Sodium N-Lauroyl Sarcosinate 水溶液における ナフタレン誘導体の可溶化状態 (NMR 法にょる研究)

岡林 博文・中山 安明・奥山 政高

工業化学教室 (1974年9月11日受理)

NMR-Studies on the Solubilization of Aromatic Compound in Sodium N-Lauroyl Sarcosinate Solution

Hirofumi OKABAYASHI, Yasuaki NAKAYAMA and Masataka OKUYAMA

Department of Engineering Chemistry (Received September 11, 1974)

Effects of aromatic solubilizates on the chemical shifts of trans-CH₃, cis-N-CH₃, N-CH₂- and acyl-CH₃ peaks of sodium N-lauroyl sarcosinate were studied in the deuterium oxide solution. When 1, 3-dihydoxynaphthalene, α -naphthol and β -naphthol are solubilized in the surfactant solutions, the prominent changes of the chemical shifts were observed in the trans-N-CH₃ peak rather than in other peaks.

From this observation the collision-complex formation between the trans-N-C \underline{H}_3 of surfactant and the solubilizate molecule was assumed.

The $N-CH_2$ - and $N-CH_3$ peaks of sodium N-lauroyl sarcosinate were gradually broadened with an increase in the concentration of these solubilizates. The broadening of the peaks was discussed in relation to the complex formation.

1. 緒 言

先に我々は,界面活性物質 sadium N-acyl sarcosinates の重水溶液に,ベンゼンおよびその誘導体を可 溶化させて,その可溶化状態を核磁気共鳴吸法によって 調べた。その結果,これら界面活性分子の作るミセル中 への可溶化状態について,次のような 3 つの場合がある ことがわかった。1) benzen, p-xylene, mesitylene および N,N-dimethyl aniline のように、ミセル内部 の炭化水素鎖部分にも溶け込んでいるが、ミセル表面の trans-N-CH₃ に配位して, collision complex を作っ ている場合。2) N-methyl aniline, aniline および phenol のように、ミセル内部には溶解しないで、ほと んどの分子がミセル表面の trans-N-CH₃ と collision complex を作るとともに、かなりの部分がミセルを構 成しているこれら界面活性分子の親水基に近い炭化水素 鎖部分に溶け込んでいる場合。3) benzoic acid のよう に、ミセル内部には溶け込まず、また trans-N-CH₃ と も collision complex を形成しないで、ミセル表面の ペプチド基に近い炭化水素部分に溶けている場合の3つ である。¹⁾ また上述の1)と2)の場合について、これら の界面活性分子がミセル状態にあるときばかりでなく、 単分子分散状態にあるときにおいても、collision complexを形成することがわかった。²⁾ そこで今回は、可溶 化質としてナフタレンおよびその誘導体を用いた場合に も、以上と同様の結論が得られるか否かを調べた。

2. 実験方法

今回用いた界面活性物質は, sodium N-lauroyl sarcosinate (SNLS) で, 市販品を再結晶により精製し た。cmc決定は,電気伝導度法によった (4mg/cc; 35° C)。用いた SNLS の濃度は,150mg/cc-D₂O soln であ った。可溶化質としては,1,3-dihydroxynaphthalene, α -naphthol および β -naphthol を用いた。またこれ らと対比させるため phenol を用いた。NMR 測定は、 SNLS 重水溶液に可溶化質の一定量を加え、よく振り混 ぜて、完全に可溶化させた後に行なった。この間、試料 は恒温槽中で 35°C に保った。ケミカルシフトは、各々 のプロトンの共鳴線の周波数拡大を行なって、読みとっ た。内部基準としては、<u>HDO ピークを</u>用いた。NMR スペクトルの測定には、日立R-20B型を用いた。測定 温度は 35°C であった。

結果および考察

a. SNLS-1, 3-Dihydroxynaphthalene 系と SNLS-Phenol 系の比較

SNLS 重水溶液に、1, 3-dihydroxynaphthalene お よび phenol を可溶化させた時の、SNLS の trans-N-CH₃, cis-N-CH₃ N-CH₂- および acyl-CH₃ の各々 のピークのケミカルシフトの変化を Fig. 1 および Fig. 2 に示した。1, 3-dihydroxynaphthalene の場合, acyl-CH₃ の ピークのケミカルシフトは、可溶化量の増加に ともなって、緩やかに低磁場シフトする。これに対して N-CH₃ および N-CH₂- のピークのケミカルシフトは、 急激に高磁場シフトする。また N-CH₃ のピークのケミ

Fig. 1 Chemical shifts of SNLS hydrogens due to the solubilization of 1, 3dihydroxynaphthalene (1, 3-DHN) in SNLS-solutions,

Fig. 2 Chemical shifts of SNLS hydrogens due to the solubilization of phenol in SNLS-solutions.

カルシフトの変化について比較すると、 trans-N-CH₃ のピークの方が、 cis-N-CH₈ のピークより大きい。以 上のケミカルシフトの変化の傾向は、Fig.2 と比較すれ ば、 phenol の場合とよく似ていることがわかる。ただ

し phenol の場合は、モル比0.5以上で、N-CH₂-のピークが2本に分裂することが見られる。ここでケミカル シフトの変化の値を比較すると、acyl-CH₃のピークを 除いた他の3つのピークについて、1,3-dihydroxyna-

Fig. 3 NMR spectra of N-CH₂- in SNLS-1, 3-dihydroxynaphthalene (1, 3-DHN) and SNLS-phenol.

Table I	Chemical shifts of SNLS hydrogens
	in the molar ratio of 0.50.

addition of the second second	trans-N- CH3	cis-N- CH3	N-CH ₂ -	acyl- CH ₃
	(Hz)	(Hz)	(Hz)	(Hz)
1, 3-DHN	25.4	7.7	10.2	-1.0
Phenol	9.8	3.1	4.0	0.4

phthalene の場合の方が, phenol の場合より大きく, 特に trans-N-CH₃ のピークにおいて, それらの差が 顕著であることがわかる。(Table I 参照)

次に N-CH₂-のピークについて、その NMR スペク トルを Fig.3 に、その半値幅 $\Delta v_{1/2}$ のモル比依存性を Fig.4に示した。1、3-dihydroxynaphthalene の場合、 モル比の増加にしたがって、プロードニングが起こり、 モル比 0.6 では、ケミカルシフトの位置が定めがたいほ どとなる。これに対して phenol の場合、モル比の増加 にしたがって、プロードニングが起こるが、その程度 は、1、3-dihydroxynaphthalene に比べて小さい。ま たモル比 1.0において、N-CH₂-のピークの形状は、非 対称である。さらにモル比が増加すると、N-CH₂-のピ ークが2本に分裂する。したがってこのプロードニング は、この分裂によるものである。つまり、このことは可 溶化量の増加に したがって、N-CH₂ 結合のまわりの コンホーメーションが固定される傾向を示していると考 えられる。

Fig. 5 kt, N-CH₃ OL' - 2kOVC, EONMR

Fig. 4 Molar ratio dependence of half height width Δν_{1/2} for N-CH₂- in SNLS-1, 3-dihydroxynaphthalene (1, 3-DHN) and SNLS-phenol.
(■:SNLS without any solubilizate).

Fig. 5 NMR spectra of N-C \underline{H}_3 in SNLS-1, 3-dihydroxynaphthalene (1, 3-DHN) and SNLS-phenol.

スペクトルを示した。trans-N-CH₃とcis-N-CH₃の ピークのケミカルシフトの差, すなわち N-CH₃のピー クの内部ケミカルフトは, モル比に依存し, それが0に なるモル比(1, 3-dihydroxynaphthaleneの場合:約 0.3, phenolの場合:約1.0)が存在するため, その近 傍のモル比域では,半値幅を求めることは困難である。 しかしその両端のモル比で比較すれば, N-CH₂-のピー クと同様, trans-N-CH₃のピークにも, プロードニング が生じていることがわかる。しかしその程度は, N-CH₂-のピークより小さい。またその程度は, 1,3-dihydroxynaphthaleneの場合の方が, phenolの場合より著 しい。

以上の N-CH₂- および N-CH₃ のピークの半値幅の 考察から、ミセル表面近くのこれらプロトンの付近の局 所磁場が不均一にされていることが考えられる。これは phenol のベンゼン環および 1,3-dihydroxynapathalene のナフタレン環の 磁気異方性 によるものと考えら れる。 したがって可溶化された 1,3-dihydroxynaphthalene および phenol は、ミセル表面の極性基近くに あるにちがいない。またプロードニングの程度の差は、 ペンゼン環とナフタレン環の大きさと磁気異方性の差に よるものであろう。

一方,ケミカルシフトの変化の考察において,trans-N-CH₃のピークの変化が特に顕著であることから,可 溶化された 1, 3-dihydroxynaphthalene は, phenol と同様,そのほとんどが SNLS の trans-N-CH₃ と collision complex を形成していると考えられる。また ケミカルシフトの変化の差は、ベンゼン環とナフタレン 環の磁気異方性の差によると考えられる。

Fig.6 KHz, SNLS-phenol \mathcal{O} collion complex

(b) SNLS-1, 3-dihydroxynaphthalene
 (1, 3-DHN) complex model.

Fig. 7 Chemical shifts of SNLS dyrogens due to the solubilization of α -naphthol in SNLS-solutions.

Fig. 8 Chemical shifts of SNLS hyrogens due to the soltbilization of β -naphthol in SNLS-solutions.

Fig. 9 NMR spectra of N-CH₂- in SNLS- α -naphthol and β -naphthol.

model と共に, SNLS-1,3-dihydroxynaphthalene の collision complex model を示す。

b. SNLS-α-Naphthol 系および SNLS-β-Naphthol 系

SNLS の重水溶液に α -naphthol および β -naphthol で を可溶化させた時の, SNLS の trans-N-CH₃, cis-N-CH₃, N-CH₂ および acyl-CH₃ の各ビークのケミカル シフトの変化を Fig.7 および Fig.8 に示した。またモ ル比0.4の時のケミカルシフトの変化を, 1, 3-dihydroxynaphthalene の場合と共に Table II に示した。

Table 11Chemical shifts of SNLS hydro-
gens in the molar ratio of 0.4.

	trans-N- CH₃	cis-N- CH ₂ -	$N-CH^2-$	acyl- CH ₃
	(Hz)	(Hz)	(Hz)	(Hz)
α-Naphthol	20.8	5.7	9.0	-2.4
β -Naphthol	19.4	4.6	8.0	-1.9
1, 3-DHN	20.0	5.6	7.8	-0.8

acyl-CH₃のピークを除いて,**3**つの可溶化質の間にケ ミカルシフトの変化の大きな差異はない。

Fig.9 には、N-CH₂-のピークのNMRスペクトルを 半値幅 $\Delta \nu_{1/2}$ と共に示した。1, 3-dihydroxynaphthalene の場合, モル比 0.4の時, その半値幅は 5.5Hz (Fig.4) であるから, これら 3 つの可溶化質について は、ケミカルシフトの変化と同様に、大きな差異は認め られない。

以上のケミカルシフトの変化と N-CH₂ のピークの半 値幅の考察から、 α -naphthol および β -naphthol の可 溶化状態は、上に述べた 1,3-dihydroxynaphthalene と同様、phenol の可溶化状態によく似ていると考えら れる。しかし acyl-CH₃ のピークのケミカルシフトの変 化に、可溶化質による差が見られることから、ミセル表 面にあるナフタレン環の位置に可溶化質による差がある と思われる。

Fig. 10 には, SNLS- α -naphthol および SNLS- β naphthol の collision \neg omplex model を示す。

Fig. 10 (a) SNLS-α-naphthol complex model.
(b) SNLS-β-naphthol complex model.

- 文 献
- 岡林博文,高橋 仁,奥山政高,名古屋工業大学学 報,24,403 (1972)
- 奥山政高,中山安明,三嶋孝司,岡林博文,名古屋 工業大学学報,25,111 (1973)