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This paper describes the fault diagnoses of systems represented by the equivalent

SEC-graphs (® with a single input vertex »; and a single output vertex vs.

On the

system diagnoses, W.Mayeda (4> introduces a test S-gate which will stop the trans-
mission by shorting the vertex where the test S-gate is inserted to the ground ter-

minal.

In this paper, we investigate the system diagnoses by means of test S-gates.
First, we study the properties of 2y for a given set V of vertices to which Zest
S-gates are assigned. Second, we discuss the algorithm for obtaining the set V of
vertices under which the fault vertex can be distinguished uniquely.

Above all, we examine the algorithm for nearly optimum set of vertices.

Third, we consider which order should they be activated after the set of vertices

have obtained.

1. Introduction

About fault diagnoses of system associated
with connected units, many papers were pub-
lished. (V- In the previous papers (1) —(2) the
authors have shown that faults can be detected
and located by means of placed test points
within the system. But by this method a signal
will pass through test points which introduces
additional unfavorable delay to the system of
desired speediness.

Hence in that paper (4, instead of test
points, W.Mayeda introduced a test S-gate
which will stop transmission by shorting the
units where it is inserted to the ground ter-
minal. By using the test S-gate, there is no
additional delay in normal operation and they
tried to do system diagnoses efficiently.

In the present paper we investigate the
system diagnoses by means of the test S-gates.
First, we study the properties of 2y for a given
set V of units to which the test S-gates are
assigned. Second, we discuss the algorithm for
obtaining the set V of units under which the
fault unit can be distinguished uniquely.

In the large system, itis difficult and un-

practical to seek the optimum set V. In this
paper, we examine the algorithm for a nearly
optimum set V. Third, we investigate the op-
timum order of detection to minimize the av-
erage testing time.

2. Definition and Assumption

A system can be represented by the SEC-
graph ¥ such that each unit will be indicated
by vertex and a connection between two units
will be indicated by a directed edge. On the
system diagnoses, we first give assumptions and
necessary definitions in the following.

(Assumption 1] We assume a single fault
only among vertices. ¥

(Assumption 2) We can apply the test
inputs only to the vertex v; and observe the
output only at the vertex v;.

{Assumption 3] We assume that the out-
put, which passes a fault vertex, can be disti-
nguished from the output which passes only
faultless vertices.

[Definition 2-11) When test S-gate is as-
signed to a vertex »; and when it is activated,
all outgoing signals from the vertex v; will be
stopped.

*It means that there exists at most one faulty unit in the system.
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[Definition 2-2) In an SEC-graph, o(;)
denotes the set of vertices which can be reached
from »; by a directed edge. Conversely ¢-1(p;)
shows the set of vertices which can reach to
v; by a directed edge.

(Definition 2-3] For a given set of vertices
V, 2r is a set of all vertices which are in at
least one directed path from »; to v, which
does not pass any vertex of V.

For example, we choose V as V={vsv¢}
in a SEC-graph in Fig.1. Then 2y is a

Fig.1 An SEC-graph

set of vertices which satisfies the above con-
dition. That is, 2 becomes 2y={v1, vz, vs)}.

As easily known, we can show the next
Lemma.

(Lemma 2-1> 2ySV(G)-V,
VIV(G).

According to the assumption on the diag-

for any V,

noses, we can apply the test inputs to the vertex
vy and observe the output at the vertex wv..
Hence, if the faulty output are observed at v,
we can conclude that a faulty vertex is in 2p.
Contrary, if we observe the normal outﬁut at
vy, then all vertices included in 2y will be
proved normal. ‘ '

[Definition 2-4) Let V(G) be a set of all
vertices in an SEC-graph G. For a given set
B; where B;EV(G), we define the partition of
vertices V(G) as follows,

V(G)=UBy (L

(Definition 2-5) For a set of test S-gates

V, define Py and & as follows,

PV: jul .QV':{BI"‘,‘ Biu "'Bm} (2)**
VCr

k=max|B;|, where, | B;| means the order of B;
after deleting the vertex v;. Then we call the
system is k-distinguishable under the set V.

As easily shown from Def. 2-5,
locate the faulty vertex at most within & pieces
of vertices under the use of tfest S—.gates as-
signed to the vertices in V. So that, if »; and
v; belong to different blocks of Py each other,
v; and »; are distinguishable under V.

Under the assumptions (1)-(3), in order to
locate a faulty vertex of the system, we must

we can

gain the proper test S-gates V under which the
system is 1-distinguishable.

But by next Lemma, we know that for
some system there exists no V under which
system is 1-distinguishable.

{Lemma 2-2> If 2{v;}Fv; and 2{v;}Fv;
are satisfied for a system, then there is no V
under which a fault of »; and v; is disting-
uishable. Except that, there is at least a set'V
under which system is 1-distinguishable.

(proof) Assume that a fault of »; and vj is
distinguishable, there exists a set V’/ which
satisfy 2v,Dv; (or v;) and 2y,Fv; (or v;). If
Qv vy, the;n Q{vj}_:'_!?w. Hence if .Q{vj}$v’
and Q{Di}'va then 2y Fv;. Similarly, if 2v5
v¢, then 2v-%v;. Hence, in this case, a fault
on v; and v; is undistinguishable. Except that,
for example, if Q{vi}zvj, then choose V’/ as
V’={v;} and if .Q{vj}Ev,-, then set V’/={v;}.
Then it is clear that they are distinguishable
under the V’ Q.E.D.

If 9{1),-}3”1 and .O{vj}aavi, than »; and vy
indicate the equivalent fault. In this paper, we
study the only systém which don’t have the
equivalent faults.

(Definition 2-6] In a set of all vertices
vV, if .QVI';.Q{W}, where V/Sv; and V'QY and
v;&V, then v; is a redundant vertex in V.

[Definition 2-7) In an SEC-graph G, a
vertex semicut from »; to vy is a minimal set
of vertices such that the deletion of all vertices
in the set destroy all directed path from »; to
Vg, D

{Lemma 2-3> An SEC-graph from v; to

*B; is called a block.
**The operation = denotes the partition.
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v3 is not 1-distinguishable under V if V contains
no vertex semicut from vy to vy. W

3. The 2y and the Vertex Semicut

In this section, we discuss the method of
obtaining the 2 for a given subset of vertex
V and furthermore investigate the algorithm
for seeking the all vertex semicuts of an SEC-
graph.

3.1 The Algorithm for Seeking the 2r

Algorithm 1.
step 1) Given an SEC-graph, make the
vertex matrix C as follows,

vl ------ vj cccccc Un
C= v Ci:i ......... @)
v.n :
,where,
_[0: @)y
Cij=
BERICHEY

step 2) In the vertex matrix C, let all the
elements of the v;~row and v;-column satisfying
v;&V, be zero.

step 3) If all elements of v;-row (or v;-
column) are zero,* then make the v;-column
(~or v;-row) be 0-column (or 0-row) vector,
where i=¢1, 2.

Let the matrix obtained above be M. In the
matrix M, m is the number of columns which
are not 0-column vector.

step 4) We compute K of FEgq.(4), where >
is the sum of matrix and M;=M-M------ M.

| T Foeweees n
! :
K=3 Mé= g Kpj oo ()
=9 H
n

a=vi-column-vector(Kiy, - , K1in)
b=vs-row-vector (Kig, -+ , Kng)
we compute Ki;+K;2, where i=1, 2, R

step 6) If, for each Ki;°K;9, K13+ K;2=0,
then 2y2v;. Otherwise set 2y v,.
By the algorithm mentioned above, we can

gain the 2y for a given set V effectively, **

3.2. A Few Comments on 2y

In this section we give some results about

.QV.

{Lemma 3-1> If V/CV, then 2y’'2%y and
if V/UV*’=V, then 2y N2 22.

(proof) It is obvious from the definition.

{Lemma 3-2> If o-1(v;)=1{v;}, then 9{01}2
253

(proof) From the assumptions, there is no
edge which entry to v; except edge from vy.
Hence, if v; is test S-gate, there is no directed
path from »; to »; and .Q{Di},%vj. That is, if
v; is test S-gate, then "Q{vi}:g{vi,v;}. Hence,
by Lemmea 3-1, Q{Ui}:'o{vi,’l)j}go{vj}'

Q.E.D.

But the converse of Lemma 3-2 does not
always hold good. For example, in Fig.1
Lipyy={v1, v2, v4, 5, Ve}
L2y =01, v2, s, 05}
But o=1(v3)x{v4}.

Based on LemmaZ2-1 and 3-2, we can obtain the

then, 9{03}29{04}.

next Lemma.

(Lemma 3-35 For any v; and v; (i,7%12)
which satisfy o~ 1(v;)={v;}, if Q{,)j}—_?vi, then
the fault of v; and »; can be distinguished.
Otherwise, they can not be distinguished.

(proof) The necessary and sufficient condi-
tion for a fault of v; and v; being distinigusable,
is Qg 105 or .Q{vj}fim. But from the as-
sumption and Lemma 3-2,

Q{,,z}(;!){vj}. Hence, Lomma 3-3 was ver-

ified.

3.3 The Method for Seeking All
Vertex Semicuts

As the necessary condition for 1-distin-
guishable under V, V must contain a vertex
semicut from vy to ve.. Hence, it is important
to search all vertex semicuts in the system.
In this section, we consider the technique for
obtaniing all vertex semicuts.

[Definition 3-1] Let o-1(»y) be the initial
6-1(vg) is not
always a vertex semicut in a system. But it

vertex semicut in a system.

*For brevity, we call it o-row-vector (or o-column-vector)
#**We have programmed this algorithm by means of the FORTRAN LANGUAGE.
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contains at least a vertex semicut in itself.
Then we can indicate the lemma as,
(Lemma 3-4> If V contains at least a set of
vertex semicut, then
{V'UJe 1 (V!/)|V/UV"'=V,
VNV =g, o=1(V'')Hv1}
contains at least a set of vertex semicut.
(proof) The proof is obvious from Lemma 3-2.
Next, we introduce an algorithm for ob-
taining all vertex semicuts in a system.
Algorithm 2:
step 1) We seek the initial vertex semicut
in the system. Let it be Vg, for brevity.
step 2) Separate V, as follows,

- = > <
Vo=VoUVe, VoNVe=9¢
where, if o-1(v;)=v; then mEVo, otherwise,
016(60.
step 3) Set i=1
step 4) We seek V; shown in Eq. (5)

1 ] 1
Vi={V;, Vg, =V}
j i =t =,
={VilVi:Vz—1U(V¢—1—V’)ﬂa"l(v’)r
<t
Viaeg, VVCV,_ 1} (5)
Where, if V;g V::, then we delete forom Vi
(i=i’). Moreover in the case V;=¢, then go
to stop 6 and in the case V;¢, then go to

step 5.
step 5) Set i=i+1 and go to step 4.

(V%) W)

O (Vo)

W W
()

Fig.2 SEC-graph for a system

step 6) Let {V{IV{EV,; or V{ZVO} be V,
where V;, V; =¥V and V;&Vy, delete V; from
V. Because V; is not a vertex semicut.

step 7) Replace the element of V asfollows,

V={V1, Vg, eme Vy, Vi) (6)
,where |V ||V l* i=1, 2,0 , I—1

By the above procedure we can obtain all
the vertex semicuts.

Now, we explain briefly the algorithm 2
mentioned above with the use of the next ex-
ample,

(Example 1] Apply the above algorithm to
the SEC-graph represented by Fig.2, we ob-
tain the result, shown in Egq.(7).

{vs, v10}
{ve, v10}
{vs, ve}
V= {v4, v7, v19} (n
{v4, vs, v1}
{vs, v4, v6}
{vs, vy, v7}

4. Decision of Test S-gate

4.1 Definition and Lemma

In this section, we discuss how to search
the test S-gates V under which a system is 1-
distinguishable. We use the algorithm 1 and 2
mentioned in the previous sections. We give
Definition and Lemma as follows,

(Definition 4-1) For a given SEC-graph,
F-matrix is defined as follows,

Q{Un}

, where

sz:{o iff ;820
1 iff 2;E20

(Definition 4-2) Define g as follows, g=
min|Vy|, where the system is 1-distingushable
under V;. Then the V; which gives g, is cal-
led the optimum set of test S-gates for the
system.

{Lemma 4-1> For any v; and v,(i, j~<1,2) if

¥|Vy| denotes the number of elements in the set V;
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there exists v, in V, which satisfies fpi@®
fmj=1, then a fault of v; and »; can be distin-
guished under this V.

(Lemma 4-2) Q{vzl}ﬂ.@{viz}ﬂ ------ ﬂQ{vis}

29{1)11’111:2, ...... l)‘s}

(proof) The proof is obvious from Def. 2-3.

(Lemma 4-3> For any v; and vJ, if fpni@®
Fmi=0 is satisfied for any v, &V, a fault of v
and »J can not always be undistinguished under
V.

(proof) We prove it by indicating the ex-
ample in Fig.3 as follows, if set V={u3,v4,05},

Fig.3 Example for Lemma 4-3

then f36@®f37=0, f46@f47=0 and f56@f57=0
are hold. But if V;={vs,v4}, then f;s@fs7=L
Hence, vg and v; can be distinguished under V.
Q.E.D.

(Theorem 4-1> For any wv; and »; which
satisfy fmi®fm;j=0 for any v,&V, v; and v;
can be distinguished under V, if there exist V’
which satisfies both 2y=v; (or v;) and 2P
v; (or vg). Where,

V'EV={vg| freofrs=1 vk&V}

(proof) It is obvious that sufficient condition
is proved by Def. 2-6 and 2-7. Next, we will
prove necessary condition. We assum that v
and v; are distinguished under V. Then, there
exist V/ which satisfy 215w (or v;) and 2B
v; (or v;). By assumption, fi®fm;=0 is sa-
tisfied for any v, Cv’, 80 fmi=F mj=0 or fpe=
Fmi=1l. If frmi=fm;j=0, then Q{vm}EBv¢ and
Q{vm}E”J' By Lemma 3-1, Q{vm}g.@y'. Hence,

2y %v; and 2y %v; are satisfied. This is con-
trary to the assumption. After all, fmi*fms=1
is satisfied for any v,2V. Finally we gain
VIV, Q.E.D.

From Lemma 4-1 and Theorem 4-1, in order
that we examine if »; and »; are distinguished
under test S-gates V, first we apply Lemma
4-1 to F-matrix obtained by algorithm 1. If
there exists a test S-gate v, in V which
satisfies Q{vm} Svy (or Q{vm} Sv;) and Q{vm} DY;
(R D20
distinguishable under the V. However, if there
exists no test S-gates vy, in V, we can apply
the Theorem 4-1 to the V efficiently.

we can conclude v; and v; are

4.2. Some Criteria for Nearly
Optimum Test S-gates

In a given SEC-graph, in order to seek the
optimum test S-gates under which the system
is 1-distinguished,
system is 1-distinguished from Lemma 4-1 and
T heorem 4-1 under all V which contains vertex
semicuts. Therefore, the algorithm 2 is ef-
fective for obtaining the optimum fest S-gates.
We know that it is sufficient enough to in-
vestigate ¥V obtained in section 3.3.. But when
it is a large scale system and the number of

we may examine if the

units is enormous, it is difficult and unpracticak
to obtain the optimum t#est S-gates. Hence,
we discuss the algorithm for obtaining the
nearly optimum test S-gates in what follows.
Now, assume that the number of pair of
undistinguishable vertices is % under the tes?
S-gates V. Then, when we add a test S-gate
v to the V we assume that the number of pair
of vertices which is distinguished under »4, but
undistinguished under V, is 2. Then it is clear
that if we choose V{J{vi} as the new test S-
gates, the number of undistinguishable pair of
vertices are less than h—£k.
Hence, according to the criteria mentioned
below, we add a new test S-gate vy to V.

Criterion 1) Choose a v; which gives the
maximum k.. Then if there are some vertices
which give maximum k&, select one of them
based on the next criterion.

Criterion 2) Choose the v; such that in the
(h—k)’,s remaining pair, there exists many
pairs whose both elements are contained in
24y

According to the criterion I and 2, let us
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seek the nearly optimum test S-gates by the
algorithm 3.

4.3. Algorithm for Nearly Optimum
Test S-gates

Algorithm 3:

step 1) Set i=1 )

step 2) By algorithm 2, we search all sets
of vertex semicuts. ) )

step 3) We examine if the system is 1-dis-
tinguished under V;. If it is 1-distinguished,
V; is the optimum test S-gates V. Otherwise,
go to step 4

step 4) From criterion 1 and 2, we continue
to add a new vertex v to V; and set V;=V,;U
{vi} until the system is 1-distinguished.
Set Vz=V,.

step 5) Set i=i-+1

step 6) Set w as w=|Vg|—|Vs|. If w0,
then go to step 8. If w>0, go to step 7.

step 7) Add new vertices to V; until the
system is 1-distinguished, where added number
of vertices are less than w-1. If the system is
1-distinguished, then let V; be Vz and go to
step 5. Otherwise, go to step 5.

step 8 Vg is the nearly optimum set V.

By the ‘above procedure, we can gain the

nearly optimum set V under which a system is
1-distinguished.

4.4. Consideration for the Equivalent
Fault

As we referred in section 2, input unit and
output unit are not distinguished under any test
S-gates. Furthermore, a system represented by
Fig.4 is not 1-distinguished under any V.
However, in this case we can distinguished
these equivalent faults, modifying the systems
by one of the following procedures.

1) By adding some edges to the system

2) By adding some vertices to the system

3) By placing some input vertices except vi*

4) By placing some output vertices except

v o ¥k

In this section, we discuss about procedure 1.
We propose two methods on concerning pro-
cedure 1 as follows,

1) First, we add an edge from {S;(G)Uv;}
to S3(G), shown in Fig.$5.

Semmm——

n
_ Q)

-
e

Fig.4 Example for the equivalent fault

PPN 2

Fig.5 Example for procedure 1

2) Second, we add an edge from S:(G) to
{S1(G)Uvs).
Above all, one of future problem is to find
an algorithm which minimize the number of
additional edges.

5. Minimization of the Average
Testing Time

Supposing, by the procedure introduced in
the previous section, we have gained the test

*We can apply the test inputs only to the input vertices.
**We can observe the output only at the output vertices.
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S-gates V under which the system is 1-distin-
guishable. In this section, the fault probability
of each vertex have been known experimently.
Then we aim to decide the testing procedure
for minimizing the average testing time.

5.1. Definition and Assumption

(Definition 5-1] If the event {X=x;) has
probability p;, we define the information mea-
sure that X has taken on the value x4, is-log
bt

(Definition 5-2) Let X take on a finite
number of possible value xi, - ,Xp with pro-
babilities pj, - , pn. Then the average infor-
mation measure I conveying which event oc-

7 n
cured, is I=—73] p; log p;, where 3 p;=1.
i=1 i=1
This is the average information measure
which is required in order to decide the uncer-
tain event.

(Definition 5-3) Assume the event [(X=x;)
has probability p;, where py, -+ , Pn be arbitray

n
positive numbers with 3] p1=1. Then we define
=1

the uncertainty as,

n

H(p1, p3, o pu)=— 2 pulog o 0
i=

That is, the information decreases the

uncertainty of situation and the information
measure wili be obtained by calculating the rate
of the decrease of the uncertainty. The quantity
H(X), has been called the entropy of X.

(Definition 5-4] If the entropy of situation
changes from H to H’ by gaining the informa-
tion, then the average information measure I
can be defined as I=H—H"’.

. Before we discuss the testing procedure we
give some assumptions.

Assumption 1) In a system associated with
N units vy (i=1,2, - ,N), we have ever known
the probability p; that each unit be faulty,

N
where 33 p;=1.
i=1
Assumption 2) We assume that the testing
time required in each test is equal.
5.2. Decision of Testing Procedure

Generally two different procedure, the preset
testing procedure and the adaptive testing
procedure, are developed for the optimal fault

location procedure of the system. The former
is a test program under the assumption that
the choice of the succession of test operations
spplied to the system does not depend upon the
outcomes of the tests. The latter is a test
program under the assumption that the choice
of the succession of test operations depends
upon the outcomes of the tests.

In future, we expect that a system will
have the function of self-diagnosis. Hence, in
this paper we diagnose the system by the
adaptive testing procedure which is more ef-
fective for self-diagnosable system.

Now, if we gained the test S-gates V as
shown in Egq. (1

V={vg, e "“m} )
Then there are M ways of activating them.
M=pCi4-eeveeees +mCm
=31 mCe=2m—1 )
i=1

We can apply some of (2m-—-1)’s tests to the
system.* Hence it is important to find the
testing procedure for minimizing the average
testing time.

As easily know, by applying one test V’ to
the system, all units in a system can be se-
parated into two blocks 2y and 2y-. Then the
information we can know in a test, conveys in
which block the faulty vertex is contained.

Now, assume the faulty vertex is vy, then
072y, or vyE2y, exists, where the probability
p1 and p, can be shown as, p1=3]p¢(@:=2v ),
pe=p;;E0r)), pi1+pe=1. In this case,
the average information measure I conveying

t4
in which block vy is contained, is I=— Elm log
=

pi. I is rewritten as,

I=—{p1log p1+(A—p1)log(1—p1)} 3
We differenciate I by p; to seek the test which
maximize the average information measure I.

dI _d(—{pilogpi+(1—p)log(1—p1)}]
dpl dpl
=—{log p1—log(1—p1)} (14

If P1=p2=%, then the average information

measure I becomes maximum.
Next, we generally discuss which test Vg
should be activated in the i-th test. Now assume

vyC2v,. Then the faulty vertex vy satisfies

*Each test corresponds to each subset V’ uniquely (V/CV), so that we designate the test as V’

for brevity.
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i—1 ~
vr&2, N (N QVj)-*

J=1
Next, in the (i+1)—th test, the vy implies
either Eq. (15 or (9.

i-1 ~

UfggV‘_,_l N gVi n S‘Dlng) (1)
— i1~

vfggVi_,_l ﬂ QV; ﬂ (leQVj) (16)

Let the sum of fault probability of vertices
which is contained in two blocks as mentioned
above, be p;; and ps2. Then p;, and pg, are
shown in Eq. (7.
-1 ~
ml:Pr{valvaEWHlﬂQmﬂ(_ﬂlf?vj)}
j=

— i-1~ (m
Pig=Pr{vp|vaC 2y, N2 ;N (jfj1 2v )}

Dij+pe,=pe(x1)
=1 ~
rwhere pi=3 pr@kELr; NN 2v,))
j=
In this case, by changing p¢; and ps, Eq. (9

yields,

by 1712

= ,,,_‘_—:

b: b @
Then the expectation value of information

P b

measure I is — RAER| s (

ur is ng B, og(Pi> 19
Finally, p;; and ps, which maximize I are to
satisfy [)ilzpzz:pTi

The best i-th st test is to give Vi4u1(Vi41SV)
which satisfies Eq. (19).

By the above consideration, we can obtain
the testing procedure which minimize the ave-
rage testing time approximately. We have also
programmed this testing procedure.

6. Conclusion

In this paper, we have presented a new
approach to the diagnoses problem of digital
system, which has provided several interesting
results and may help to gain further insights

into this general area.
The main results obtained in this paper,
are as follows,

1) For any v; and vy, if there aro no v; and
v; which satisfy Q{vi}gvj and Q{vj]$v¢, the
system is 1-distinguished under the set of test
S-gates V. We can know it by examining F-
malrix easily.**

2) By the use of properties of vertex se-
micuts, ¥* we gained a nearly optimum set
V.*#%* This algorithm is shown to be effective
for large scale systems and easily programmed.

3) We have investigated the order of acti-
vating the test S-gates which minimize the
average testing time.
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