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It is the purpose of this paper to present a theory of traffic assifnment for the
mathematical descriptions of the traffic assignment patterns on an urban and high-
way network. To do this, we discuss the probability of occurrence of a traffic as-
signment pattern and develop a new method, named Probability Maximization Me-
thod, which can derive the most probable assignment pattern under the given road
and traffic conditions.

For a more realistic traffic assignment this method is furthermore extended to
the one with capacity restraint. In this paper two extended traffic assignment
models are proposed. One is a flow-dependent assignment model using a travel time
function and the other with capacity constraints on links of the network. Though
both the models are formulated as a nonlinear programming problem respectively,
it is shown that the former can be solved by an iterative procedure and the latter
by the SUMT method, one of the more effective methods of nonlinear programming.
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. Introduction

It is well known that drivers’ choices among
~various alternative routes through a road net-
work as they travel from some origin to desti-
-nation are very various and uncertain. It seems
to be caused by that drivers’ behaviors at the
time of route choices are normally different
because the characteristics of a route such as
route travel time or cost are judged differently
by the drivers and they also don’t necessarily
have perfect knowledge on these route chara-
.cteristics enough to judge correctly:

Most of the existing methods of traffic
_assignment are, however, deterministic and are
based on the assumption that all the drivers
.evaluate the network in exactly the same ma-
nner. In studying more realistic traffic assign-
ment problems it is important to take into ac-
.count the different behaviors of drivers and
also the effects of traffic congestion. In this
-paper through probabilistic approaches to these
sproblems a new probabilistic method for traffic
.assignment is proposed.

Main features of this method are that it is
-formulated as a nonlinear programming problem

and has strict logic as a theory of traffic as-
signment.

2. Formulation of the Problem

We consider a road network on which r OD
flows are distributed. Between each OD pair
we designate no more than s routes in the net-
work. Now consider a trip distribution pattern
composed of overall X trips on the network
under the condition that the total travel time
If we distinguish the indiuidual
we can recognize there are

becomes E.
trips one by one,
many micro-states, or combinations of trips,
which make up this trip distribution pattern.
By elements of combinatorial analysis the total
number of such micro-states, W(E), is

Wx(E)=(E+X-DI|(X-D!E! (1)

where E must be integer.
Let Wx(E+4E) be the total number of

micro-states when E chages infinitestimally
4E, then it is
—1)!
Wr(E+4E)=E+IEL XD @

(X-DIE+4E)!

Taking the ratio of Eq. (2) to Eq. (1), we have
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) VWX(E"‘AE)/WX(E):(E+AE+X—‘1)!(X—1)!E‘!/(E*)‘X'—l)! (X-DI(E+4E)!

=(E+X)A+X/E+D)A+X](E+2)) - .
QA+X/(E+4E-1)[(E+4E) 3

By assuming X >>1 and E>>4E we omit 4E
in Eq.(3), then

Wx(E+AE) _ (1, x|E)AE @

Wx(E)
Taking the logarithm of both sides of the above
equation, we obtain

log Wx(E+4E)—log Wx(E)=4E log (1+X|E)
or
Adlog Wx(E)=Y4E (5)
where we put
r=log(1+X/E) (6)
On the other hand, the number of micro-
states, z(E), which give rise to the traffic
assignment pattern {X;*} under the condition

that the total travel time becomes E is given
by

z2(E)=(X1) I XD M

also from elements of combinatorial analysis.
Where X* (i=1, 2,:, r, k=1, 2,---, 5) is the
number of trips using the k-th route between
the i-th OD pair. As a matter of course Eq.(1)
is related to Eq.(7) by the following equation,

Wx(E)= 2 (X!]IX:k!) (8
X® i,k

where the summation is over X% satisfying
the total travel time constraint. Then if all
micro-states are equally probable, the traffic
assignment pattern {X*} that maximizes z(E)
is undoubtedly the most probable.

It has been proved mathematically in sta-
tistical mechanics that if X takes the large
number, Wx(E) is proportional to the maximum
of z(E). Then if we designate the maximum of
z(E) by Z(E), the following relation should hold

Wx(E+A4E)|[Wx(E)=Z(E+4E)|Z(E) (9)
It follows
Adlog Wx(E)=4d1log Z(E)=T4E (10)

Subtracting 4log z(E) from both sides of the
latter half relation in Eq. () we have

4(log Z(E)—log z(E))=4(TE—log z(E)) (1)

In the above equation if z(Z) has its maximum,
Z(E), both sides become zero. Thus, we now

conclude that the most probable traffic assign-
ment pattern is given by minimizing

TE—log z(E) (12

under the given traffic and road conditions. It
is noted that Eq. (12)is analogous to the Helmholtz
free-energy function which has a minimum for
a thermodynamic system in equilibrium.

Let ;¥ be the travel time via the k-th
route between the i-th OD pair, then the total:
travel time in the network can be expressed:
by

E=373 X kt;% (13
Tk

On the other hand, using Stirling’s formula.
(log x ! ==x log x—x) log z(E) can be expressed by

log z(E)=X log X—Zi}Zsz log X:* (4
k

where X is constant. Then we can rewrite the-
objective function as

722%{ Xﬂmk—(—;g X i* log X ¢k) s

The second term of the above function we-
shall call trip assignment entropy with refe-
rence to the form of entropy in statistical
mechanics. Now it is concluded that the most:
probable traffic assignment pattern is obtained
by minimizing the objective function (5 subject
to

%}Xz’“:Xi 1)

where X; means the volume of the i-th OD-~
flow. Eq. (16 represents the conservation law on.
the i-th OD flow.

Solutions to the problem can be obtained by-
Lagrangian method in general. Particularly if
the link travel time is flow-independent, we~
obtain the solutions easily as

__exp(—Ti;k)
A= exp(—Tieb) ¢ “7’
k

It is of considerable interest to note that.
the objective function (2) brings out the relation.
of the existing method to two extreme cases.
If ¥ is so large that the second term of the-
objective function is negligible we have an.
optimal assignment pattern that minimzes the
total travel time. In addition, if the link travel:
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time is constant, it leads to an all-or-nothing
assignment pattern. On the contrary, if =0,
the problem is to maximize the trip assignment
entropy function which means that all trips are
assigned uniformly to each route. A real traffic
assignment pattern is considered to lie in the
region between these two extreme cases. The
value of 7 used for a real network assignment
problem should be determined empirically. For
instance such 7 as puts an observed and com-
puted assignment pattern in close agreement
may be chosen.

This new method, which we shall call Pro-
bability Maximization Method, assigns each OD
flow to some alternative routes and the assign-
ment rate to each route is derived theoretically
from within the model. That is, in this method
there is no necessity for giving an empirical
diversion curve.

In a similar way probabilistic consideration
as mentioned above also can be applied to the
traffic distribution problems, which has been
already treated in the author’s previous works. I
The use of the entropy maximizing methodology
in the analyses of traffic distribution has been
explored by several authors. Sasaki showed?,
assuming a priori probability of traffic distri-
bution, that the most probable traffic distri-
bution pattern was found by maximizing the
logarithm of a joint probability corresponding
to a traffic distribution pattern. Wilson® set
up an entropy function defined as the logarithm
of the number of micro-states corresponding to
a traffic distribution pattern by analogy with
statistical mechanics and in his discussion the

Xik=

where T’ is the first derived function with
respect to Xk, It is easily proved that if all
T are convex and monotone increasing func-
tions, the objective function @) has only one
minimum value.

The introduction of flow-dependent travel
time considerably complicates the analysis of
the assignment problem, but if we put

E%In 6k X1k =Qp @
1
and we define F;, that satisfy
Fh(Qh>:Tn+QhTh’:‘—j“‘{QhTh} ®
dQn

then the solutions can be rewritten as

most probable distribution pattern was obtained
by maximizing the entropy function subject to
the fixed total travel cost constraint. Major
differences of the author’s model from Sasaki’s
and Wilson’s models were that it was formulated
without using a priori probability and also with-
out the fixed total travel cost constraint.

3. Flow-Dependent Assignment

In studying more realistic traffic assignment
problems it is necessary to take into account
the effects of traffic congestion. The primary
feature of the flow-dependent algorithm is its
provision for link travel time functions. These
functions may be any linear or nonlinear rela-
tion of link flow to travel time for that flow.

Let us define a travel time function on link
h(h=1, 2,:, 1) as

Tn(%}%n dik X ;%) (18
where
1 if link Z&route £ between the
i{—th OD pair
ndigk=
0 if link A&route k2 between the
i—th OD pair
The total travel time E is then given by
2322200048 X% T (30300 de% X %) 19
i k& h A

Thus the problem is to find a set of X;* to
minimize
%‘%%n dck X4k Tn(;%}n dek X k)
+§§sz10g Xk 20

subject to Eq. (6. And the result is

exp{—T>ne 6¢¥(Tn+34knde® Xek Th')} @)

STk eXp{—7 Snn Gtk (Ta+ 21 20k de® X ok Tn')} " *

kZ exp(—T2nn 65% Fp)

Xik= eXP(‘—TEhhﬁiij> X @4

Afterall the following iterative procedure is
used for obtaining a set of X%,

Step 1. Compute the initial Fx (® based on
the link travel time at free flow conditions.

Step 2. Assume 7 and obtain a set of X;*
from Eq. @).

Step 3. Compute again the new f‘*k(w based
on the new link travel time obtained by using
the above {X;k}.

Step 4. Fp™ (n=1, 2,---) for the second
and succeeding iterations are updated according
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to The first route
Fpm = mF (=1 _}j;‘h(n—l) o) link
m+1 1 2 3 4 5 6 7 8 9
where m is a constant given properly in order Kl 001 .0 1.0 0 0 0 0
to stabilize the iterations. i
Step 5. The previous Fj-1) is replaced K3 1 00 0 0 1 0 1 0
by the new Fip ™, K! 1.0 0 0 0 1 0 0 O
Return to Step 2 and repeat the iterations until K!' 1.0 0 0 0 0 0 0 0
Fp ™ is sufficiently close to Fp(n-1), o ¢ )
e 1
Step 6. Based on the converged link travel 3 Ky 0 0 0 1 0 0 0 0 1
times OD volumes are assigned and link volumes = K¢ 0 0 1 0 0 1 0 0 0
are accumulated. K} 0 0 1 0 0 0 0 0 0
A
n example problem K}; 000 0 0 0 0 0 0 1
To demonstrate the use of this model an
Kl 1 0 0 0 O
example problem is solved. In Fig. 1 the problem 9 0 0 00
K, 0 0 0 0 0 1 0 1 O
The second route
link
1 2 3 4 5 6 7 8 9
K2 1.0 0 0 t 0 0 0 O
K2 0 1.0 1 0 0 0 0 1
K2 0 1 1 0 0 1 0 0 0
Fig.1 Road network for the example problem
K2 0 1 1 0 0 0 0 0 O
network is illustrated. OD flows are given in 8lgK: 0 0 1 0 0 1 0 1 0
Table 1. Two routes are assumed between each § . 10 0
OD pair on the network, which are expressed K¢ 00 0 1 00
in the route matrix form. K2 0 0 0 1 1 0 0 0 O
Table 1. OD table Kf 0 0 0 0 0 0 1 1 0
.p.h
-2 K2 0 0 0 0 0 1 1 0 0
&,‘7@,,,‘,,,,,@, o o | | K% 0 0 0 0 1 0 0 0 1]
* % | 1,700 400 700 | 1,100 | @
® X 800 1,&?00 130 © Table 2. Coefficients of the link travel time
¥ 1,200 % | 1,400 ® function
¥ o % 900 @ ‘
¥ % ® link ‘ an by -
) # h=1 0.0030 6.0
These routes are fixed during the assignment 2 ! 0. 0015 3.0
process. 3 0. 0025 5.0
The following link travel time function is o -
used for the problem. 4 0. 00225 4.5
Tr=anOn+bp r=1, 2,---, 9 @0 5 0. 0020 4.0
where 6 0. 0009 1.8
T'p=link travel time in minutes;
Qr=link volume in vehicles per hour; 7 0.00135 Zl B
ap=empirically derived constant; 8 0. 0025 5.0
bp=constant representing travel time at f T w
" o0 g tme at tree o | oo | 6.0
flow conditions \
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Eq. @ is a linear travel function, which allows
link travel time to increase linearly with flow.
The coefficients of Eq. @) are listed in Table
2.

The value of 7 should be given empirically
and in this case was assumed 7=0.5.

The solutions to the problem are shown in
Fig.2 and Table 3.

The value of m used for the iterative pro-
cedure was 3 and required 21 iterations until

obtained the converged solutions. The choice

volume(v.p.h)

7=0.5

travel time(min.)

1585
8.96

11.12

Fig. 2 Assignment resulting from the use of
linear travel time function-link volume
and travel time-

Table 3. Assignment resulting from the use of linear travel time

function -route volume and travel time-

7=0.5
first route second route
oD assigned route travel assigned route travel

volume (v. p. h)' time (min.) volume (v.p. h)| time (min.)
®—® 1,454 | 16.62 246 19.64
©—® 311 | 26. 16 89 27.77
®—0® 652 ‘ 17.20 48 20. 81
® — 1,024 ‘ 12.70 76 16. 31
®— @ 636 22.27 164 24.27
®—0® 741 | 15. 31 759 15.48 3
® — 1,25 | 10.31 5 18.06 |
®—® 949 11.15 251 13.33
® — 1,178 6.94 222 8.86 ‘
® — 858 13. 46 42 13.09 ‘

of m is considered to have considerable influ-
ence on the number of iterations. With respect
to the determination of m the following com-
puter experiences were gained. That is, the
more the number of iterations, the less the
computation time per iteration, on the contrary
the fewer the number of iterations, the more
the computation time per iteration. This result
indicates that the overall effort required to
solve a problem will be relatively insensitive
to the choice of m. But we should also note
that if too small a value of m is used, specially
for assignment with a nonlinear travel time
function, this iterative procedure may not
converge.

As mentioned in the previous section, if 7
—oo0, the assignment pattern from the model
leads to the optimal assignment pattern which
minimizes the total travel time. Fig.3 and
Table 4 show the solutions to the problem at
7=10. It is remarkable that the assignment
pattern shown in Fig. 3 and Taple 4 is very close
not only to the assignment pattern according

volume(v.p.h.)

travel time(min.)
1477
8.69

2
oL
AN

11.47

Fig. 3 Assignment for 7=10
-link volume and travel time-

to total travel time minimization principle but
also to the assignment pattern according to
principle of equal times. As shown in Table 4
principle of equal times is approximately sati-
sfied on 3 OD pairs of @—®@, @®—@® and @—@.
It is known that if a monotone increasing travel
time function is used, the assignment patterns
according to these two principles, which were
both proposed by Wardrop%, will become simi-
lar each other when the total flow increases.
Particularly, if a travel time function is expres-
sed by
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Table 4. 'Assignment for 7=10
-route volume and travel time-

7=10.0
first route second route
OD “assigned | route travel | assigned | route travel
volume (v.p.h)| time (min.) volume (v.p.h) time (min.)
®—0® 1,700 17.02 | 0 19. 40
®—® 400 25.71 | 0 28. 48
®—0® © 700 | 17.01 0 20. 47
®O—® | 1,100 | 12.60 0 16. 06
®—@® | 721 | 22.93 79 23.62
®— 6 824 i 14.92 676 15. 21
® — 1,300 10.51 0 18.27
®— @ 1,101 J 11.47 99 12. 44
® — 1,400 | 6.80 0 8.16
@ — 90 | 13.11 0 18.27
Tr(Qn)=a@Qnb a>0 b>0 on expressed by Eq. (@9 through Eq.8), we form a

these two assignment patterns can be proved
to become equivalent perfectly.

4. Assignment with Capacity Constraints

Another means of expression of capacity
restraint is the use of the capacity constraint
tn each link of the network. Capacity con-
straint can prevent link flow in excess of link
capacity from being assigned to the link.

Probability Maximization Method with capa-
city constraints is formulated as follows:

minimize
 TENX SR log Xk )
subject to

§X¢fc=X,- @9
and

%}%n ik X k<Ch 30

where Eq. @) means the capacity constraints and
Cp is capacity on link %. Then this assignment
problem must be solved by some constrained
nonlinear programming method.

SUMT (sequential unconstrained minimiza-
tion technique® ), which is one of the more ef-
fective methods of constrained nonlinear pro-
gramming, is one of penalty function methods
which solve by transforming a constrained non-
linear programming problem into an uncon-
strained problem. For example, suppose we
want to solve the above assignment problem

new unconstrained objective function

F(X, rlvt):T;ZXi"’ tik-l-gz Xk log X 4%
i %

+<1"M)_1}¢Z<§Xik_xi>2
+ruintnl (Ch"‘;%‘nh 0skX k) @)

where ru, a penalty factors, are positive and
form a monotonically decreasing sequence of
values (ro>ri>ts - ru>rus1 - >0). The pro-
cedure of the SUMT method is based on the
minimization of a new function f(X, rx) over
a strictly monotone decreasing sequence of r-
values {rx}. Under certain conditions, it has
been proved that the sequence of unconstrained
minima of f(X, rx) will approach a solution
of the original problem as rx goes to zero.
The essential requirement is the convexity of
the f function. In this case Eq. () can be easily
shown to be convex so that this asignment
problem will be well treated by the SUMT me-
thod.

The computational procedure is as follows:

Step 1. As a starting point for the pro-
cess, select a point X, such as
ch-—;‘%hmxikgo for all k. Where, equality

constraints have no need for taking into ac-
count, then such an initial interior point will
be easily found.

Step 2. Select rg, the initial value of ra,
determine the minimum of f(X, ro). The te-
chnique used to minimize f will be describe
later. The initial value 7o, must be given a
numerical value in actual computations. Choice
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of ro will relate to the total number of com-
putation required to obtain the solution. It

seems difficult to determine the best ¢ strictly!
because it will relate to scaling of the problem.

Fiacco and McCormick recommened®
theoretical methods for selecting the initial
value rg, which will be helpful for our croblem.

Step 3. Select r; such as 0<r;<ro and de-
termine the minimum of f(X, 7).

Step 4. Continuing in this manner,
quence of points (X (rx)}, are generated that
respectively minimize f(X, rx). The sequence
of f-minimization converges to the optimum of
the primal objective function.

some

a se-

The assignment problem transformed in
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the form of Eq.B) can be solved by some of
unconstrained nonlinear programming methods,
which are much easier to solve than constrained
nonlinear programming methods. In this paper
we will use Flecher-powell method to minimize
f(X, rxn), which is one of the gradient search
methods using the conjugate directions.

An example problem

To illustrate the computational techniques
described above and to investigate the effecti-
veness of the assignment model by the use of
the SUMT method an example problem is solv-
ed. The road network and OD pattern used here

Table 5. Assigned volumes at each reduction in ri

N o 1 2 3 4 5 6
M 37 12 16 14 10 9
- | 10+ 108 102 10 1 10-1
oD X1 | 100 1012 1111 1213 1241 1247 1247
©—-0® | X} | 100 668 583 485 459 452 453
Pe 100 157 18 198 204 203 203
®—® S . :
X2 100 221 200 200 195 197 197
X1 100 493 508 510 511 511 512
O-©® ——
X2 100 187 18 188 188 188 188
X1 100 796 800 803 804 804 804
® — —
X3 100 287 294 295 206 296 296
X1 100 617 582 582 576 519 576
®—® -
X2 100 162 212 216 223 221 221
5 xi | 10 53 e 692 702 701 701
X3 [ 100 944 846 806 798 799 799
X} | 100 188 1180 1156 1182 1129 1120
®— ,
x3 | 100 % 115 142 168 171 171
°— o Xi | 100 80 87 839 840 840 840
X; | 100 33 38 39 39 3369 360
xi | 100 1190 1060 983 955 952 953
® — ‘
X2 100 194 335 416 445 448 447
X1, | 100 460 599 655 682 683 682
® —
X%, | 100 421 205 244 218 217 218

N : step number

M : number of function evaluations per step
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are same as used in the previous section. In
this paper, however, each link travel time is
assumed a constant and its value is taken to be
the same as by of Eq.®). Let the capacities of
links be all 3,000 v.p.h and let the value of 7
be 0.5.

We start from the initial values of X% all
100. Let the initial valhe of r» be 104 and let
the reduction of riy be determined by the sim-
ple relation rry=rwy-1/c, where ¢>0 is a con-
stant and assumed 10 in this example.

After 6 calculations of f~minima we obtained
the solutions to the problem. The value of ro=
104 was reduced to rg=10-1. The resulting as-
signment pattern is given in Fig.4. Assigned
volumes to the routes, X%, at each reduction
in 7y are given in Table 5. It is noted that all

r=0.5

Fig. 4 Assignment resulting from the use
of capacity constraints
-link volume-

equality constraints are more and more closely
satisfied as ra—0. It is also noted that each
link volume is restricted within that link capa-
city.

The choice of the initial ro and the factor
¢ by which rxy is reduced have considerable
influence on the effectiveness of the SUMT
method. Consequently the question arises as to
whether certain values of these parameters are
to be prefered to others with respect to reduc-
ing the total number of calculations required
to compute the solution. Then we tested the
sensitivity of the method to various choices of
ro and c.

The results are shown in Table 6 and 7.
An obvious relation between the initial value
of ) and the amount of computational effort
couldn’t be found. However, it should be noted
there is some danger that the resulting mini-
mum will exceed some of the constraints if 7y
is decreased below a certain value, on the other
hand, when ro is increased beyond a certain
value, the resulting minimum is forced so far

Table 6. Relation between ro and the amount
of computation
ro 104 ‘ 105 108
N 6 | 7 7
M 98 118 100
~CPU time T e on
oo ’ 48.74 | 5433 | 49.24
Table 7. Relation between ¢ and the amount
of computation
c ! 2 5 0| 15
N .t 6 6] 5
M “ 104 f 80 88 \ 81
M/N | a5 133 147] 16.2
| CPU time | |
g™ | 4574 37.41] 40.25 | 3054

N : number of iterations of f-minima
M : total number of function evaluations

into the interior of the feasible region, then:
inordinate computation time is required to solve
the problem.

With respect to the choice of ¢, the com-
puter experience shows that the overall effort
required to solve a problem seems to be rela-
tively insensitive to the choice of c.

For the assignment problem discussed above:
a linear programming also can be applied by the
linear approximation of the objective function.
But this procedure suffers from the handicap
that the number of variables increases inordi-
nately.

5. An Alternative Formulation

The assignment models considered in the
previous sections is formulated in path-flow
form which treats flows assigned to routes as:
variables. However the path-flow formulation
has the disadvantage of requiring the determi-
nation of the first, second, etc, shortest route
through the network before the assignment
process, which will be cumbersome computatio-
nally for a large scale assignment problem. In
this section we state Probability Maximization
Method in link-flow form, which treats flows
assigned to links as variables and show the
technique to solve that problem.

In link-flow form let X;j;* be the k-th OD
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flow on link (Z, j). Let ;5 be the link travel
time and C;; the capacity. Let X* be the k-th
OD flow. Then the problem is to minimize

TZ%}%HNXH'C'*—;;%:XH’CI(@ Xqg® (62
K2

subject to

Xk for i=origin node

—X* for {=destination

?(Xijk_ink): node

0 otherwise

63

ZEXH’CS?C 64
and

X 3%2>0 6

where Eq.(8) means the node conservation law
for each OD flow. In the above formulation the
link travel time ¢;5 is allowed to be either
flow-independent or flow-dependent. For this
assignment problem the SUMT method will be
also effective. The assignment model in link-
flow form, however, has handicap that the
numbef of variables increases inordinately for
a large scale assignment problem.

6. Conclusion

In this paper for the purpose of the mathe-
matical descriptions of the real traffic assign-
ment pattern on a road network two assignment
models with capacity restraint were proposed.
These models derive the most probable assign-
ment pattern under the given road and traffic
conditions and their major features are that
they are formulated as constrained nonlinear

programming problems and have strict logic as
a theory of traffic assignment. For further
problems we must investigate the applicability
of the assignment pattern by the models to the
real pattern through many practical assignment
problems.

With respect to capacity restraint the cases
of using travel time functions and using capacity
constraints were considered in this paper.
Though both have advantages and disadvantages:
respectively, the assignment model with travel
time functions seems superior to the model with
capacity constraints in practicality and com-
putational simplicity.
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