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This paper represents a new information system model as the development of
(1). The system model consists of Processing module with two processing untis,
Memory module, Control module and Passive module.

First we give some assumptions and definitions of the system that can be a mo-

del of multi-processing systems.

Second we analyze the behavior of the system theoretically. Specially the tran-
sitions between memory module and control module or passive module are investi-

gated.

1. Introduction

In recent years, much effort has gone into
the developments of information systems. Spe-
cialy T.C. Lowe [1) had proposed a general
model of information systems consisting of con-
trol units and passive units. In (1), partitioned
systems are defined formally and illustrated.
The fundamental results are expressions for the
expected number of boundary crossing. Pro-
blems of synthesizing partitions in order to
minimize the expected number of boundary
crossings are also discussed.

In this paper, we add processing module
having two processing units and memory module
to the system model of [(1). The model of this
paper may be useful in both analysis and design
of such organizations that have two processing
parts. For example, computer systems having
two processing units can be considered as one
of such organizations.

Following this introduction, a new infor-
mation system model is defined formally. Then
we analyze the behavior and movements of the
system theoretically. Specially the transitions
between memory module and control module or
passive module are investigated.

2. Definitions and Explanations of an
Information System Model

In this section, we give some definiticns of

a new information system model presented here.
(Definition. 1J An Information System

Model (ISM) consists of ten factors (4, B, C,

D, H, E, E', P, P, Q) as follows,

A: Processing module having two processing
units a1 and as. A=(ai, asz)

B: Memory module

C: Control module having n control units,
C=(c¢; i=1, 2, , n)

D: Passive module having m passive units,

G: Vector of control-unit volumes in which g
is the value of the volume measure of ¢;;
G=[g;;i=1, 2, , n)

H: Vector of passive-unit volumes in which ke
is the value of the volume measure of dy,
H=Chy; u=1, 2, , m)

E: Vector of probabilities that control-unit

enters a; first.

E=C(e;;i=1, 2, - , n)

Vector of probabilities that control-unit

enters ag first.

'=(ey 3 i=1, 2o , n)

E’

" P: Matrix of control-unit transition probabili-

ties to a;.

P=(ps5;i=1, 2, y o my =1, 2, , n)
P’: Matrix of control-unit transition probabili-

ties to as.

Pr=(p'yy; i=1, 2,y w5 j=1, 2,0, 0]

Q: Matrix of passive-unit reference in which
qiu is the zero-one variable indicating a
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relationship between ¢; and dy.

Q=0giu; i=1, 2, y o u=1, 2, , m)

To make the image of the system more
clear, a figure of the Information System Mo-
del can be depicted as in Fig. 1.

processing module

a a,

Xi | X | ®
. . Xk
memory module control module
Yl Y2 ¢
L] L] Yw

passive module

Fig. 1 Illustration for an information system
model

Next we define a partition of the control
module C and the passive module D in what
follows,

[Definition. 2) If each subset X;(X;#9¢)
of control-module C satisfies the next Eq. (1),

k
L_J X:;=C and X;NX;=¢ for any i%#j (1)

i=1

then a set {X;|i=1, - , B} is called a partition
of C. Each X; is also called a group of the
partition. Similarly, a group Y;(i=1, -+ ,w) of
passive module can be defined.

To represent each group of a given partition
on C, we use the following zero-one matrix R
in Eq.(2)

where,

n;:{ 1; If ¢4 and ¢ belong to a same group.

0; otherwise

As the same to Eq.(2), we define S for groups
of passive module as follows,

d

where,

Suv:{ 1; If dy and d, belong to a same group.
0; otherwise

The Explanation of the ISM

Control units enter processing units through
the memory module. If control units enter pro-
cessing units, the passive units related with
those control units must enter the processing
units. Here we assume that control units and
passive units are transferred as group between
memory module and control or passive module.
We also assume that memory module can store
at most two groups of control units. Once a
group is stored in one of memory module, it
can be kept until a new group is transferred on
the one. And control units and passive units
are transferred as individual between processing
module and memory module. More than one
control unit cannot enter a; or as.

Now assume that there exists no control
unit in @; at time ¢y and a control unit ¢;; en-
ters the a, at the next time #;. At some later
time control unit c¢;; goes out from ¢; and im-
mediately c;2 enters @;. This continues for a
finite time, until at time fr.;, control unit ¢;r
goes out of @¢; and no other unit enters from
tr+1. The time interval from £, to ¢{r is called
an ai-busy period. As the same, we can define
an as-busy period.

If, for an a;-busy period, a control unit ¢;
is the first control unit to enter a@;, then the
¢; is called as a first entrance unit of @;. The
probability that ¢; is the first entrance unit of
a1, is represented by e;, which is an element

7
of vector E. where >} ¢;=1. Similarly the pro-
i=1

bability of first entrance to @: expressed by a
vector E’. During an a;-busy period (or, a3-
busy period), suppose that control unit c;(cs)
enters a¢; at some time, the probability that
cj(ck) enters a; at the next time is psj(P’sk);
an element of the probability transition matrix
P(P’). It is required on the matrix P or P’
thatklim pr=0, hlim p’*=0 and that Pand P’ not
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be a function of time. Whenever a control unit
enters a; or a2 it references some passive
units. Suppose that control unit ¢; enters @, or
as at time tx, the passive units referred at that
time are those dy for which ¢;4=1, where ¢iu
is an element of the zere-one passive-unit re-
ference matrix Q.

3. Trasfers among Different Groups of C
and D

In this section, we define Transfers among
different groups of C and D (for simplicity,
written as TDG of C and D) to study the mo-
vement of the system.

Assumption

Before defining TDG, we assume that any
a1-busy period and any as-busy period start and
finish at the same time. Moreover it is assumed
that each control unit of ¢; and a» are trans-
ferred at same interval.

For convenience’ sake, we define the fol-
lowing four functions A(t), A’({), ¢(c;) and
6’(c;). The former two functions A() and
A’(t) describe the history of control flow in a
system. The latter two functions o(c;) and
6’(c;) are concerned with describing one aspect
of a system, indicating Y, containing passive
unit dy referred by a control unit c;.

Suppose that during an a;-busy period and
ag-busy period, the sequence of control units

that enter @; and a3 are respectively; ¢i1, Ci2,
...... L Cipoeee, Cof and €y1, Cjg, ety Cgees, Cime
Then the functions A(¢t) and A’(¢) for the se-
quences of control units are shown in Eq. (4).

A@)=css for t=1, 2, , f; ai- processing
unit

(4)

AN () =cys for t=1, 2ot , m ; as- processing
unit

If a control unit c¢; is transferred to the set
of some groups Y, containing du referenced by
the ¢;. Then the set can be obtained as Eq. (5).
{See the reference [1])

o(c) ={Yw!|Tdu(qiu=1/\duEYw) for ¢;&C -

0/(¢ci)={¥Yw|Tdu(qiu=1\du&Yw) for c:&=C
Definition of T D G for the Control
Module C

If a partition of control module is given, a
number D(#) of transfers among different
groups at the time t, for a busy period, can be
defined as follows ; At the time ¢=1, if a group
contains both the entrance unit of ¢; and -that
of a», let D(t)=1. In another case, let D()=2.
At the time ¢=2, 3,----- , f, D(t) is the number
of the groups entering the memory module at
the time t which were not stored in it at the
previous time. (¢—1).

Then we can formulate D(t) by Eq.(6) and
(7) as follows,

1; If there exists a group X which satisfies A (1) EXzand A/(1)EX%’ ()

®y

2 If there exist Xx, Xi’, Xx’/, X’’’ which satisfy AC—DEXxA
A E=DEXKAADOEX ' AN BEXK " N Xe#=Xe" 7 X&' )N M

1; If there exist X, X&', X&'/, Xz’’’ which satisfy AE—1D)EXE/N

A U—DEX AABEX ' AN BT X N X=X )N Xk F X' )N

D)=
=1 2 ; elsewhere
(Xkl#Xk//%Xk///)
D)=
t:2, ,f

(Xa'" = Xu" N (X' =X )\ (X2 X" = X' O\ (X X" # X'\ (a

(Xklzxkl/l)\/(Xklv—iXk’,#Xk/l’)/\(Xk:Xk’,>\/<Xk/¢Xk/,:7ﬁXk’,’)/\

(ch:Xk”/)
0; elsewhere

Definition of TDG for the passive
Module D
If a partition of passive module is given, a
number of TDG of passive module at the time
can be defined, as follows; At the time t=1,
D(1) is number of groups of passive unit refer-

red by the first control unit of a@; or az. At
the time =2, 3,-, f, D(¢) is number of groups
of passive unit referred at the time t which
were not referred by the control unit at the
previous time (¢—1). Then we can obtain the
following equation.
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DD =[a(AM)|+]0" (A (D)) N (ATN]T
D) =]s(AWW))N(AG—D) N (A E-1))]

+ 1o’ (AN A E=1HN (8)*
(A N(AG=1)) |

tZZ, ceey f

4. Control Unit-activity

In this section the fundamental parameters
used to describe the movement of control units
are discussed.

Flow of Control

It is assumed that the behavior of control
units is described by an absorbing Markov
chain. It is necessary to analyze control flow
for studying the movement of the system. Many
studies have been done in [1). We shall cite
these results in what follows which are neces-
sary for our new model.

4.1 Preparations

Since both of P and P’ describe the tran-
sient states of absorbing Markov chain, it holds
for P and P’.

lim Pk=0 9)
ko0
and
F=3 Pk 10
k=0

is bounded. Each f;s; expresses the expected
number of times that ¢; enters «; during an
a1-busy period, if control unit ¢; is assumed to
be the first entrance unit of @;. Then

sziéeifil w

is the number of times that c¢; is expected to
enter ¢;. Thus the vector I'=(73, 72,:, Tn)
gives the expected number of times that each
control unit will enter ¢; during an a;-busy
period. It is also shown in [1] that
Ir=E(I-P)-1 12

Since the total expected number of times
that ¢; enters @; is 74, the expected number of
control transfers c¢; to c¢j is given as

Tej=Vipes {13

4.2 Definition of the Joint Transition

Let the probability that ¢; (or, ¢s) is the

first entrance unit of a; (a3) is e; (e¢;’). Then
the probability of the first joint entrance that
¢; is the first entrance unit of a; and c¢s is the
first entrance unit of g3, can be obtained as

e;Xej’. Then the vector II is given as follows

I=(r11’, w12/, 10’y Tnn’) 149
Assume that ¢; and ¢; enter @; and ey re-
spectively, the probability that ¢; (or, ¢x) en-
ters a; (or,as) at the next time is p;; (or, p’sk)
The probability of joint transition /;s/, jx’ that
¢; is in @; and ¢s is in a@; and the next time
cj; enters a; and cx enters a3, is defined as
lis’y, jx’=p13Xp'sk, Then the matrix L can be
given as follows,
VUSSR ST PR LA ST T
L= 111';n1""111’,nn' (15)
RN A

I’y eeseeees

As the prpbability of transition to @; and
as is Markov chain, the joint transition is
Markov chain.

lim L¥=0 (16)
f—oo
and
T=3 Lk m
k=0

is bounded. A ¢#;5’, jx’ is the expected number
of times that ¢ enters a@; and cx enters a. at
the same time, if ¢;(cs) are the first joint en-
trance units of @;(a@2). As the probability that
¢; and ¢g are the first joint entrance units is
m3s, the expected number of times that ¢; en-
ters a; and cx enters a; at the same time dur-
ing a busy period, is given in Eq. (1§

Ms

Ji'=

»
. Zlﬂ'is"tzs', ik’ (18
§=

H

1
A vector J is given as follows,

J=0U11"y jiz’s = jum’s - jan') (19
The vector J expresses the expected number
of times that each pair of control units enter
processing module at the same time.
Here we define the joint control transfers
that c;(cs) enters a;(a2) and at the next time
cj(cx) enters a;(as). Then the expected number

of joint control transfers can be obtained,

Mmas’s g’ =jas"*lus’s 55’ @0

*where, |S| denotes the number of elements of S.
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5. Total Expected Number of Transfers
Between Different Groups

In this section we will examine the total
expected number of TDG, based on the results
-obtained the preceding section.

Now assume that a partitions of control
rmodule € and passive module D are given. Then
we can express the total number of TDG(C) in
Eq. @).

J
D)+ EzD(t) @)

"The expected number T of TDG(C) can be given
by summing all possible events.

T=Pr((6))+2xPr((6’))+2x é2Pr[(7)]
b2
J
+ 2 P 2

where, the Pr ((6)]) (or, Pr ((6’))) is' the ex-
:pected number of times that some c¢; and cs

PrT=3 3 %

i=1§=1 j=1k

?M&

are first joint entrance units under the condi-
tion that ¢; and ¢; are included in same (dif-
ferent) group.

Therefore, based on Eq.(2) and Eq.(4), it
holds that

PrU®)= 3 2 ree o’ @
and
Pr((6))= 3} 1 A—ri)mes’ o

The Pf[(?)] is the expected number of times
that c;(cs) enter ai1(az) and at the next time
c;ick) enter a;(a2:) under the condition that two
groups entering the memory module are dif-
ferent from those of previous time. From Eq.(2)
and Eq. ), it can be get as follows,

}] PAMI= 3 E > Znus s ik’ (1=749)

i=1 s=1 j=1k=
+(1- nk)(l rjk)(l —753) (1—7sk)
(257

Simiarly,

Z‘ mis’, 3’ {((A—res) A—rs )7k

+A=re) A—ren) A—ri8) (rsj+7s6—7si7sk)
+A—rs ) A—rsr) A—rjr) (res+ric—7r157ek)
—A=ri))A—7rs ) A—rex) Q—13i) (¥ 3575 -7 38T sk—7 JKT 8 3T 5%)

—A=re)A—rss) A—rse) A—71jx)

s(ryxreitrierie—ririirie) —A—re5) A—7ix)
c(I—rjx) A —rs;) (I—rsx) (resris+resrak+rsxris+rserik—rikrsjriJ
— VY3V ik —VIKVSkV ] —VikVskV ik— Vs jVskV¢j—VsjVekV ik —YsjVijTik

—TskVijVik+TIkVs j¥skV i+ VIV ITekY ¢k + T JEY kY 4 IT ik

+rsiVekT i ST ek —T ST s IV skY 53T ik)} @

+Combinating above four equations yields

n n

T=iZ‘.1F‘_. s’ (2— ns)+Z] Z‘”ZJ Z} mis’, su’ {(A—7re5) s (L—rs5)7jk

- T

+(l—ru)(l—rw)(l—rjk)(rsﬂrrsk r83¥sk)

+(A—rss) A—rse) A—7x) (e j+ree—7reI7ek)

—A—re)A—=7rs5) A—rsx) A—7ix) (*jers s+ 7 5xTsk—7 jkVs 57 sk)

—(A—71s)) A—7rs3) A—732) Q—sx) (rsRT 45+ TJRT 0k —T JKT £ 37 1)

—A=rip) A=rex) A—r36) A—=rs3) (A—rsx) (rs sre5+ 75374+ 7sk7 85

FVYskVsk—T KTV e —VIkVs IV ik —VIkVskV e J—V jkYskV ik —VsJVskV ]

— Ve jTskYik— Vs V1T ik —TskV i JTik+ VKT8 JVsk¥ 1+ 7 k¥ s jTskV ik

FrIRTskYeITikFT s ST kY LIV ek —TV IkV s iV skV 3 ix—2) }. o7

Total Expected Number of Transfers
Between dif ferent groups of D

We can get total number of the TDG (D)
in Eq. @9, by using Eq. (),03.

*Proof is omitted here.
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h N 4
[o(AM) | +]e(A" M) Ne(ADD) | + §2|°(A(t» Ne(AG—D)Ne(A’E~T)) |

f —————————
+ 2 167 @) Na(ATE=D)Ne(A®) No(AT—D)| o8

The expected number T’ of TDG(D) can be
determined by including the probability of
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n
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k=1
Ne(Ca)|

As a ¢; enters ai or ag, it references some
groups of passive units. Then the number of
passive units which is referenced is

ugl qju @0

Now we consider next function to determine
[a(Cy) |

(1-min (1 'S as Sus )] )

The Eq. @) has zero if there exist a Yy and d,
such that both d, and d, are elements of Y,
and are referenced by Cj, and v<{u; the value
is one otherwise. If Eq.@9) is multiplied by gj«
and summed over u=1, 2,---, m, one term of
unity is added to the sum for each Y, contain-

events leading to TDG(D) of Eq.¢9 and sum-
ming over all possible events;

Pr{A)=C33]e(Cs) | + jéé‘.l PrlAM=CIAA (D) =CrI|o’(Ck)Ns(CJ) ]
PrlAD=CAAE-D=CiA\A"(t—1)=Cs)]|6(C5)Na(Ci) N’ (Cs) |

Pr(A @O =CxNAB=CINA t—1)=Cs AA(t—1)=C)|0’ (Cr)

@

ing at least one element referenced by c¢j. The-
term added corresponds to the dy possesing the:
smallest subscript u, which d, is an element of
Yw. Thus, each Yy containing any d, referenc-
ed by ¢; is counted once, and

lolenl=San[1-min(l, ‘amnsu)] @

The second term in Eq.@9y is evaluated by first
noting that

loCes)Nolea)|=lo(es) | —olcs)Noles) | 63

In order to obtain |o(c;)Ne(cs)|, the Eq. (2
is modified to include a factor that is unity
whenever the dy contributing to the sum in
Eq.() is an element of and zero otherwise:

j9enNateor] = 5 asf1-min(l, Tasu Suv)] [min(1 Biaew Sus)) )

Combinating the above three equations yields

l9en Nt = 3 asa 1-min(1, H gsu su;)] [1-min(l, 2 gesSu)] (5

Furthermore, to get |a(c;)No(cs)No(cs)|, the
Eq.(3) is modified to include a factor that is
unity whenever the dy contributing to the sum

in Eq.@) is an element of ¢(cs), and zero other-
wise:

17 NT@DNoten) | = 3 aru[1—min(1, "TasuSus)]

. [1 —min(l, vijl quuv)J- [min(l, 1%1 qs 1131“1)] 69

Therefore,

|(en NTEONTEDT = 5 asl1-min(1, "Eassur)]

'[l_hnin<1: Uiquuv)J'[l—min(l, vg:IQSUSuv)] &)
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Similarly,

JoCex) N7 MG N | =35 asm [1-min(1, "5 asoSur))-[1-min(1, ZaroSus)]

[1- mm(l zqmsw)] [1 mm(l zqmsw)] 69

Based on Eq.(2), (4) and (9, we can get the next
expression.
u
ej=T;— > T¢j 39
i=1
and
n 7
ik’ =Jik' — Z Z‘,m“’, ik’ 40
7 n
=x[ri-x-
=1 i=1

(
'[u%lﬁcu[l m1n<1, Z Qkusuv>]'[1—min<l, gl qquuv>]J

From Eq. ) we can get next equatin.

tZ:JZPr[A(t—D:Ci/\A’(t—l):cs/\A(t):c;

AN @) =crI=mis’s &’ @y
Therefore, substitution of Eq. (3, 69, 67, 69,
69, @0, @) into 09 yields

7

=1

Sl Barsu]) i Bl 5 &)

+.‘ﬁ i i f‘.mzs’,m'-élqm[l;min@, Z}l lUvSuv]'[l—min<l, g:l quuv>]

.[1 mm(l, ug"l qstuv)]Jré}l jél é"l é1
[1 mm(l, g}l qjvsuv)]-[l—min<1, Ug‘.

6. Conclusions

In this paper, a new information system
model is proposed. Some fundamental analyses
for the system are examined. More research
is required to extend the basic results obtained
in the analyses. The study of the analyses under
the different conditions, is also desirable. Here
we do not deal with the syntheses problems of
the system. So many problems in the syntheses
remain unsolved. Above all, the investigations
for the partition of control module that gives
the minimum expected number of joint control

transfers, will be examined in the future.

qs vsuv>]' [1— min(l, 1%1 qi 'usuv>]

m u-1
mis’y J6’ 20 qku[l—min(l, > quSuv)]
u=1 v=1
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