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Summary

Tbis paper deals with the problem of propagation of two-dimensional waves tbrougb a

strain rate-sensitive and elastic-plastic rectangular plate, which has four boundaries･ The proI

pagation is governed by a quasi-linear hyperbolic partial differentialequation, which has three

independent variables･ The solutions of this differential equation are obtained by solving the

finite difference equations by integration along bicharacteristics.

This procedure of solution has enabled to obtain numerical畠olutions of dynamic boundary･

value problem.

The theoretical results
in this paper show that unloading regions are Produced near the

center of the symmetric surface because of re月ection of waves from the free boundaries and

that the place where the shearing stress is the largest bardly changes during the application of

impulsive load.

l. htroduction

The theoretical study of elastic･plastic stress waves

in a rectanguler plate under conditions of plane strain

is made･ This paper deals with the problem of a

rectangular plate of wbicb one edge is loaded by an

arbitrary normal pressure P(x,i). The in飢1enCe Of

the re鮎ction from the free boundary and 丘Ⅹed end

on the disturbance propagating ln the plate is consid･

ered. A Malvern type constitutive equation is adopted

and the analyzation of two-dimension elastic･plastic

waves in a half-space by Bejdal) is applied.

Since dynamic plasticity was studied in 1940, its

investigations have beeII Widely applied to the pro-

blems of bigb-veloclty impact and formlng Of metals

and to the elucidation of the destructible mechanism

caused by an earthquake. At血st the waves in a bar

were analyzed.2)･3) Thereafter axISymmetric waves4)

originati喝from a cylindrical bole in a plate, simple

waves5)･6) in a half space and the combined waves7)

wbicb are propagated in thin-walled tubes were analy･

zed･ As all these analyses are one dimensional pro･

blems, they may not sufficiently explaine the real
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phenomena･ In order to supply their imperfectness, iq

recent years much attension has been devoted to the

analyses of propagation of two-dimensional stress

Waves.

In the case of
a half-space this problem has been

analyzed by Bejda.I) The governing equations form a

system of quasillinear hyperbolic partial differential

equation in three independent variables. The solutions

are obtained uslng丘nite difference equations deduced

by integration along bicharacteristics.

In this paper the applicability of this method to

afinite space is verified and the propagation of the

stress waves in the plate is explanated.

2. Derivation of the general equations

Consider a material血ite to ∬- and γ-direction

and semi-infinite to a- direction in the Cartesian

system of coordinates x,y,a. At time i-0 an arbit-

rary pressure P(x,i) is applied on the plane y-0

(Fig･1). The constitutive equations fα elastic-plastic

material are assumed to have the following form.

ii,･-S,･,･/(2G) +♂,.,･6彬/(3K) +S.･,.¢ (6,i♪) (1)

where the non-instantaneous plastic respor)se
term a)
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Fig. I I)istribution Gf the pressure P(x,i) on the

boundary γ-0.

is

¢=
6-I (ETA)

e,･,･ : components of the strain tensors

S,.i : components of the deviatoric stress
tensors

∂ : equlValent stress

e-A : equivalent plastic strain

f(i-A) : quasi-static plastic stress-strain relation･

The dot denotes di庁erentiation with respect
to time

and K,G,6m are bulk modulus, stiffness modulus･

mean stress, respectively･Assumlng the plane strain

conditions the constitutive Eqs.(1) now becomes:

告-妄言.十妄ふm+s舶･丘b)(2a)

%-妄言y十妄ふ-+s卯,言b)(2b)

o

-去3∬+去ふ-+s･Q(5･ib)
(2c)

告-%-÷ ;+2T¢ (6･e-A) (2d)

r{here, together with the equations of motion

% +%-p%,
(3a)

%･%-p%･ (3b)

where p is the density of the material･
form the

system of equations.

Now to simplify the calculation we introduce the

following dimensionless quantities.
1=

u-チ,v-号･i-%･
x-丁･ y-÷･
〟

r-÷,
め-bpcIQ,

P-管, q-管,
O.

_

T

r=下言F, T=一斉F

Here a bat
`〈t
denotes the corresponding dimensional

quantlty, cl and c2 are the velocity of propagation of

elastic dilatational waves and of elastic shear
waves,

b an arbitrary characteristic length. The speeds
cl and

c2 are given by

cl- (翠)音,c2- (i)i (5,

Using the notation described above the general equa-

tions can be writtell aS

L〔W〕-AtW,+AxW.+AyW ,-B-o,
(6)

where the vectors W,B and tensors At,A方,Ay are:

W=

A∫=

〟

V

♪

q

r

i4

0

0

1i(A-r)¢
-2q¢

-i
(r-p) ¢

-2T¢

0 0
-1-1
0 0

0 0 0 0 0
-1

-1
0 0 0 0 0

-1
0 0 0 0 0

0 0 0 0 0 0

0
-1
0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

o o〟o¢o

o o or2o o

0 0(∋0.Ⅳ0

o o o o oJ｢2

0 0 0 0

0 0 -1 1

0 -1 0 0

in which M-r4/ (3r2-4), 〟-r2(r2-1)/ (3I12-4),

Q-r2 (2-r2) / (3Iー2-4).

Equations(6) constitute a quasi･linear hyperbolic system

of partialdiffereftial equations.

3. Characteristic properties Of the governing eq-

Ⅶations

The condition that a surface ¢(x,y,i)-const･ be

a characteristic surface of Eqs.(6) is the cond-ition that

the determinant of the characteristic matrix A de丘ned

by

A-A`¢,+Ax≠.+Ay≠, (8)

be zero. The characteristic equation DetA-o can be

wrltten aS

(申,2-(申.2+¢,2)) (¢,2- (≠.2+¢,2)/T2)¢,2-o. (9)

The two terms in-brackets represent the velocities of

propagation of elastic
dilatational and elastic shear

waves. From Eqs.(6) it is clear that the･.term which

represents the plastic behavior is not contained il- the

analysis of characteristic surface.

The bicharacteristics of Eqs.(6) are the generators

of the
followlng Characteristic cones passing through

the point (to,xo,yo):

c2 (i-io)2- (x-xo)2+ (y-yo)2, c-1, 1/r. uO)

It is convenient to introduce the followirlg Parametr-

ization of the characteristic cones
in terms of the

1
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twoL p.qr抑申ers GF- and_ i:

x-xo-ctcosα c-1, 1/r,

y-y8 -CIsinα,

t-to-i.

帥

RelationsuD give the disired equations of bicharacteris･

tic cones. The bicharacteristic strips associated with

the bicharacteristic linesul)are:

¢,-c, c-1, 1/T

¢.ニーcosα,

≠㍉=-sinα.

In order to determine the equations along bicharacte-

ristics, the null vectors associatedwith the system(6)

must first be determined.

The null vectors 1-[Ll, l2, L3, l4, l5, l6] are the

solutions of the
following homogeous system of equal

lions:

1･A-o ㈹

The solutions of Eqs.83) aregiven as following using

the Eqs.(8) and q2):

1 -〔-T2cosα, -T2sina, r2-1, cos2α,

r2-2, sin2a]

for c-1,and

l -〔rsinα, -rcosα, o, -sin2a,

0, coB2a]

(14a)

(14b)

for
c-1/r.

The disired differentialequationsalong bicharacteris-

tics are obtained from the equation

l ･L 〔W〕-o 45)

From Eqs･45) the following incremental relations along

the characteristics are obtained.

cosαdu+sinadv+db+cos2αdq+sin2αdT

--Sl (a)dl

for c-1, and (lea)

-rsinαdu +rcosαdv-r2sin2αdq+r2cos2αdT

ニーS2 (α)dt

for c-1/r, (16b)

where Sl(α) and S2(α) are

sl (α)

-トsin2α+,i
(1-cos2α) ]u.+ (喜一,A)(u,+v.)

×sin2cr+q& (cos2α-1) cosα+q, (1+cos2α) sinα

+トcos2a+,J2
(1+cos2q) 〕v,+ (ト2sin2α)

× (T･Sinα-で,COSα)

+掌(苧十qcos2α+TSin2a)
(17a)

s2 (α)
-与(u",)

sin2a-u,cos2q+rp.sinα-rq.sinα

×cos2α+rT, (1+cos2α) sinα+v.sin2α-rp,

×coser+rq,cosαcos2α-rT. (1- cos2a) cosα

-2¢× (qsin2α-TCOS2α). (17b)
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4. Integration
scheme

We.regard the plane a-cost･
as covered by a

square mesh with mesh size h. Difference equations

are derived for compllting the solution at
a mesh

point (to,xo,yo) (hereafter called simply o) from knot

wn data at neighboring mesh points on the plane l-

to-k (see Fig.2). These equations are obtained by

formlng COmbinations of equations resulting from

integration of Eqs.u6)along the bicharacteristics and

integration of Eqs.(6) along the line x-xo, y-yo.

X

Fig.乏 Characteristic cones for the dynamic elastic,

viscoplastic equations.

Integration of Eqs.㈲along the bicharacteristics for

which
a-a.I, from the point 0 to the point of inter-

section of the bicharacteristic with the plane i-to-k

gives

cosαL8u+sinα,18v+8b+cos2α.18q+sin2α,･8で

ニーk〔Sl (α.A)0+S1 (α.I),.〕/2-
Wl (α,.) (18a)

-rsinα.18u+rcosa.1∂v-r2sin2α,･∂q+r2cos2αL∂T

ニーk〔S2 (α,I)
0+S2 (αi).･〕/2-W2 (α′) (18b)

for the exterior and interior cones respectively where

for example 8u denotes the increment u(to,xo,yo)-a

(to-k, xo,yo) and where

Wl (αL)-COSa,. (uo-ui) +sinai (Llo-VL) +cos2α,.

(qo-q,･)+sin2α,. (To-I,･)+Po-PL, (19a)

W2 (α,.)--rSinα.･ (uo-u.･) +rcosαt (vo-i),･)

-r2sin2α.･× (7o-q,･)十r2cos2αi (To-I.･).

(19b)

In Eqs.a8) the superscript
0 denotes evaluation of

the function at the polnt 0; the subscript o denotes

evaluation of the
function at the point (to-A,xo,yo);
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the subscript i denotes evaluation of the function at

the polnt Where the
bicbaracteristic α′ on the appro-

priate characteristic cone intersects the plane i-to-A.

Additional equations involving tⅠ1eincrements ∂〟,

-･,
∂T Can be obtained by integration ofEqs.(6) along

the line x-xo, y-yo from i-to-k. Thusthey are as

follows

･u-与[(p,+q.+I,).Q+
(p.+q&+I,).〕, (20a)

･v-与〔(A,-q,+Tx)0+(b,-q,+I.).〕,
(20b)

8P-与〔(qtl(u∬+v,)一叢(A-r))o.(r>l
x

(u.+v,)一叢(♪-r))o〕,
(20c)

･2∂q-与〔(u∬-〟,-2qQ)
0+ (a.-v,-2qQ) o〕(20d)

･r-与〔(rP(u-y･v,)一叢(r-A))
0+

(芋
･

(ux+v,ト宗(r-♪)).〕,
(20e)

r2∂で-与〔'(u,+v,-2T¢)
0+ (uプ+vx-2TO).〕. (20f)

All the terms on the right hand side of Eqs.n8) and

Eqs･eO) can be evaluated from data on the plane i-to

-A
except those terms having a superscript

0. All the

terms involving the unknown partial derivatives at o can

be eliminated by formlng linear combinations of Eqs.

(神, and the eight equations obtained by writing Eqs.a8)

for
α,.-(i-1)7r/2, with

i-1,2,3,4.

In this way we obtain a system of six equation

which determine the six unknown increments ∂u, ∂v,砂,

∂q, ∂r and ∂T. Also the followlng relations are used;

2ckw& (xo,yo) -w (xo+ck, yo)-w (xo-ck, yo) (2la)

(ck)2w3.∫ (Xo,yo)-u) (Xo+ck, yo)+w (xo-ck, yo)

-2w
(xo,yo) (21b)

2ck2wx, (xo,yo)-k〔w. (xo,yo+ck)

-w& (xo,yo-ck) 〕 (21c)

0-k[w, (xo,yo+ck) +w. (xo,yo-ck)

-2w& (xo,yo)]. (21d)

In Eqs.Cl) c is equal to 1 for the exterior cones and

to 1/r for the interior cones. The same relations hold

if the roles of x and y in Eqs.Czl) are changed. Just

then six difference equations become

2∂u-首〔
(r2-1) ･J∬,+r2u∬∬+u"-2 (¢(守+q)).

-2 (QT)

,].+2k
(qx+Px+I,) o･ (22a)

2∂v-畏〔
(r2-1) u∬,+r2v"+v∬#-2 (¢(守一q)),

-2 (QT)

&〕.+2k
(A,-q,+T･) o, (22b)

2r2∂Tニー2k ((釦)0+ (伽)o)
+k2 (2(b,,)To†(T13.&+I")

o)

一昔((QT)"+(QT)").+2k(叫タ)0,～
(22c)

2r28q

--i[4
(@q) 0+4 (Qq)

oト音〔¢(Af+q)).A
- (¢(皇子-q))"〕.+2k(u-v,)

o+k2

× (q,i.+q"+九.-A") o, (22d)

27gT8P-一昔〔解)o･(3誤認).〕
+2k

x (u&+v,)

o一昔〔(¢(ff+q))&.+
(¢皇子

-q))"].
+k2〔qx.-q"+A,LX+A"+2r.,〕o, (22e)

8r-詣8b+-宗･等ヨ〔Q(A-r))
0

+ (め(♪-r))o〕. (22f)

The resulting difference scheme is a nine points

scheme since the centered difference
formulas for w.,

w"wJ."W., and w" at (xo,yo) involve values for w

at the mesh point (xo,yo) and the eight neighboring

mesh points. Equations物are the difference equations

at the points except the boundary points.
Next the

approprlate equations for mesh points
on the boundary

must be derived.

(a) Difference equations for mesh points on the

boundary y-0, lxl<1

There equations are obtained by eliminating equal

tions along bicharacteristics for which α-37r/2 on

both exterior and interior cones since these bicbara-

cteristics intersect the plane i-to-k at points outside

the region of intersect. Combining Eqs.吐8)and榊
as

for interior points and then eliminating relations along

the bicharacteristics corresponding to α-3汀/2
leads to

the followlng equations for use at mesh points
on the

boundary γ-0.

26u- (22a) + (22c) /r, (23a)

28v+苗8♪-
(22b) + (22e)･ (23b)

128v+2r28q-
(22b) + (22d) , (23c)

∂r- (22f). (23d)

The terms on the right-hand side indicate the

right-band side of the corresponding equation of Eqs.

物. Equations倒constitute four equations in six un-

knowns･ The remalnlng two equations come from the

boundary conditions on the boundary y-0. For the

case being considered namely that of an applied nor-

mal pressure P(x,i), the two additional equations

are
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･ (x,i)-0, (24a) Then the followlng difference approximatiQnS are used.

b (x,i)-q(x, i)-P(x, i). (24b)

Then the following d肝erence approximations are used.

(These are the difference approximations in the case

of i-k/h-0. 5)

w.= 〔w(xD+h, yo) -w (xo-h, yo)〕/4h (25a)

w,- 〔w(xo,yo+h) -w (xo,yo)〕/2h (25b)

w3,.- 〔w(xo+h, yo)+w (xo-h, yo)

-2w (xo,yo)] /2h2 (25c)

uJ,y
=0 (25d)

ul&,-3[w (xo+h, yo+h) -w (xo+h, yo)-w

(xo-h,yo+h) +a)(xo-h,yo)]/4h2 (25e)

(b) Difference equations for mesh points on the

boundary lx[-1, y-0

These equations are obtained by eliminating?qua･

tions along bicharacteristics for which a-o, 37r/2
on

both exterior and interior cones. Thus the followlng

equations are derived.

8b-8q-8b (x,i), (26a)

2∂u+2∂v-2r26q- (22a) - (22b) - (22d), (26b)

-28〟+2r2/ (T2-1) 64+2∂v-2r8T

w.-〔w (xo,yo)-a (xo-h, yo)〕/2h

w㍉= 〔w(xo,yo+h) -a) (xo,yo-h) 〕/4h,

W,..=0,

(29a)

(29b)

(29c)

w"-[w (xo,yo+h) +w (xo,yo-h)

-2w (xo,yo)]/2h2, (29d)

w.㍉=3〔w (xo,yo+h) -w (xo,yo-h) +w (xo-A, yo-h)

-w (xo-h, yo+h) ]/4h2 (29e)

(d) Difference equations for mesh point on the

boundary l∬1-1, γ-1

Eliminating equations along bicharacteristics for

which a-o,打/2 on both exterior and interior cones,

28u+28v一品82-2r8で-
(22a) + (22bト(22e)

- (22f)/r, (30a)

28u-28v-2r28q- (22a) - (22b) - (22d), (30b)

∂r- (22f). (30c)

From bolユndary condition,

∂〟-0,

8v-o,

8P+∂q-0.

-- (22a) + (22b) - (22c)/T+ (22e), (26c) Then the following difference approximations are used.

∂r- (22f). (26d)

And the two equations come from the boundary

collditions. For example, when the material considered

is bounded
,by
stress･free boundaries,

6b+ 8q- 0, (26e)

∂T- 0. (26f)

Then the fouowing difference approximations are
used.

w.- 〔w(xo,0) -w (xo-h, o)〕/2h, (27a)

w,- 〔w(xo,h) -zv (xoh,o)〕/2h, (27b)

W.,.≡ 0, (27c)

W"=0, (27d)

w.㌔-〔w (xo,h) +5w (xo-h, 0) -5w (xo,0)

-9w (xo-h, h)]/8h2 (27e)

(c) Difference equations for mesh point on the

boundary rxl-1, 0<y<1

Tbese equations are obtained by eliminating equa-

tions along bicharacteristic for which a=o on both

exterior and interior cones.

28u-2T2/ (r2-1) 8b- (22a) - (22b) (28a)

28z)-2r8T- (22b) - (22c)/r

28u12T2∂b- (22a) - (22d)

∂r- (22f)

Form the boundary condition,

8b+8q-0,

∂T-0.

(28b)

(28c)

(28d)

(28e)

(28f)

w.- 〔w(xo,yD)-W (xo-h, yo)〕/2h, (31a)

w,-〔w (xo,yo)-w (xo,yo-h)〕/2h, (31b)

w..-0, (31c)

w"-0, (31d)

w.,-5[w (xo-h, yo-h) +w (xo,yo)-w (xo,yo-h)

-w (xo-h, yo)]/8h2 (31e)

(e) Difference equations for mesh point on the

boundary l∬】<1, γ-1

Eliminatlng equations along bicbaracteristics for

which α-7r/2 on both exterior and interior cones,

28v+2r28q- (22b) + (22d), (32a)

28u-2r8T- (22a)
-
(22c)/r, (32b)

281)-2r2/ (r211) 8P- (22b) - (22e), (32c)

∂r- (22f). (32d)

From boundary conditions,

∂〟-0, (32e)

8v-0. (32f)

The following difference approximations are

w.-[w (xo+h, yo)-w (xo-h, yo)]/4h, (33a)

w,-〔w (xo,yo)-w (xo,yo-h) 〕/2h, (33b)

w3..- 〔w(xo+h, yo) +w (xo-h, yo)

-2w (xo,yo)]/2h2, (33c)

w"-0, (33d)

w.,-〔w (xo+h, yo-h) -w (xo+h, yo) +w (xo-h, yo)

-w (xo-h, yo-h) ] /4h2. (33e)
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5. Numerical results arLdthe coれ9ider&tioA

For numerical calculations Eqs.臨御,餌,鰯,軸

and餌are used. In this paper the noninstantaneous

plastic response term ¢(6,ち) was assumed, in which

¢(6, e-2)-k(6-I(e-A)), Where
A is a multiplicative

constant and I(e-A) is the equivelent strain in a quasi-

static test.

The relation used for numerical calculations was

I (ET♪)-A-
β

6/E+ib

The followlng data were used for alumillum;

E-7.031×105 kg/cm2, k-106 s-1,

p-0. 28124×10~5kg sec2/cm4, y-o. 3,

G-2. 704×105 kg/cm2,

A-1406. 2kg/cm2, B-o. 7031kg/cm2

Fig. 3 Distribution of the pressure i(i,i).

ci(k9/cm,)守;2JJSeC

Fig.4 Contour map of o, for
i-2 FLSeC.

For these data we have

cl-580119 cm/see, c2-310086cm/see,

r-cl/c2.

The material considered is bounded by stress･free

boundaries at x-±1 and by stress･丘Ⅹ boundary at y

-1. For this example, we considered
a symmetrical,

continuous distribution of the pressure given by the

relation (see Fig.3).

o≦x≦1. 16cm : i(i, i)-i.(cos(7r&/1.16)

+1) kg/cm2

1. 16≦x≦2. 32cm : i(i, t^)-o.

6x(Lg/crJ) tz4yBCC

Fig. 5 Contour map of a,for
i-4 FLSeC･

Ol(kg/cn+)育- 51JS∝

Fig.6 Contour map of ox for i-5 FLSeC･
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An characteristic length a is set equalto 2.32

cm. We take the time interval k=0_OB
,.細d mesh

dimension h-0.I. Tlms i-k/h-0.5, which･is the

value which assures the stability of difference equa-

tion.

Tl一e COuntOr maps Of each stress with time at

i-2, 4, 5 FLSeC are Shown in Figs. 4-12. The following

fact is founded from Figs. 4-6; q. 1S Propagated at the

angle of about 45 deg. to y-o. It is because the

propagation of the compressive stress to γ direction

applied on the impulsive faceand the propagation of

･oTyOgJtrT+)モ王4JJSeC

Fig･ 9 Contour map of oy for i-5 FLSeC･
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to ∫ direction are superposed.

Unloading reg10nS打eE Pmduced near- the center of

symmetric surface and the tlrLloading
waves are propa-

gated parallel to y-o. This phenomenon is produced

because unloading waves comingf ron both stress･free

boundaries are superposed on the symmetr ic surface

and there unloading is accelerated.

The followlng face is founded from Figs. 7-9. At

Rrst q, lS Propagated to y direction and it spreads to

∫ direction after it arrives at γ-1. Figs. 10-12 show

the fact that T is propagated to y direction and that

U3(bJtrT+)モ…2ysec

て(k9/err() ‡王2ysa
Fixed end

rd
白
C)

4)

C)

h
圧Z!

.X1.0
Impact end

Fig･ 10 Contour map ofでfor i-2 psec.
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the position where the maximllm
T is produced Ilardly

changes dllring the application of impulsive load.

6. Conclusion

From the contour maps of each stress, the follo-

wlng are COnCluded.

(1) Unloading regions are produced nearthe center

of symmetric surface because of re且ection of waves

from the free boundaries. And then the unloading

waves are propagated to x direction.

(2)The place where the shearing stress is the

largest hardly changes during the application of impu1

1sive load.
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