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The Theory of Traffic Assignment by
Maximizing the Probability
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In this paper a new traffic assignment technique called Probability
Maximizing Method is presented for the purpose of the theoretical descriptions
of the realistic traffic assignment pattern on a real road network. To do this,
the most probable assignment pattern under certain network and traffic
conditions is considered.

This assignment model also makes it possible to use a travel time function
(or travel time-volume relationship) which allows a continuous adjustment of
link travel times as traffic volumes on the links increase.

Finally, this model is demonstrated by assigning hypothetical traffic
volumes to a hypothetical network.

1. Introduction

It is well known that drivers’ choices among various alternative routes through
a road network as they travel from some origin to destination is very various and
individual in general. On the other hand, it is also well known that traffic flow
as a collective of these individual vehicles presents the assignment pattern
wherein the shortest route is given the highest probability of use, on which we
may recogﬁize a certain statistical regularity. So it is reasonable to attempt to
formulate a theory in which the traffic assignment pattern is derived from some
equilibrium conditions.

A probabilistic model for estimating the trip distributions and assignments has
been already developed in the previous works.1»2

This paper extends such analyses to the application for the problem of assigning
traffic to a road network using the capacity restraints procedure for a more
realistic assignment.

2. Formulation of the Problem

To facilitate the formulation of the problem we consider a network of » nodes
and / links, the former being partitioned in » nodes of trip origin, from which U;
(i=1, 2, ,7) trips begin, s nodes of trip destination, in which V; (j=1,2,----- ,S)
trips end, and (#7-s) intermediate nodes. In the network we also consider g paths
at most between any origin and destination node. A path is that series of links
which constitutes the route through the network for an internodal trip. Finding
these paths between each OD pair is usually very cumbersome and time
consuming for a large network. To date, however, some efficient algorithms for
determination of the paths through the network have been already suggested.®

Consider X trips distributed on the network on which the total travel time is
L. Seeing these trips by distinguishing them individually, there are many micro-
states, or combinations of trips. By formula of combinations the total number of



386 Bulletin of Nagoya Institute of Technology Vol. 23 1971)

such micro-states Wx () can be given by
(E+X-1)!
(X—D!E!
where E is taken to be an integer value.?®
Next let Wx(E+4E) be the total number of micro-states when /X changes infi-
nitestimally 4E, then it can be written as
C+AdE+X—1)!
Wi(E+4E)= (%}1) ! (;;+ Alhz) TR (2)
Taking the ratio of Eq. (2) to Eq. (1), we have
W(E+4E)/ Wx(E)=(E+4E+X—D 1 (X-DIEYE+FX-D ! (X-D! (E+4E) !

Wi (B) S 0 et (1)

=(E+X)Q+X/(E+D) A+X/(E+2))e-
...... A FX/(EAAE=1))/(E4AE) - eereseieemniniainninienne (3)
Assuming X>1 and E>4E we omit 4F in Eq, (3), we have
Wx(E+4E) 173
A A L (1 -] /) ettt e 4
Wiy Y “

where we put £/X={. { means the average travel time per trip.
Taking the logarithm of both sides of the above equation, we have

log Wy (E+4E)—log Wx (E)=4E log (1 FL/E) eereennenni s (%)
Then

A10g Wy (J) s A eeeeeessesinieaiieiie sttt 6)
where we put

FE= 10 (L 1/E) +oreeeeenremne ettt !

Next consider the number of micro-states zz corresponding to a certain distri-
bution {Xi*} GE=1, 2, ¥, J=1, 2, s s, k=1, 2,0 ,q), then it can be expressed by
X!
R — -
ik

from formula of combinations. Where X:/* is the number of trips from origin node
i to destination node j via the k™" available path and a set {Xi#} should be taken
within the limits of the total travel time being E.

Consequently the previous function (1) can be expressed by the sum of these zx
in all combinations of various X:/#, that is

s X! 9)
Wl )*;:]/L< X! )E

It is proved mathéﬁlatically that assuming that all micro-states are equally
probable and X is large enough Wx (E) can be replaced by the maximum of zz for
almost certain. Hence the trip distribution {X:#} for which zr is a maximum
can be shown to be overwhelmingly the most probable. So we designate the
maximum of zr by Zg, the following relaion holds

Wi(E+AE)  Zpyan

Wil = 7 (10)
From Eq. (6) and (10)
410g Wy(E) =14 10g Zp=7AF- - esrersemirsruesissisinsiniisiiiitiniiiins s (an
Subtracting 4log zr from both sides of the latter half relation of Eq. (11) we have
4 (log Zp—10g 2p) =4 (FE-—10g Zp)--+e-tserreerereonrirraniatiiniiia. (12)

Hence the most probable trip distribution and assignment pattern is given by mini-
mizing
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TE*'IO([," F 8RR (1)

It is noted that Eq. (13) is homologous to the Helmholtz free-energy function
which has a minimum for a thermodynamic system in equilibrium under the
conditions of constant volume and temperature and log zr of Eq. (13) is analogous
to a quantity defined to be entropy in statistical mechanics.

Next we denote the notation as follows:

u;—normalized supply of trips in origin node 7 (i=1, 2, - , 7,
vi=normalized demand of trips in destination node j (j=1, 2, -+ , S),
Pi;=transition probability of a trip from origin node ¢ to destination node j,
pif=probability of a trip from origin node 7 to destination node j via the &% avai-
lable path (k=1, 2, , Q).
Using the above notation Xi/* can be written by
X mm XU PP teeeeeeereeeeni e (14)

Next, as we have the travel time {:;/* required from origin node ¢ to destination

node j via the A" path, the total travel time £ on the whole trips X is written by

=355 foi,jktuk:XE.SS ll'fPijpijktz‘jk ...................................................... (15)
iJjk i Jk

Similarly the second term of Eq. (13), which we may call entropy function
owing to the form of the Helmholtz free-energy function, can be written by
log zp=—2 .S.L.E wiPypiit log piff—XES uiPis log Pij— X5 uy log ti=«+-+- (1§
: '] i

i Jk i
herein Stirling’s formula (log x/s=x log x—x) in used.
If OD table is given, that is, if u:, v; and P:; are constants, the traffic assign-
ment problem is to choose p:i* to
minimize (7_?:%'5 MiPijPi_iktijk“{"s;{f MiPijPijk l()g p“h) ........................... (17)

subject to
2’5 B A R Yt (18

Solutions can be obtained by Lagrangian method in general.
Assuming that f:#s are constant without regard to traffic volumes, we have
v exp (—rte®)
P Ty
?exp( rtis¥)
Hence, in this case OD traffic volumes are assigned to the respective paths by Eq.
(19) and link volumes are simply accumulated without regard to link capacities.

It is well known that delay caused by congestion will persuade some travelers
to change their destination entirely. Such a formulation that both trip distributions
and assignments are solved simultaneously by giving trip generation and attraction
in each node is more suitable for this problem.

The problem is to choose P:; and p:i* to

minimize (T%'JEAE 7!;’P-;jj)tjktzjk+§~'j2k£ wiPipiit log pu’“%f%“.j)] uiPijlog Pij)---00)

subject to

and
2_’ T Lt L PN 99

For p:* we have the same form of solution as in Eq. (19) and for P we have
[)H:a.[ﬂjgxp (71*;‘2 Pijk log pijk_r%’ pijkt“k‘) .......................................... @3
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where,
ai:e/§ ﬁjexp (__SJ p“k l()g p”k__r%' p“ktzjk) .......................................... (24)
- ‘
and
,33‘:61)]/217 aaexp (—2 pif log Pi.ik’*rf Db gE) coeeneseeen i e ©5)
k

herein we put as=exp (—pi/u:) and Bi=exp (—¢;). . and ¢; are Lagrange multipliers
associated with Eq. (21) and (22).
P;j can be obtained by the following iterative procedure.
1) Assume 7 and calculate a set {p:#*} from Eq. (13).
2) Assuming a set {8} and using the above p./* values calculate a set {a:;} from

Eq. (24).

3) Calculate a set {8;} by substituting the above a; values into Eq. (25).

4) Return to step 2) and repeat the procedure until the new {a:} and {8;} are suf-
ficiently close to the previous sets to indicate adequate convergence respectively.

5) Calculate a set {P:;} using the converged {a:} and {8;} from Eq. (23).

In the above procedure we may determine the value of y in order that the
calculated assignment pattern may be suited to the actual one. Particularly, when
the total travel time (or the average travel time per trip) is given, we may
determine the value of r by the iterations in order that the calculated total travel
time may be sufficiently close to the actual one.

3. Traffic Assignment with a Travel Time Function

The traffic assignment process described above does not take the effect of link
capacity on traffic flow into account, and consequently many links in the network
become unrealistically oveloaded. Therefore the necessity of introducing link
capacity restraints-the cause of congestion is realized.

The primary feature of the capacity-restraint algorithm is its provision for
arbitary link travel time functions. These functions may be any linear or nonlinear
relation of link flow to travel time for that flows.

Let us redefine the total travel time £ using link travel time function, it is
given by

E= X{f{fﬁk%mﬂjpu’“ﬂ; ({JZ%'U;CBW@PUPM) .......................................... 08

where
{1 if link 2 € path %k between node 7 to j.
=10 if link k & path k between node i to J.
and fu ({);_“kﬁmﬁnmepij’“) is the travel time function on link % related to the link

volume.
In this case the assignment problem is to find a set of p:j* to
minimize Er;?szukfsnmPupu’“fn (ai'Zj'Zijkanmepn"') + 225 uiPipaflogpff) -+ 1)
i j k iJjk

subject to
Zk‘ pijk"—:l ............................................................................................. 28

It is proved that if f» is convex and increases monotonously the function (27)
is a convex function and has only one minimum value. This proves the uniqueness
of the solution for this assignment problem.

The following iterative procedure is used for obtaining a set of pi/*.

1) Assume 7 and calculate a set {p:/*} based on the path travel time 4% (1) between
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each OD pair at free speed.

2) Using {p:*} calculated above OD volumes are assigned to the respective paths
and link volumes are accumulated.

3) The link travel time function are utilized to revise the link travel times.

4) New path travel times t:* (1)’ between each OD pair is calculated based on the
revised link travel times. The revised path travel times for the second and
succeeding iterations are updated according to

tiff () = mitiff (n-—1) +1:* (n—1)’ H=D, B, eveereeeseossininit s 29
m+1

where m is a constant introduced in order to stabilize these iterations.

5) Return to step 1) these iterations are repeated using t:* (#) in place of ti* (n—1)
until ;7 (n) is sufficiently close to t:* (n—1) to indicate adequate convergence.

6) Based on the converged path travel times OD volumes are assigned and link
volumes are accumulated.

In the above iterations the value of m may be usually 1. However, when we
use the link travel time function such that the change in travel time as flow in-
creases is small for low flow values, but very large as saturation flow is approached
(e. g. the logarithmic travel time function used in the next example problem),
these iterations may tend to oscillate without convergence. In such a case we had
better enlarge the value of m properly in order to stabilize these iterations.

4. An Example Problem

To demonstrate the use of this traffic assignment method an example problem
was solved. In Fig.1 the problem network is shown. The trip distribution
pattern composed of six OD pairs is also given in Table [. Three paths are con-
sidered between each OD pair as in Fig. 2, 3 and 4. These paths are fixed during
the assignment process.

i) Traffic Assignment with a Constant Travel Time

In this case OD volumes are assigned to the respective paths by Eq. (19) and
link volumes are simply accumulated. The value of v was determined by an itera-
tive procedure so that the average travel time per trip might become 8.5 minutes.

Table [ OD table
(vehicles per day)

D
1 2 3 4
(0] N
1 * 2,600 | 1,700 *
2 2,300 * * 700
3 1,500 * * *
4 * 1,200 * *

Fig. 1 Road network for the example problem
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The result of five iterations was that r was 0.6949.

The assigned and link volumes are shown respectively in Table I and Fig. 5.
To make a comparison with the results of this traffic assignment pattern two
extreme assignment techniques were used to assign on a common network and trip
table. One is an all-or-nothing assignment which is brought when we put y=o° in
Eq. (17). The other is an uniform path assignment, which is brought when we put
r=0 in Eq. (17). Fig. 6 indicates the result of the all-or-nothing assignment pattern
and Fig. 7 the uniform path assignment pattern.

average travel

Table [ Assignment with a time per trip
. = 8.50 min.
constant travel time

(vehicles par day)

OD |lIst path |2nd path |3rd path
X12 1,761 540 299
X3 1,074 595 31
X21 1,557 478 265
X24 573 97 30
X1 948 525 27
X4z 982 167 51

Fig. 5 Link volumes resulting from assignment with a
constant travel time (vehicles per day) r=0.6949

average travel
time per trip
=9,72min.

average travel
time per trip
= 7.96min.

700

1200
Fig. 6 Link volumes resulting from assignment Fig. 7 Link volumes resulting from assigning
on an all-or-nothing basis (vehicles per traffic uniformly to each path (vehicles
day) r=oo per day) r=0

ii) Traffic Assignment with a Travel Time Function
The following two travel time functions were employed for this example.
Type 1 TnZAhQn+Bn ........................................................................... 30
T {Ah log (2,000/2,000—Qx) +Br 0=Qr<2, 000
(oo}

i o
Lype 2, 000=Qx
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where

Tw=travel time on link % in minutes

@»=link volume on link % in vehicles per day.

Ar=empirically derived constant

Br=constant representing link travel time at free flow conditions.

Type 1 is a linear travel time function. This function allows travel time to
increase linearly with flow. While Type 2 is a nonlinear, logarithmic travel time
function, the characteristics of this function are such that the change in travel
time as flow increases is small for low flow values, but large as saturation flow is
approached. This function can prevent flows in excess of link capacity from being
assigned to the links. Fig. 8 shows these travel time functions. Table I and N
give An and Bx for each of the links.
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Fig. 8 Link travel time function (for Link 1)

Table I Link travel time functions Table IV Link travel time functions
of Type I of Type 2
Link An B Link An Bn
1 and 2 0.0010 8.5 1 and 2 1.4427 8.5
3 and 4 0.0004 3.4 3 and 4 0.5771 3.4
5and 6 0. 0008 6.8 i 5 and 6 1. 1542 6.8
7 and 8 0. 0003 2.55 7 and 8 0.4328 2.55
9 and 10 0. 0006 5.1 9 and 10 0. 8656 5.1

The solutions to the problem with a linear travel time function are shown in
Fig. 9 and Table V. To this problem the value of 7 was determined so that the
average travel time per trip might become 10.0 minutes and consequently r was
0. 6399.

Similarly the solutions to the problem with a logarithmic travel time function
are shown in Fig. 10 and Table V. To this problem r was determined so that the
average travel time per trip might become 11.04 minutes and 7 was 0.7291.

The value of m used in the iterations to obtain the solutions might be 1 for
Type 1, but for Type 2 it was changed in steps, that was, m=39 for iteration steps
between first and 16 th, m=29 for steps between 17th and 29th and m=9 for 30th
and over. A more rational procedure for determining the value of m will reguire
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average travel
tm?goper trip
=10.00min.
m Table V Assignment with a travel
time function of Type 1

(vehicles per day)

OD |1st path ’an path lBrd path
X1o 1,788 525 287
X1s 1,086 593 21
Xo1 1,531 486 282
Xo4 591 83 26
Xa1 939 545 16
X4z 992 161 47

Fig. 9 Link volumes resulting from assignment
with a travel time function of Type I
(vehicles per day) r=0.6399

average travel
time per trip

104 Table V1 Assignment with a travel
=11 min,

time function of Type 2
(vehicles per day)

oD 1st path {2nd path |3rd path
X2 1,811 533 256
X1s 1,143 549 8
Xeo1 1,533 487 280
X24 620 61 19
Xa1 949 545 6
X42 1,031 131 38

1414
1,865

| e

Fig. 10 Link volumes resulting from assignment
with a travel time function of Type 2
(vehicles per day) r=0.7291

further research.

Next, in order to know the relationship between r and t many traffic assign-
ments were calculated under the assumption of the various values of y. Then we
had the results as shown in Fig. 11.

It is noted that for the assignment with a constant travel time 7-t curve
becomes a monotonous decreasing curve, while for the assignment with a travel
time function it presents a curve that has a minimum value. Therefore it is

apparent that two values of 1 correspond to a single ¢t when we use a travel time
function. This will show that we must determine which we should choose of the
two by observing the actual assignment pattern.
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5. Conclusion

Some traffic assignment technigues with a travel time function whereby trips
are assigned to the paths specified beforchand have been suggested in the previous
works.%»”  The assignment method proposed in this paper may be structually
common with such techniques but different from the following characteristics.

i) It is necessary to specify some available paths beforehand between the points
of origin and destination, but the assignment factor to each of these paths can be
determined endogenonsly by this assignment method.

ii) Any linear or nonlincar travel time function may be applied to this method.
Especially if a travel time function is convex and increases monotonously, the
uniqueness of the solution can be proved mathematically.

iii) Not only trip assignments but also trip distributions can be estimated simul-
taneously by this method. On the trip distribution phase, the reader is referred
to the previous paper® for a detailed account.

iv) In the objective function (13), if 7 is so large that the second term is negligible
we have an optimal traffic assignment pattern such that the total travel time is
minimized. Moreover, if link travel times are not related to link flows, it reduces
to an all-or-nothing assignment pattern. While if 7 is 0, the problem is to maximize
entropy function, which means that OD volumes are assigned to the respective
paths uniformly.

In this paper the most probable assignment pattern on the network was consi-
dered from a stochastic points of view. However whether the traffic assignment
pattern by this method can be describe or not the actual one on the real network is
another question. Accordingly for further development it is necessary to investigate
the applicability of this technique to practical traffic assignment problems.
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