; = the travel cost per unit flow by mode 1 on
link j

c,; = the travel cost per unit flow by mode 2 on
link j

Among the above notations the following relations
must be satisfied:

Ni=x;+V; o))
Xi= Zkl x¥ (2)
=yt (3)
ty= ‘E ; a3 x¥ (4
ty;= ; Zk: 3i* vyt 5)
where

1 if link j is on route k between the i-th

ok={ OD pair

0 otherwise

We assume that the link travel cost is a monotone
increasing function of the link flows

Cxj=Cuj (tap tys) s Cyy=Cy; (tups typ) (6

The problem can be divided into several cases

corresponding to the conbinations of different traffic

modes.

Minimize Individual Cost to Mode 1 but Minimize
Total Cost to Mode 2
For this case the flow pattern to mode 1 can be

expressed as the following minimization problem:

Minimize F, = Z}f;”cxj (x) dx 0]
bl

subject to ; xf=x; i=1,2, ¢+, n (8)

and xf =0 i=1,2, oo, n, k=1,2, ¢, 1,; (9)

It is well known that the solution of this problem,
which we will call local problem 1, is interpreted as
the user-optimized traffic pattern.

Similarly the flow pattern to mode 2 can be defined
by the following minimization problem:

Minimize F,=X X3 afiytc, (10)
1 i

subject to Zk} yi=y; i=1,2,+,n an

and yi=0 i=1,2, 5, n, k=1,2, -, 1y (12)

The solution of this problem, which we will call
local problem 2, gives the system-optimized traffic
pattern.

On the other hand the center problem that mini-
mizes the total travel cost to all the modes over the
network can be formulated as follows:

Minimize F= 2.: ? ‘? 3% (xFe,;+yreyy) (13)
subject to %} x‘;—i—Zk} yE=N; (14)
and xi=0, y¥=0 (15)

The solution of the center problem also must satisfy
the necessary conditions for the optimal solutions of
the previous two local problems. That is to say, the
minimum cost problem for multimodal network flows
can be treated as a two-level optimization problem
decomposed into a center problem and some local
problems corresponding to the number of modes.

It should be noted that the local problem to mode
1 can be recast as that of minimizing the following
Largrange function:

#=2[Peymax—D 4 (T ¥-x) 46

where 2; (i=1,2,---,n) are the Lagrange multipliers,
From the Kuhn-Tucker theorem we can write the
pecessary and sufficient conditions for the minimum
solution of the above problem as
if x¥>0Q, then

a
Si =§ 5‘&‘3 C—4=0

ox§

if xF=0, then
o¢ for all i and k (17)
=1 0 c— 420

and

LR S
Y §x3+x;—0

where it is noted that X}, 6% c,; gives the average travel
cost on route k between the i-th OD pair.

These conditions imply that the average travel
costs on all the routes actually used are equal, and
any unused routes have average costs greater than
or equal to routes with positive flow, which just

satisfies the definition of the user-optimized traffic
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pattern.
Similarly, for the local problem to mode 2 we

can have the following Lagrange function:
o= ; z Zk: 3t yicy— L o (Zk: vi—¥i) (18)
j i
For this case we can see that the minimization of
the function (18) is equivalent to the following equi-
librium conditions:
if y¥>0, then
%‘?=Z &5 (eystyic’y) —m=0
Yi j
if yF=0, then

%=Z 85 (cyy+yic yi) —m=0
Vi i

for all i and k

and

9% 3 yetyo—
F/:i—— %Y:‘*‘yl 0 (19)

where ¢’,; is the first partial derivative with with
respect to y¥.

The above conditions are very similar to the
previous conditions (17). The only substantive diffe-
rence is that we have substituted
Zj] a5 (c,+vkc’yy) for Z’,‘ dfic,d, :Z: 8%(cy4y¥c’yy) is called

the marginal cost of flow on route k between the
i-th OD pair.

We can now reformulate the center problem by
using the equivalent conditions (17) and (19) as
additional constraints.

Minimize F=X 3 Zk: 31 (Xicxyt+y¥ey) (13)
1]

subject to X X}‘+§Y‘:‘=Nx (14)
; dficy—4=0 (if x'i‘>0)l

% de,—AZ0 (i xt=0) (20)

}; 6i§ (cyj“i‘y{‘c,yj) — ;=0 (if y¥>>0)
X 85 (e +1/6y) 20t y1=0) | 21
and xF=0, y¥=0 (15)

If the routes used by mode 1 and by mode 2 are
given in advance, we can obtain the solution by
solution by solving the above minimization problem.

Minimize Individual Cost to Each Mode

Next we consider the case where the users of
each mode try to minimize their individuel costs. For
this case the local problem to mode 1 is the same as
local problem 1 described by (7), (8) and (9), and

the local problem to mode 2 can be defined similarly
by replacing t,;, c,;, xi and Xx; by ty;, ¢y yf and y;
in local problem 1.
In consequence we can have the center problem
of minimizing (13) subject to the constraints (14),
(15), (20) and
3 dliey—m=0  (if y>0)
1? dfc,—m=0  (if yr=0)

(22)

Minimize Total Cost to to Each Mode
For this case the local problem to mode 2 becomes
the same as local problem 2 described by (10), (11)
and (12), and the local problem to mode 1 can be
given by replacing ty, c,;, ¥% and y; by ty, Cay xk
and x; respectively in local problem 2 reversely to
the preceding case. We now have the center problem
of minimizing (13) subject to the constraints (14),
(15), (21) and ‘
Z,': O'F (Cayhxbc’yy) —4=0 (if x1>0)
Zj: 0% (x4 5;) —4=0 (if x%¥=0)

(23)

Minimize Total Cost to All Modes

In the above case the total cost to each mode
has been minimized as the local problems before
minimizing the overall travel cost in the network as
the center problem. Here we minimize the total cost
to all modes more directly. It is obvious that the
solutions of this problem and the previous problem
will not (always) be the same. Moreover the objective
function for this problem will never have a larger
value than any of the objective functions for the
other problems mentioned above.

This problem can be formulated as that of mini-
mizing (13) subject to the constraints (14) and (I5)
only.

Mathematically all the multimodal network flow
problems stated above can be dealt with as a nonlinear
programming and can be solved by recent nonlinear
programming techniques. If we use linear increasing
cost functions, then the problem can be recast as that
of minimizing the quadratic objective function subject

to the linear constraints.

3. NUMERCAL EXAMPLES
In order to illustrate the solution procedure and
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the application of the models proposed above, we will
solve two example problems pertaining to the network
flows of passenger cars and buses. In the first example
we consider the problem that minimizes the overall
travel time in the network, based on the assumption
that buses try to minimize their total travel time
while passenger cars prefer to choose the shortest
route. In the second example we consider the problem
that simply minimizes the total travel time to both
the modes without constraints related to route choice.

We will consider a single OD network shown in
Fig. 1.

route 1

(&) _(8

route 2
Fig. 1,

The following notations are used:

N = the number of person trips from A to B.

[trips/hour]

x; = the flows of passenger cars along route i,
i=1, 2, [vehicles/hour]

y; = the flows of buses along route i.
[vehicles/hour]

C,;= the travel travel time by passenger car
on route i. [minutes]
C,;= the travel time by bus on route i.
[minutes]
S, = the average occupancy rate for passenger
car. [persons/vehicle]
S, = the average average occupancy rate for
bus. [persons/vehicle]
E = the passenger car equivalent of for bus.
Let us denote by t; the total flows along route
i. Then the following relation exists:
t;=%;+Ey; i=l1, 2 (24)
Moreover, we assume that the travel time on route i

is given by the linear function of the route flows t;
t; t; ;
Cxi:axiT—l_bxil Cyi:ayi‘c—_+byi i=1, 2 (25)

where a,; and a,; are empirically derived constants,
b,; and by; are constants representing travel time at
free flow conditions and c; is capacity of route i.

We also assume that

S, = 1.2, 5;,=50, E=1.75, c1=c,=2000,
and

a, = 45, a,=49.5, a,=30, a,,=33,

b, = 15, b,;=16.5, by;;1=30, by;=33,
then we have

C.1 = 0.0225%;-+0. 03938y:1+15

Cyz = 0.02475%;0. 04331y2+16. 5

Cy1 = 0.015%;1+0. 026251130

Cyz = 0.0165%2+0. 02888y2+33

Example 1
The objective function to be minimized is given
by
F = S, (x:Caa+%:C2) +S; (11Cy1+¥2Cy2)  (26)
This may be worked out
F = 0.027x3+40.0297x%+1. 3125y} 1. 4438y}
~+7. 5473%,y:+0. 877%2y2+18%;+19. 8%,

+1, 500y:1+1, 515¥2 (27)
x; and y; (i=1, 2) must satisfy the conservation laws
Sy (X1+%2) +S, (y1+y2) =N (28)

This is then
1.2 x;4+1. 2 x,+50 v1+50 y.—N=0 (29)

If the passenger cars are present on both routes, the
travel time by passenger car on the two routes are
equal. That is
C1=C,s for x;, Xs>0 (30)
This may be rewritten as
0. 0225 x;—0. 02475 X21+0. 03938 ¥;
—0. 04331 y.—1.5=0 (31)
Similarly if the buses use both routes, the marginal
travel time by bus on the two routes are equal, then
C,1+y1C1=Cp+y2C'y2 for yi, v22>0  (32)
This may be rewritten as
0. 015 x;—0. 0165 X2+0. 0525 ¥1
—0. 05775 y2—3=0 (33)
Hence the first example problem can be recast
as that of minimizing the quadratic objective function
(31) and
(33) and easily solved with Lagrange multipliers.

(27) subject to the linear conmstraints (29),

It should be noted that both routes are not always
occupied by the passenger cars and buses as the
number of the total users N varies. If x;=0 and/or
X3=0, we may neglect the constraint (31), and also
if y;=0 and/or y,=0, we may neglect the constraint
(33).
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The solutions for this example are given as
follows:
for 0= N <80
x;=0. 8333 N
X;=¥1=Y2=0
F=0.01875N24+15N
for 80=N <1, 164
x1=0. 4365 N+31.7
X2=0. 3968 N—31. 7
y1=y,=0
F=0. 009822 N2+15. 7143 N
for 1164= N <1375
x;=—0. 4798 N+1098. 3
X,=—0. 3718 N+-862. 9
y1=0. 04044 N—47. 1
y2=0
F=—0. 003 N24-45, 5628 N—17370. 8
for 1375= N <7502
X;=y,=0
X2==0. 02069 N--266. 0
v1=0.0195 N—6. 4
F =0. 000512 N2+-29. 6656 N—2154. 3
for 7502=N
X1 =X;=0
¥1=0. 01048 N+27.2
¥2=0. 009524 N—27. 2
F =0. 000275 N2-+31. 4283 N—2040. 8
Figure 2 shows the variation in percentage of
the users by modes and by routes as the number of
the total users varies. We see that in this case x;
and y; (i=1, 2) are not positive at the same time.
However, this does not imply that such a solution

does not exist in gereral.
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Fig. 2, Relationship between route assignments by
mode and total person-flow

Example 2
Here we consider the problem of minimizing the
previous objective function (27) subject to the const-

raint (29) and the non-negativity restriction

x=0, y=0 i=1, 2 (34)
For this problem we have the following solutions:
for 0= N <40

The solutions are the same as those for 0<N<(80
in the previous example.
for 40= N <1147
x1=0. 4365 N+15. 9
xz=0. 3968 N—15.9
Y1=Y2=0
F =0. 009821 N2+4-15, 7142 N—14. 3
for 1147= N <1584
x=—1.179 N+1867. 8
x2=—0. 3204 N+806. 3
¥1=0. 05599 N—64. 2
¥2=0
F =—0. 007928 N2+4-56, 4091 N—23341. 3
for 1584= N <7502
The solutions are the same as those for 1375<N
<7502 in the previous example.
for 7502=N
The solutions are the same as those for 7502=N
in the previous example.
Figure 3 shows the variation in percentage of the
users by modes and by routes as N varies for the

second example.

1007
1 A
8
@3 | t 2
Ex |
ox Ty
[==H
bq([_’za(%
oz
E_,LZ-J X, Y,
52 et
W3 —%
%
(515 y S
o '
<F ) %

TOTAL PERSON-FLOW: N

Fig. 3. Relationship between route assignments by
mode and total person-flow

4. CONCLUSION
By the model proposed in this paper we can

obtain not only the optimal traffic assignment but also
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the optimal modal split simultaneously for the multi-
modal network flows. However, the major aim of the
model may prefer to determine the optimal split of
travel modes which share the same transportation
network.

The typical application may be the optimization
of the street network flows of passenger cars and
buses in peak-hour, as shown in the example problems.
By the model we can evaluate the optimal bus use
of urban roads and, moreover, the planning of bus
priority treatments such as bus lanes
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