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Summary

This paper deals with the problem of propagation of two-dimensional waves through a
strain rate-sensitive and elastic-plastic rectangular plate, which has four boundaries. The pro-
pagation is governed by a quasi-linear hyperbolic partial differential equation, which has three
independent variables. The solutions of this differential equation are cobtained by solving the
finite difference equations by integration along bicharacteristics.

This procedure of solution has enabled to obtain numerical solutions of dynamic boundary-

value problem.

The theoretical results in this paper show that unloading regions are produced near the
center of the symmetric surface because of reflection of waves from the free boundaries and
that the place where the shearing stress is the largest hardly changes during the application of

impulsive load.

1. Introduction

The theoretical study of elastic-plastic stress waves
in a rectanguler plate under conditions of plane strain
is made. This paper deals with the problem of a
rectangular plate of which one edge is loaded by an
arbitrary normal pressure P(x,f). The influence of
the reflection from the free boundary and fixed end
on the disturbance propagating in the plate is consid-
ered. A Malvern type constitutive equation is adopted
and the analyzation of two-dimension elastic-plastic
waves in a half-space by Bejda is applied.

Since dynamic plasticity was studied in 1940, its
investigations have been widely applied to the pro-
blems of high-velocity impact and forming of metals
and to the elucidation of the destructible mechanism
caused by an earthquake. At first the waves in a bar
were analyzed.?»® Thereafter axisymmetric waves?
originating from a cylindrical hole in a plate, simple
waves®™:® in a half space and the combined waves”
which are propagated in thin-walled tubes were analy-
zed. As all these analyses are one dimensional pro-

blems, they may not sufficiently explaine the real

phenomena. In order to supply their imperfectness, in
recent years much attension has been devoted to the
analyses of propagation of two-dimensional stress
waves.

In the case of a half-space this problem has been
analyzed by Bejda.® The governing equations form a
system of quasi-linear hyperbolic partial differential
equation in three independent variables. The solutions
are obtained using finite difference equations deduced
by integration along bicharacteristics.

In this paper the applicability of this method to
a finite space is verified and the propagation of the

stress waves in the plate is explanated.

2. Derivation of the general equations

Consider a material finite to x- and y-direction
and semi-infinite to z-~ direction in the Cartesian
system of coordinates x,y,z. At time {=(Q an arbit-
rary pressure P(x,t) is applied on the plane y=0
(Fig.1). The constitutive equations for elastic-plastic
material are assumed to have the following form.

¢5=S,i/ (26) 48,36,/ (3K) +5,,0 (3, ¢,) Y
where the non-instantaneous plastic response term &
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Fig. 1 Distribution of the pressure P(x,t)
boundary y=0.

on the

(,,:atf’#
g;; . components of the strain tensors
: components of the deviatoric stress tensors
& :equivalent stress

&, . equivalent plastic strain

f(&,) : quasi-static plastic stress-strain relation.
The dot denotes differentiation with respect to time
and K,G,o,

mean stress, respectively. Assuming the plane strain

are bulk modulus, stiffness modulus.

conditions the constitutive Eqs.(l) now becomes:

2. LS+t

e 0,59 (6, &) (2a)

aU,_ls+1

0 = ontS,00,5) (@)

0 =St 0u 5068 (2

g’; - aa’;’ =L tt2c00,5) @2d)
where, together with the equations of motion

do, 0T,y v,

Frany P (3a)

S =

where p is the density of the materlal form the
system of equations.
Now to simplify the calculation we introduce the

following dimensionless quantities.
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Here a hat “ denotes the corresponding dimensional

quantity, ¢; and ¢, are the velocity of propagation of
elastic dilatational waves and of elastic shear waves,
b an arbitrary characteristic length. The speeds ¢; and
¢, are given by

o (EEHEY (S
Using the notation described above the general equa-

(5)

tions can be written as

LIWI=A'W,+A*W,+A'W ,—B=, ®)
where the vectors W, B and tensors A‘, A% A? are:
u 0 (1000 00
v 0 010000
wol?| po|—Z(p—ne| | 00MOQO
q —ZQ@ 0007%00
r ——(—17) 00QO0NO
T —zrw 0000017"
00-1-100 00000-1 {7
00000-1 00-1100
As=|{ 100000 | 2, | 0G-10000
-10 0000 010000
000000 000000
6-16000 \-10000 0
in which M=I"/ (3I*—4), N=I*(I"*—1)/(3I*—4),

Q=r22—I%/@3I?—4).
Equations(6) constitute a quasi-linear hyperbolic system

of partial differeftial equations.

3. Characteristic properties of the governing egq-
uations
The condition that a surface ¢ (x,9,¢) =const. be
a characteristic surface of Eqs.(§) is the condition that
the determinant of the characteristic matrix A defined
by

A=A, +A%$ +A%S, ®)
be zero. The characteristic equation DetA=( can be
wriiten as

(92— (p249,2)) (92— (¢.2+9,7) /%) ¢,2=0. (9)
The two terms in-brackets represent the velocities of
propagation of elastic dilatational and elastic shear
waves. From Egs.(6) it is clear that the term which
represents the plastic behavior is not contained in the
analysis of characteristic surface.

The bicharacteristics of Eqs.(6) are the generators
of the following characteristic cones passing through
the point (¢, %o, ¥o) :

2 (t—ty) *= (x—x0) 2+ —I0) %, c=L1/I. (0
It is convenient to introduce the following parametr-

ization of the characteristic cones in terms of the
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two. parameters « and. f:
x—xy=cfcosa c=1, 1/7T,
y—yo=clsina, 1)
t—ty=I{,

Relations(ll) give the disired equations of bicharacteris-

tic cones. The bicharacteristic strips associated with

the bicharacteristic lines(ll) are:
¢,=c, ¢=1, 1/I"
¢=—Co0sa, 12
¢,=—sina,

In order to determine the equations along bicharacte-

ristics, the null vectors associated with the system(6)

must first be determined.

The null vectors 1=(ly, Iy, I3, I, Is, ls] are the
solutions of the following homogeous system of equa-
tions:

1-A=( 13

The solutions of Eqs.(3) are given as following using

the Eqs.(8) and (12:

1 =[—T%osa, —I%sina, I'’—]1, cosa,

I—2, sin2al (14a)
for ¢=1, and
1 =[Isina, —Icosa, 0, —sin2a,
. 0, cos2a] (14b)
for ¢c=1/T.

The disired differential equations along bicharacteris-
tics are obtained from the equation
1-L{Wl=0 (15
From Eqgs.(15 the following incremental relations along
the characteristics are obtained.
cosadu--sinadv+dp+cos2adq-+sin2adr
=—_S(a)dt
for c=], and (16a)
—TI'sinadu+I'cosadv—I"?sin2adq+I"*cos2adr
=—S8;(a)dt
for ¢=1/T,
where S;(a) and S;(a) are

(16b)

S, (a) = [—sin2a+ 72 (1—cos2a) ] u,+ (%— 1%) (,+0,)
Xsin2a g, (cos2a—1) cosa+4,(14-cos2a) sina
+ [—-cosza-f—j-lg (1+4cos2a) ] v, (1—2sin%a)
‘ X (r;sina—r,cosa) —l—?,—a: (pT_r+q0052a+rsin2a)
(17a)
Si(a) =4 (4,—w,) singa—u,costa+ I'p,sina—Ig,sina
Xcos2a+1t,(1+cos2a) sina-tv,sina—Ip,
Xcosa+1'g,cosacos2a— I, (1—cos2a) cosa
—20X (gsin2a—rcos2a) . (17b)
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4, Integration scheme

We regard the plane z=cost. as covered by a
square mesh with mesh size 4. Difference equations
are derived for computing the solution at a mesh
point (tq, %o, o) (hereafter called simply 0) from kno-
wn data at neighboring mesh points on the plane ¢=
to—k (see Fig.2). These equations are obtained by
forming combinations of equations resulting from
integration of Eqs.(6) along the bicharacteristics and

integration of Eqgs.(f) along the line x=x, y=y,.

Fig. 2 Characteristic cones for the dynamic elastic,
viscoplastic equations.

Integration of Eqs.(6) along the bicharacteristics for
which a=a;, from the point 0 to the point of inter-
section of the bicharacteristic with the plane t=t,—*%
gives

cosa,;0u~+sina,;0v+8p+cos2a;6g+sin2a 0t

=—k(S(a,) *+Sy (a) 1/2-Wy () (18a)

—TI'sina;0u-+I"cosa;0v—I"%sin2a,09+1"%cos2a,;0t

=— (S, (@) +S; (a)) 1/2— Wi () (18b)
for the exterior and interior cones respectively where
for example du denotes the increment u (o, %o, ¥o) —%
(to—Fk, %, ¥;) and where

Wi (a;) =cosa; (uy—u,) +sine; (vy—v;) +-cos2a;

(20—4.) +sin2a, (vo—7,) +Do—b (192)
Wy (a;) =—Tsina; (ug—u;) +I'cosa; (v4—v;)
—TI'%sin2a; X (1,—4;) +1%cos2e; (tg—1,).
(19b)

In Egs.(8) the superscript ° denotes evaluation of
the function at the point 0; the subscript ; denotes
evaluation of the function at the point ((,—£&, xg, ¥o);
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the subscript 7 denotes evaluation of the function at
the point where the bicharacteristic a; on the appro-
priate characteristic cone intersects the plane t=¢,—k.

Additional equations involving the increments du,
..., Ot can be obtained by integration of Eqs.(6) along
the line x=x, y=y, from ¢==t,—k. Thus they are as
follows

du= —[ (Datst1,) ' (Bataate,) 0l (20a)

dv= —E (0,—4,+7.) "+ (0,—a,+72) o], {20b)

513:?[(%_21 (w+2,) —% (p=1) ) +(%7_1
X (#t0,) — 32[0)4 (p—r) )J, (20c)

=% (u,—0,—240) *+ (4,—0,~240) ] (200)

e {(Cot ey ' 2
X (to, —é‘—ﬂ =) ), (200)

Mor=% Cu,t0,—200) 4 (u,+0,—200) ). (200

All the terms on the right hand side of Egs.18 and
Eqgs.Q0) can be evaluated from data on the plane ¢=t,
—Fk except those terms having a superscript °. All the
terms involving the unknown partial derivatives at ( can
be eliminated by forming linear combinations of Egs.
(20, and the eight equations obtained by writing Eqs.(§)
for a;={({—1)=/2, with /=1,2,3,4.

In this way we obtain a system of six equation
which determine the six unknown increments du, v, dp,
dg, 0r and ot. Also the following relations are used;

2ckw, (%, Yo) =w (Xo-+ck, yo) —w (xo—ck, yo) (21a)

(ck) 2w, (%0, Yo) =w (%o-+ck, ¥o) +w (x9—Cck, %)

—2w (%o, ¥o) (21b)
2ckw,,, (%o, ¥o) =k(w, (xq, Yo+ck)
—w, (%, Yo—ck) ] (210)
0="Fk(w, (o, Yo+ck) +w, (%o, Yo—Cck)
— 2w, (%g, ¥o) 1. (21d)

In Egs.Ql) ¢ is equal to 1 for the exterior cones and
to 1/I" for the interior cones. The same relations hold
if the roles of x and y in Eqs.(l) are changed. Just
then six difference equations become

2ou=K [ 21y 0, T, —2 (0 (255+4)),
—2(09),] +2k@ADA)0, (222)

200 = [ (= Dty +-T70,, 40,02 (0222 —g))

—2(07).] +2k(0,~0, 47, (22b)

226t =—2k ((B7) + (D7) ) 52 (2 (Do) o (Fast7,) o)
(00 ot (09) ) o+ 2 sty (220

))..

2I0g =—5(4(09) “+4(09) J—o [0 (25
_ ((p <p%'—q))”] 2k ) o2
X (@est-py+Pas— D) o (22)
epimyor=—5 (S + (S5h=) ) e
(o557 +), + (25

—4)) ] HB Gyt Dt D20 d0 (220)

X (#,+0,) o—

o=t sp ke 3 o p—n)e

+ (@ (p—1))ol. (22f)

The resulting difference scheme is a nine points
scheme since the centered difference formulas for w,,
Wy, Wy, Wy, and w,, at (xg,¥) involve values for w
at the mesh point (g, ¥) and the eight neighboring
mesh points. Equations(?) are the difference equations
at the points except the boundary points. Next the
appropriate equations for mesh points on the boundary
must be derived.

(a) Difference equations for mesh points on the

boundary y=0, |x|<1

There equations are obtained by eliminating equa-
tions along bicharacteristics for which a=3r/2 on
both exterior and interior cones since these bichara-
cteristics intersect the plane {=?¢;,—#% at points outside
the region of intersect. Combining Eqgs.(8) and Q) as
for interior points and then eliminating relations along
the bicharacteristics corresponding to a=3r/2 leads to
the following equations for use at mesh points on the

boundary y=0.

26u= (22a) + (22¢) /T, (23a)
200+5— 2l —0p=(22b) + (22¢), (23b)
—25v+21"26¢1= (22b) + (22d), (23c)
ar=(22f). (23d)

The terms on the right-hand side indicate the
right-hand side of the corresponding equation of Egs.
(2. Equations (9 constitute four equations in six un-
knowns. The remaining two equations come from the
boundary conditions on the boundary y=0. For the
case being considered namely that of an applied nor-
mal pressure P(x,¢), the two additional equations

are
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t(x,1) =0, (24a)
b (% 8) —q(x,t) =P(x1), (24b)
Then the following difference approximations are used.

(These are the difference approximations in the case

of 1=k/h=0.5)
w,= (W (%05, ¥o) —w (xo—P, o) 1/ 4k (25a)
w,= (w (%, Yo+h) —w (x0, ¥o) 1/2h (25b)
W= [ (Xo+h, ¥o) +w (xo—h, 3o)
—2w (%0, ¥o) )/ 22 (25¢)
wy,=0 (25d)

Wy =3[ (Xo-+2, Yo-+h) —w (xo-+4, ¥o) —w
(%o—h, Yo-+-h) +w (xo—h, 30) I /4H>  (25€)
(b) Difference equations for mesh points on the
boundary |x|=1, y=0
“These equations are obtained by eliminating equa-
tions along bicharacteristics for which a=0, 37/2 on
both exterior and interior cones. Thus the following
equations are derived.
Op—0q9=20p (x,t), (26a)
20u-+20v—2I"25q= (22a) — (22b) — (22d), (26b)
—20u-+-2I2/ (I'*—1) op+26v—2@6t
=—(22a) + (22b) — (22¢) /T4 (22¢), (26¢)
or=(22). : (26d)
And the two equations come from the boundary
conditions. For example, when the material considered

is bounded by stress-free boundaries,

op+3dq=0, (26¢)
dr=0, (261)
‘Then the following difference approximations are used.
w,=[w (%, 0) —w (%o—Fh, 0)1/2h, (272)
w,= [ (%0, h) —w (%ch, 0) ]/ 2h, (27b)
Wy =0, (27¢)
Wyy=0, (27d)
Way=L[w (%o, k) +5w (P, 0) —5w (%, 0)
—9w (xg—h, k)] /8 (27¢)

(c) Difference equations for mesh point on the
boundary |x|=1, 0<y<1

These equations are obtained by eliminating equa-

tions along bicharacteristic for which a=0 on both

exterior and interior cones.

20u—2I'2/ (I"'—1) 8p= (22a) — (22b) (28a)

20v—2I6t=(22b) — (22¢) /T (28b)

20u—20"%6b= (22a) — (22d) (28¢)

or=(22f) (28d)
Form the boundary condition,

op+dq=0, (28e)

dr=0, (28f)

Then the following difference approximations are used.

We=[w (Xo, Yo) —w (xg—h, 90) 1 /21 (29a)
wy=[w (%o, Yo+-h) —w (%o, yo—h) 1/4h, (29b)
w,,=0, (29¢)
Wy, = (W (%o, Yo-Fh) +w (29, Yo—h)
— 2w (%o, ¥o) 1/ 22, (29d)
W, =3 (%o, Yo-+h) — (o, Yg—) -+ (x4—h, Yo—h)
—w(xo—h, Yo+h) ]/ 4h? (29e)

(d) Difference equations for mesh point on the
boundary |x|=1, y=1
Eliminating equations along bicharacteristics for
which =0, #/2 on both exterior and interior cones,
252

25u+250—ﬁ_—16p—21"5:= (22a) + (22b) — (22¢)
—(220) /T, (30a)
20u—20v—21"%0g= (22a) — (22b) — (22d),  (30b)
or=(22f). (300)
From boundary condition,
ou=0, (30d)
ov=0, (30e)
dp+09=0. (301)
Then the following difference approximations are used.
w,=[w (%o, Yo} —w (%o—F, ¥5) /20, (31a)
w,=(w (o, ¥o) —w (%4, Yo—h) 1/ 2h, (31b)
W, =0, (31c)
w,,=0, (31d)
W, =5w (xo—h, Yo—h) +w (x4, ¥o) —w (%, Yo—F)
—w (%o—h, o) ) /8h? (3le)

(e) Difference equations for mesh point on the
boundary |x|<1, y=1
Eliminating equations along bicharacteristics for

which a==/2 on both exterior and interior cones,

20v+2I"%9g= (22b) + (22d), (32a)
20u—2I6v=(22a) — (22¢) /T, (32b)
28v—2I'2) (I'*—1) 6p= (22b) — (22¢), (32¢)
or=(22f). (32d)
From boundary conditions,
du=0, (32¢)
dv=0. (32f)
The following difference approximations are
w,=[w (xo+h, Yo) —w (xo—h, 0) 1 /44, (33a)
w,= (W (%o, Yo) —w (%¢, Yo—h) 1/ 2h, (33b)
W= (W (xXo-+7, o) +w (xo—h, ¥;)
—2w (%o, Yo) 1/2h2, (33¢)
w,,=0, (33d)

W= (%g-+h, yo—h) —w (xg-+h, ¥o) +w (xo—h, ¥;)
—w (%g—h, y,—h) ]/ 4H2 (33€)
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For these data we have

5. Numerical results and the consideration ¢;=580119 cm/sec, c¢,=310086¢m/sec,

For numerical calculations Eqs. 2, (3, 08, (8, 60 I'=c/c;.
and () are used. In this paper the noninstantaneous The material considered is bounded by stress-free
plastic response term @ (G, &,) was assumed, in which boundaries at x=-=+1 and by stress-fix boundary at ¥
@ (5, &) =k(6—f(5,)), where k is a multiplicative =1, For this example, we considered a symmetrical,
constant and f(g,) is the equivelent strain in a quasi- continuous distribution of the pressure given by the
static test. relation (see Fig.3).

The relation used for numerical calculations was 0<Lx<£1. 16cm : P, §) =P, (cos (z£/1. 16)

fe) =A—res sl
1.16£x<2, 32cm ;. P(%, 1) =0.

The following data were used for aluminum;
E=7,031X10° kg/cm?, k=105 s},

p=0.28124% 10-5kg sec?/cmd, v=0.3, Ox(igle?)  t=4pgec
G=2.704X10° kg/cm?, y \ Fixed end \\\\
MR A
A 1406, 2kg e, B0, 7031kg/cmt 10 AT 1
B(D|P(R)
(kaicrt)
20001
P 100
e
=]
n o
250 é
—50
e
, -—100%\\ 0
1 (! L L N —— /'m\ ;
6 L3 2 - 8 X
%(psec) o +1e 5= Impact end 10
Fig. 3 Distribution of the pressure }3(:?, fy. Fig. 5 Contour map of o, for t=4 psec.
Cklkgrem?) t=2psec Ci(kg/em®)  f= 5psec

Y AWV, Fixed end AW\ Xo&éob\o\\\\\\\\\ Fixed end \\\\\

o

—50
100

Pi:j\\\ =100, 0~

0 (
' Impact end 'O

1 250 250 100

Free end
\ ./
Free end

X
Impact end 10

Fig.4 Contour map of o, for t=2 usec. Fig. 6 Contour map of o, for =5 psec.
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An characteristic length & is set equal to 2.32
cm. We take the time interval %=0,05 -and mesh
Thus 2=k/h=0.5, which is the
value which assures the stability of difference equa-

dimension A=0, 1.

tion.

The countor maps of each stress with time at
¢=2,4,5 psec are shown in Figs. 4-12. The following
fact is founded from Figs. 4-6; o, is propagated at the
angle of about 45 deg. to y=(0. It is because the
propagation of the compressive stress to y direction

applied on the impulsive face and the propagation of

Oylgems) T=4psec
h\\\\\\\\\\\\ Fixed end \\\\

D)

‘600 1000 500

ZD:\
0 Impact end 'O

Fig. 7 Contour map of g, for =2 usec.

Free end

Oplighrm?) =5psec

Y AW Fixed end

%

o)

1&D1ﬁm 000 500 100 0 -mo

Ul

Impact end 10

Fig. 9 Contour map of ¢, for {=5 usec.

Free end

X

01

to x direction are superposed.

Unloading regions are produced near the center of
symmetric surface and the unloading waves are propa-
gated parallel to y=0, This phenomenon is produced
because unloading waves comingf rom both stress-free
boundaries are superposed on the symmetric surface
and there unloading is accelerated.

The following face is founded from Figs. 7-9. At
first o, is propagated to y direction and it spreads to
x direction after it arrives at y=1. Figs. 10-12 show
the fact that r is propagated to y direction and that

Oytgrem®) t=2psec
Y AN Fixed end \\WW\W

Free end

Impact end 10X

Fig.8 Contour map of g, for t=4 usec.

Tkg/emd) = 2psec
Y ANNMMNMWFixed end AW

50
100

' 150

o

Fig. 10 Contour map of r for =2 usec.

Free end

X
Impact end 10



298

Tg/em?) t=4usec

YoRAMWNNWWWWFixed end W\
100
2
400 )
a
(0]
(]
(]
-
m.
0 10 X

Impact end

Fig.11 Contour map of = for =4 usec.

the position where the maximum r is produced hardly
changes during the application of impulsive load.

6. Conclusion

From the contour maps of each stress, the follo-
wing are concluded.

(1) Unloading regions are produced near the center
of symmetric surface because of reflection of waves
from the free boundaries. And then the unloading
waves are propagated to x direction. .

(2) The place where the shearing stress is the
largest hardly changes during the application of impu-
Isive load.

Acknowledgement

Thanks are due to Mr. S. Isogawa and H. Suizu

for their assistance.

¥

1

-~

2
3
4
5

=~

-

6)

7)

Bulletin of Nagoya Instite of Technoolgy Vol. 27 (1975)

TOg/cm®) f=5p‘5'°c oo

AN Fixed end AW\

Free end

>

o

Impact end

Fig.12 Contour map of 7 for t=5 usec.
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