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Abstract—This paper considers some easily testable and diagnosable network realizations.
First, we propose three types of network realizations by modifying Reddy’s easily testable
network. Second, we discuss each type of the network realization in detail and give the
syntheses algorithms to obtain the optimum network realization for a given logical function.
We also show that these network realizations are superior to other realizations in the fault
detection and fault diagnoses. Last, we compare these network realizations with Reddy’s

easily testable network.

1. INTRODUCTION

In recent years, much efforts have gone into the
developments of high reliability and the fault diag-
noses techniques for the digital systems, in accorda-
nce with the achievement of the large scale on-line
systems. Specially on the latter problem, as the sy-
stems get larger and more complicated by the influence
of the Integrated Circuits, the usual diagnoses techni-
quesP~® have become impractical. Therefore, in the
previous paper?~® we had proposed some network
realizations which are suitable for the fault diagnoses,
as one solution. On the contrary, S.M. Reddy” had
investigated the desirable properties of easily testable
networks and also proposed a realization for an
arbitrary logical function. On the other hand, Hayes®
had indicated that observability and controllability of
the networks are the two important properties for
their testability and diagnosability. From these view
points, in this paper we shall propose three types of
easily testable and diagnosable network realizations
(1), (1) and (W).2~'Y As the same with (7),
the collector parts of these network realizations are
all constructed in the cascade of Exclusive OR gates.
These realizations have many of desirable properties
not only for the fault detection but also the fault

location. In section 2, we shall give Reddy's

network realization and some preparations. In
section 3,4 and 5, we shall present the easily testa-
ble and diagnosable network realizations (1), (I)
and (11) respectively and also give their properties,
fault detecting tests and fault diagnoses procedures
in detail. Last, in section 6, we shall compare

these network realizations and give some conclusions.

2. REDDY'S NETWORK REALIZATION AND
PREPARATIONS

Reddy” has investigated the desirable properties

of easily testable network and given an easily testable

network realization of Fig. I which is composed of

X
X
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Fig. 1 Reddy's Easily Testable Network Realization
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AND gates and Exclusive OR gates (from now on,
represented as EOR gates). Then an n-variable logical
function £, can be expressed in a unique Reed-Muller
canonical form ¥ as given in (I);

fo=c,DtLDLD---Dt,PD---Pt,, 1

where the symbol ¢, is understood to be the
binary constant 0 or I, and each term i; is a product
of some input variables without complements.

For example, a 5-variable logical function fs can
be expressed

fe=1 @xlxa@xlxzx3®x1x2x4®x3x4@xlx3x4@x2x3@

X X3 XD X1%2%3%,D %1 X560 %2%5D X1 %505 D X 3%5 D%
24 X3P %1 %354 5D X X3 %4 X5 D X1 X2 X3 %4 %5 (@)

In Reddy’s network of Fig. 1, each AND gate
can realize a term of (I) and the cascade of EOR
gates is used to collect all terms by operation of
logical ring-sum. Then the fault detection of
Reddy’s network was investigated in detail. If only
permanent stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1)
faults occur in a single AND gate or a single EOR
gate is faulty, the following results were derived on
the fault detecting test sets for Reddy's networks;
1) only (n+44) tests, independent of the function
being realized, are required if the primary inputs are
fault-free. 2) only (n+4+2n,) tests are required, if
the primary inputs can be faulty, where #, is the
number of variables appearing in even number of
product terms in the Reed-Muller canonical form of
the function. It is noted that one of the major draw-
backs of Reddy’s network is the number of Jogic
levels, i.e., it may require a large number of logic
levels in the collector of the network. Furthermore,
Reddy’s suitable for the fault

location. Therefore in the next sections, we propose

network is not
three types of network realizations which are suitable
not only for the fault detection but also for the fault
location, by modifying Reddy’s network.

Now we give some definitions and assumptions
which are used in the following sections.
[Definition 1] A logical product of some literals
is called as a term.

[ Definition 2]

uncomplemented literals

t; denotes a term containing only

(Definition 3] g, denotes a term which may contain
complemented and uncomplemented literals
[Definition 4] For a logical function f, f(m,) deno-
tes the value of the function for a minterm m,

(Definition 5] The length /(¢)) of a term ¢, means
the number of literale in it.
[Definition 6] For a logical function fa define the
set of minterms m; of f,(m,)=1 as ONI[f,), ‘e,
ON(f)=(m,|f,(m,)=1, m, is a minterm.).
[Definition 7] Let |A| denote the number of ele-
ments in a set A.
[Assumptions] In this paper we set limitation to
the fault as follows:

1) range of fault; stuck-at-0 and stuck-at-1
fault in AND gates and any faults in EOR gates.

2) number of faults; single fault, i.c., there exists
at most one fault in the network at a time.

3) type of faults;
mittent fault.

stationary fault, not inter-

3. EASILY DIAGNOSABLE NETWORK REALI

ZATION (I)

In this section, to improve further the controlla-
bility and diagnosability of Reddy’s network, we insert
some EOR gates and external inputs ¢, and ¢/, (where
i=1,2,+.,m) as the control logic and inputs. As the
result, en easily diagnosable network realization(I)
can be obtained in Fig. 2,
internal output function #; and h; satisfy the follo-

It is shown that each

wing desirable properties for the controllability of the
network (1),

o' -~ cfct - g cicl
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Fig. 2 Easily Diagnosable Network Realization (1)

Property 1; t';=t;-¢';, for all t, (3)
Property 2; h=t',Pc's=(t;-¢';) Dc’y, for allt;, ()
Property 3; Set ¢')=1 and ¢',==0, then k;=t, (5)
Property 4; Set ¢'y=1 and c¢'y=1, then W=t (g)
Property 5; Set ¢';=0 and c¢';=0, then h;=0 (7)

—
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Fig. 3 Restrictions on Realizations of Each Term

Property 6; Set ¢'y=0 and c*;=1, then h,=1 (8)
Obviously from (3),
constant I to all primary inputs X, %, -

if we apply the logical
., %, then
each output function #, gets equal to the value of
¢',. Hence, by applying the logical constant 0 or I
properly to each control input ¢*;, we can set inde-
pendently each #/; to be an arbitrary constant 0 or
1, As (6) holds

completely controllable by a set of lines {c’}, ¢’3}. ®

for any ¢, h;, is said to be
The properties 6 and 7 show that the output of each
k; can be set to an arbitrary constant, by applying
constant to ¢‘; and ¢’;. Thus, it is clear
that the Network (I) of Fig. 2 is superior in the
Reddy’s
from Property 3, The network realization for a given

logical

controllability to network. As is clear
logical function by Fig. 2 is the quite same with (7],
However it is assumed that control inputs ¢’; and cf,
can be used not only in the fault detection but also
in realizing a given logical function. If an z-variable
logical function f, is given in a Reed-Muller canonical
form of (I), then we realize the logical function by
the Network (I) of Fig. 2, based on the following
rules;

(Rule 1> : Construct such a term that is composed
of a single variable, f.c., a term with length 1, in
the form of Fig. 3(a).

(Rule 3) . Construct a term with length n in
the form of Fig. 3(b).
{Rule 3) . Construct a term with length | (where

2<£l< (n—1) in the form of either Fig. 3(c) or Fig.
3(d).

{Rule 4y : If, in a given logical function, the
number h of terms with length 1 is greater than the
number k of terms with length greater than or equal
2, then k terms of length 1 are comstructed by Rule
1, and the remaining (h—k) terms with length 1 are
assumed to be realized in the form of Fig. 3(e).

Next, the following theorem can be easily derived
on the fault detecting tests set for the Network (I).
(Theorem 1) Only (n+2) tests E,, E, and T; (i=
1,2, ,n) shown in (9) are required for the fault
detection of the Network (I), if the primary inputs
are fault-free.

X Xy Xz X5 X, €Yy €% €™ €y €Pyeciyec™y

E;=70; 1 1--1-¢1; 0 0--0; 0 0--0--0]
E,={1; 1 1--1--1; 1 1--1; 1 1--1--1)
T\={0; 0 1--1--1; 1 1--1; )]
T=0; 1 0 1--1; 1 1+ L; ) ]
Ti=0~ 1 150 1; 1 1o 1; ey ]
T,=(-; 1 1--1--0; 1 1--1; ]
where

(05 if t;=1, for the input pattern of T;
e"""—{l; if ¥;=0, ” 0

(The proof is omitted,)

Even if the primary inputs can be faulty, we
can realize the Network (I) for which only (#+42)
tests of (9) or a few additional tests plus the (n+42)
tests, are required. The algorithm for realizing such
a network were investigated in detail.!® It is further
shown that the Network (I)can be diagnosed easily
and effectively. The fault locating procedures for the
Network (I) by the adaptive experiment was studied
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in [10]. However, an m-level Network (I) which
realizes an n-variable logical function, needs (n4-2m--
2) external terminals in all. On the contrary, Reddy’s
network needs only (#+2) external terminals. In
practice, the amount of terminals and delays of
networks, are strictly limmited in the integrated
circuits technology. Therefore, the network realization
(I) will be unsuitable for the logical functions that
possess the large value m in the Reed-Muller canonical

form.
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EOR gates for collector
Fig. 4 Easily Testable Network Realization (I);
n is an odd number.
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Fig. 5 Easily Testable Network Realization (I);
# is an even number.

4. EASILY TESTABLE NETWORK

REALIZATION(1)

In this section, modification of Reddy's easily
testable network is given in Fig. 4, to reduce the
number of logic levels in the collector of the network.
Network (1), only

uncomplemented input variables can be used. On the

In Reddy’s network and the

contrary, the modified network realization (called as
the Network (1)) allows each AND gate to be applied
not only input variables but also their complements.
We also annex an Exclusive OR cascade to the
Network in order to detect all single faults at the

primary input buses easily. Furthermore we will
combine all input lines of the EOR gates for comple-
ments, to reduce the pin number of the network. Then
the next two types of realizations are considered; I)
the network realization of Fig. 4, if the number of
input variables 7 is an odd number. 2) the network
realization of Fig. 5, if # is an even number. The
requirement that two types of realizaitons are con-
sidered is due to the fact that EOR gates are modulo
2 adder, which imply that an even number of changes
at the inputs to the EOR gates cancel out and do not
sensitize the changes to the output w. In the Network
(I), let z=1 (or, (21, 22)=(1, 1)),
obtain as (y;,%;, ¥,) =&, %,,.,%,).0n the contrary,
if we set as 2=0 (or, (z1,2;)=(0,0)), then we can
obtain as (¥, ¥, .., ¥,) = (%1, %3, .., %,). Therefore both
of input variables and their complements can be
applied to AND gates of the Network (1), by setting
z2=1 (or, (z1,22) =(,1)). Accordingly we can reduce
the logical levels of the Network (1) in comparison
with Reddy's network and the Network (1). As
obviously known, to obtain the optimum Network(1)

with the least number of logic levels, we must express

then we can

an n-variable logical function f, in the extended
Reed-Muller form that has the minimum number of
terms as
fr=8.08:D - Bg,D- D v
where each g; is the binary constant or a term.
However it is difficult and sometimes uneractical to
obtain the optimum network realization. ¥ Therefore
we shall present the synthesis algorithm for obtaining
a near-optimum network realization. Then the follow-
ing theorem will be available.

(Theorem 2) For a given m-variable logical
function f,, it can be expressed as (1)), if and only if
there exist an odd number of terms g; which satisfy
g;(m;) =1 for each minter m; of f,(m)=1, and
that there exist an evem number of terms g; which
satisfy g;(m;) =1 for each minter m; of f,(m;)=0.

(The proof is omitted)

By using the above Theorem 2, we have obtained
the synthesis algorithm for a near-optimum network
realization. By transforming (10), we can gain
FD81Pe: D - De,D- - Pg=0 12

where 0 denotes the function whose value is con-
stantly zero.

Accordingly the problem of obtaining each
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term of (1I) is essentially to seek terms successively
and operate ring-sum to the ' function untill the
resulting function become zero. In the synthesis algori-
thm, we will choose each term g, in accordance with
the following criterion.

[eriterion] For a logic function f, we have
priority to the term g; whose |ON(f@g]| is the
least number.

the synthesis algorithm:

Step 1; For a given n-variable logical function f,,

let f=f,.

Step 2; Set i=1 as an initial condition.

Step 3; Compute the number of |ON(f]]|.

Step 4; If |ON(f1|=0, then go to the step 9.
Otherwise go to the step 5,

Step 5; Seek the integer number m, such that
2mi>|ON(f 1| >2»!

Step 6; Choose the term g, of all terms whose length
is equal or greater than (w—m), in accor-
dance with the criterion.

Step 7; Compule f as f=fDg.

Step 8; Let i=i-+1 and go to the step 3.

Step 9; Expand the logical function f, as

fo=8:08:D - DED " - DELi-1

where each term g, was given by the step 6,
We have also programmed the algorithm and
applied the 5-variable logical function of (2) in

section 2. Then we can obtain the following result as

Fe=%3%5D %1 %35, DX1%263%5D X1 %2%3%4 %5 13
Jjw
Xy
g £
- —ﬁa
% &
ey 8 ©]
=T x
&) )
Xs
BT )

£
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Fig. 6 The Network Realization f5 of Eq. (2)
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Note that we can realize the function by the
Network (1) of Fig.6 that needs only 4-logic levels.
On the contrary, Reddy’s network and the Network (1)

need I6-logic levels.

Next, on the fault detecting tests for the Net-
work (1) of Fig. 4 (or, Fig.5), we can gain the
following theorem.

[Theorem 3) It is sufficient to apply at most
(n+6) test inputs of (14), to detect the single fault
in the Network (1) that realizes an n-varz'able'

logical function.

&

D —type flip -flop
Fig. 7 Easily Testable Sequential Circuit Realization

Cyy X1 Xge Xy Xys B3 Cy
L=(0;1 1--1--1; 0; 1]
L=(1;1 1--1--1; 0; 0]
L=(0; 0 0--0-+ 0; 0; 1]
I,=[1; 0 0-- 0-- 0; 0; 0]
L=0(-1 1--1--1; 1; =]
Ie=[(-; 0 0-- 0-- 0; 1; -] |
Ti=(-0 1--1--1; 05 -]
T,=(-;1 0--1-- 15 05 -]

AN
T,=(-:1 1--0:- 1; 0; -]
T,=[-;1 1-- 1:-0; 0; -]

where - can be taken any value.
(The proof is given in (I11))

It is known that the Network (1) can be extended
to an easily testable sequential circuit of Fig. 7. The
sequential circuit uses D-fype Aip-flops as memory
elements and the Network (1) as the combinational
part. We have also discussed the fault detecting

procedures of the sequential circuit in detail (11).

5. EASILY DIAGNOSABLE UNIVERSAL NET-
WORK (I)
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and enough to detect single faults of the Network

() (See (9] and (16))
ot - g de It is also shown that the Network (1} is suitable
- --- e for the fault location. The fault locating procedure
- - is derived to be able to identify whether in the col-
;:, I I Block leetor part or in which block there exist faults.
)2,, L il L & & l' Moreover a type of fault can be identified with some

1

Furthermore, by preparing some spare blocks and

vk yi ’Y’ y?
e :

Fig. 8 Easily Diagnosable Network Realization (I[)

collectors to the Network (W}, it is possible to repair
the faulty network systematically, after the faulty
point and the type of fault have been found. It is
also noted that the Network (II) with more than 2!
blocks can organize an n-variable universal logical

In this section, we propose an easily diagunosable
network realization shown in Fig. 8, which hereafter
we call as the Network (W). It is constructed by
the block part which is the iteration of the blocks,
and the collector part which is a one-dimensional
cascade of EOR gates. As shown in Frg. 9, each

block B¢, possesses n-primary control inputs ter-

network.!?

minals ¢}, ¢, -, ¢,. Because of its geometrical input bus

regularity and its control terminals, the Network ()

increases the controllability. In the case of allowing

——— X

inputs to the control terminals c¢f; in the form of

binary constant, uncomplemented input variables and

also complemented input variables each block B‘, can
generate an arbitrary term as an output of ¥°. Hence
any logical function f, of (1I) can be realized by the
Network (1I).
theorem about the fault detecting tests of the Network
().

[Theorem 4] Independently of whether primary in-
buts could be faulty or not, (n+2) tests are sufficient

Then we can obtain the following

Y'—output

Fig. 9 Circuit Structure of Each Block B*,

Table. 1
] Reddy’s network r Network (1) | Network (1) ' Network (1)
number of fault detecting ﬁ' ‘ n-+4* I n+2 ’ n+6 ”+2
tests o } nt-4-+2m, | (02;2"2‘;!) ’ n-+6 nt2
. 7 odd, »
e e et o [ g e e p—
fault location (diagnosability) ‘ impossible possible impossible I possible
logic levels } large large sm:II ‘ small
References | % (10) (11 | @, ue

* n denotes the number of the primary input variables of the network.
** In the case that the primary inputs are Sfault-free.

*** In the case that the primary inputs can be faulty.

***% m denotes the number of its logic levels.
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6. CONCLUSIONS

In this paper we have presented three types of

easily testable and diagnosable network realizations.

Specially we have investigated the properties,

the

fault detecting tests and the synthesis algorithm of

each network realization. Last we can obtain the

Table. 1 which summarizes the comparisons of these

easily testable networks.

)]
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9
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6)

7)
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