Circular Distribution of Corona Current of Multiple-Conductor Transmission Line (M)

Saburo MUTO and Masaharu UDAKA

Department of Electrical Engineering (Received September 11, 1969)

The author investigates the corona starting voltages and the circular distribution of the corona current around a multiple-conductor transmission line in compressed SF_6 , $c-C_4F_8$, C_2F_6 and N_2O gases.

The various characteristics of the d.c. corona current in fluoride gases mixed with N_2O and the results of the gaschromatographic analysis of the decomposition products by corona discharge are described.

1. Introduction

The authors have investigated the corona current distribution around the double-conductor and already published the five papers about the investigations.

The 1st, 2nd and 3rd papers^{1)~3)} dealt with the various characteristics of the a.c. and d.c. corona current around the multiple-conductor transmission line in air. In the 4th and 5th papers, ⁴⁾⁵⁾ we described the corona starting voltages, the d.c. corona current distribution and the directivity characteristics around the double-conductor in N₂, CO₂, SF₆ and the organic fluoride gases like c-C₄F₈ and C₂F₆.

In this paper, the investigations about the various characteristics of the d. c. corona discharge in the fluoride gases like $c-C_4F_8$, C_2F_6 and SF_6 mixing with N₂O are carried out.

And the results of the gaschromatographic analysis of the decomposed products are shown.

When the perfluorocarbons are exposed to the corona discharge or the arc discharge, they can easily be decomposed.⁶⁾ And, on that account, carbon decomposed is accumulated on the electrodes. It is also reported that N_2O is available to prevent the carbon accumulation.

The authors investigate how the corona characteristics in perfluorocarbon are influenced by mixing with N_2O and, from the vewpoint of the electron attachment coefficient, the corona starting voltages in SF_6 mixing with N_2O are studied.

Experimental Equipments, Measuring Method and Definition of Directivity Factor κ

The experimental equipments in this paper are the same as those in the previuos,⁴⁾⁵⁾ and so the details are omitted.

Fig. 1 shows the cross-section of the electrodes. Fig.1 (a) is the case of single-conductor and Fig. 1 (b) the case of double-conductor, respectively.

(a) Single-Conductor (b) Double-Conductor Fig. 1 Cross-Section of Electrodes

A X-Y Recorder was used for measuring the corona starting voltage. The total corona current I_t and the applied voltage V were recorded on the Y- and X-axes, respectively. The corona starting voltage is defined as the value corresponding to the abrupt increase point of I_t .

A X-T Recorder was used for measuring the distribution of the d.c. corona current. The terminal voltage-drop across the standard resistance means the magnitude of the corona current.

The authors define the directivity factor κ in order to analyse the corona current

distribution quantitatively as shown in the previous papers;⁴⁾⁵⁾ that is,

3. Corona Starting Voltages in Various Gases

Fig. 2 (a) shows the corona starting voltages in air, SF₆, c-C₄F₈, C₂F₆ and N₂O around the single-conductor and Fig. 2 (b) those around the double-conductor, respectively. The voltage-gradient of the corona starting at the surface of the conductors, E_s , is also shown on the ordinate axis. E_s , at the applied voltage of V(kV), is given as follows;

Single-Conductor.....

$$E_s = 11.5 \times V(kV) \qquad \dots \dots (2)$$

Double-Conductor......
$$E_s = 8.49 \times V(kV) \qquad \dots \dots (3)$$

When the maximum voltage-gradient of the double-conductor is compared with that of the single-conductor, they are coincident within the limits of $\pm 5 \%$. The corona start-

ing voltage of the double-conductor increases

 \oplus and \ominus mean the potentials to be positive and negative, respectively.

Fig. 2(b) shows the corona starting voltages (abbrev. V_s) around the double-conductor in various gases. V_s of c-C₄F₈ \oplus is the highest

Fig.2(b) Corona Starting Voltages in Various Gases around Double-Conductor, m/d=10

of all the gases used in overall pressure. In less than 1 atm, however, V_s of $c-C_4F_8 \ominus$ is lower than that of $SF_6 \oplus$. The differences between positive and negative V_s is nearly constant in more than 1 atm in both case of $c-C_4F_8$ and SF_6 . The difference in $c-C_4F_8$ is ca. 20 kV and in SF_6 ca. 10kV. V_s of $C_2F_6 \oplus$ is $2\sim 4$ kV lower than that of $SF_6 \oplus$ in overall pressure and V_s of $C_2F_6 \ominus$ is ca. 10 kV lower than that of $SF_6 \ominus$. So that, from the viewpoint of the electrical insulation, C_2F_6 is not so useful as $c-C_4F_8$. However, it has been advocated to mix C_2F_6 with $c-C_4F_8$ in order to lower the high boiling point of $c-C_4F_8$.

In Fig. 2 (b), is also shown V_s of N_2O , which is mixed with perfluorocarbon or SF₆. V_s of $N_2 \oplus$ is $3\sim 4 \text{ kV}$ lower than that of SF₆ \ominus in more than 1 atm. V_s of $N_2O \ominus$ is a little higher than that of air \oplus .

In Fig. 2 (b), the characteristis curves of the corona starting voltages of singleconductor show the same tendency as those of double-conductor.

Table. I Calculation of the Constants A and C

A and C	А		С		
Gases Polarity	Positive	Negative	Positive	Negative	
SF ₆	67. 58	76. 89	0. 3054	0.1422	
c-C ₄ F ₈ 72.8		118.7	0. 375	0. 0898	

Table. I shows the constants A and C when Watson's equation (4) is applied to $c-C_4F_8$ and SF₆. A and C are calculated in consideration of the two cases of r, that is r=0.005 cm and r=0.015 cm.

Watson's Equation

where

- E_s : corona starting voltage-gradient in kV/cm
- m_1 : coefficient of surface condition
- δ : relative air density
- r : radius of curvature of the conductor in cm
- A&C : constants determined by the polarity and gases

4. Directivity Characteristics in Various Gases

The authors have reported the directivity characteristics of SF_6 , c-C₄F₈, CO₂ and N₂ in detail in the 5 th paper.⁽⁵⁾ In this section we investigate the directivity characteristics of C_2F_6 (which is one of the perfluorocarbons, like c-C₄F₈) and N₂O.

4-1. Directivity Factor in C₂F₆ Gas

Fig. 3 shows the directivity characteristics of C_2F_6 . The κ - I_t characteristics of C_2F_6 cannot be always represented by the equation of $\kappa I_t^{B} = A$, like in the case of c- C_4F_8 .

In Fig.3 (a), the dependency of κ on pressure p in $C_2F_6 \oplus$ is the smallest of all gases used and that of κ on the total corona current I_t in C_2F_6 is smaller than in c-C₄F₈. The directivity factor κ in the region of the lower pressure and the smaller corona current, could not be obtained because the distribution of the corona current was unstable.

In Fig. 3 (b), κ of $C_2F_6 \ominus$ has the different characteristics from that of $C_2F_6 \oplus$. That is to say, the dependency of κ on pressure is small in the region of the large I_t and the maximum point of κ arises at p=ca.300 Torr

(a) Positive Corona

(b) Negative Corona

in the region of the small I_t . These characteristics are the similar as observed in SF₆ \bigcirc^{50} .

4-2. Directivity Factor in N₂O Gas

Fig. 4 shows the directivity characteristics of N₂O. κ - I_i characteristics of the positive corona in N₂O are shown in Fig. 4 (a) and κ

254

Fig. 4 Directivity Characteristics of Corona Current in $\mathrm{N}_2\mathrm{O}$

of $N_2 \oplus$ is also shown. In this figure, $\kappa - I_t$ characteristics of $N_2 O \oplus$ are similar to those

of $N_2 \oplus$. That is, $\kappa - I_t$ characteristic curves in $N_2 \oplus$ at $p=1 \text{kg/cm}^2$ abs. are separated into two regions at $I_t=\text{ca. }300 \ \mu\text{A.}^4$ Similarly, in N_2 O there are two regions at ca. $200 \ \mu\text{A.}$

On the contrary in the case of the negative corona, there are the differences between $N_2 \bigcirc$ and $N_2 \bigcirc \bigcirc$. κ in $N_2 \bigcirc$ could not be accurately obtained because of the unstable distribution of the corona current. In $N_2 \bigcirc \bigcirc$, however, the corona current distribution is stable and the κ - I_t -p characteristics are shown in Fig. 4 (b).

The differences of the distribution between $N_2 \ominus$ and $N_2O \ominus$ are explained by the existence of the electron attachment effect in electronegative gas (N₂O).

5. Corona Starting Voltages in Various Gases Mixing with N₂O

Fig. 5 shows the corona starting voltages V_s in various gases mixing with N₂O. The volume percentage of N₂O (abbrev. N₂Ov. %) is indicated on the quadrature axis. It is

noted that V_s of $C_2F_6 \oplus$ mixing with N₂O increases a little (ca.2 kV) at $p_{tota1}=760$ Torr when N₂O v. % is about 2%. The same characteristics are observed in $C_2F_6 \oplus$. When N₂O is mixed with c-C₄F₈, V_s decreases gradually as increment of N₂O v. % and V_s at N₂O v. %=10% is ca. 4 kV lower than that of the pure c-C₄F₈.

It is worth considering to mix N_2O with perfluorocarbon in application to electrical insulation, because N_2O is effective to prevent carbon accumulation. It must be paid attention that N_2O gas is anesthetic and the chemical property of N_2O is similar to that of O_2 .

In the characteristic curve of V_s in SF₆ \ominus mixing with N₂O, the maximum point arises at N₂O v. $\% = 5 \sim 10 \%$ at both p = 760 Torr and 2 kg/cm² abs.

6. Directivity Characteristics in Various Gases Mixing with N_2O

Fig. 6 shows the comparison of the positive corona current distribution between $c-C_4F_8$ and $c-C_4F_8$ mixing with N₂O (percentage of mixing 95:5% vol.) under the condition of $I_t=100 \ \mu\text{A}$ and $p_{\text{total}}=760$ Torr. In Fig. 6, it is difficult to distinct the differences between both the corona current distribution. The corona current in the direction of $\theta=0^{\circ}$ and 180°, if anything, increases a little in the mixed gas more than that in the pure gas.

Fig. 6 An Example of Corona Current Distribution in $c-C_4F_8$ mixing with N_2O

Fig. 7 and Fig. 8 show the directivity characteristics in perfluorocarbon mixing with N₂O, $0\sim5\%$ vol. κ -axis is graduated in logarithms scale.

Fig. 7 (a) shows the directivity characteristics of the positive corona current distribution in c-C₄F₈ mixing with N₂O at $p_{tota1}=760$ Torr. κ tends to decrease as increment of N₂O v. %. On the contrary, as shown in Fig. 7 (b), κ of the negative corona characteristics

Fig. 7 Directivity Characteristics of Corona Current in c-C₄F₈ mixing with N₂O

increases as increment of N_2O v.%. The rate of the decrease (or increase) of κ gets small as I_t increases.

Fig. 8 shows the directivity characteristics of the negative corona current distribution in C_2F_6 mixing with N₂O at $p_{tota1}=760$ Torr. In the κ -characteristic curve, a maximum point appears where N₂O v.% is ca. 2%.

Even if N_2O is mixed with perfluorocarbon below ca. 5 %, the changes of the corona current distribution are not always large.

Fig. 8 Directivity Characteirstics of Corona Current in C_2F_6 mixing with N_2O

7. Gas Analysis of Decomposed Products in Perfluorocarbon Exposed to Corona Discharge

 $c-C_4F_8$ at ordinary state is not toxic for

human body and the thermal stability is very execellent⁷⁾, while are unknown the kinds and amounts of the products which are decomposed owing to the injection of electrical energy like corona discharge. The authors were confronted with the facts that $c-C_4F_8$ exposed to corona discharge would produce the decomposed poisonous materials. Therefore, we made an attempt to analyse $c-C_4F_8$ exposed to corona discharge by means of gaschromatograph.

The relation betweent the condition of the corona discharge, the kinds of the sampled gases and the purity are shown in Table. 2. This analysis enough sufficient, because the rated purity of $c-C_4F_8$ is 99.5%.

The important results of the gaschromatographic analysis are as follows;

(1) CF_3H was the most of all the decomposed products.

After corona discharge, CF₃H in sam-

Sampled Gases			Purity			
		Polarity	Total Corona Current	Hours	Pressure	(%)
No. 1	$c-C_4F_8$ only	Negative	200 µA	2 hr.	1.4 kg/cm ² abs.	98. 0104 (98. 4549)
No. 2	$\begin{array}{c} \text{c-C}_{4}\text{F}_{8}+\text{N}_{2}\text{O} \\ 95:5 \\ \% \text{ Vol.} \end{array}$	Negative	200 µA	2 hr.	1.2 kg/cm ² abs.	98. 3452 (98. 7802)
No. 3	Pure $c-C_4F_8$	not expose	99. 5246 (99. 9716)			

Table. 2 Condition of Sampled Gases

* means the purity of the gases taken off H_2O .

pled gas No. 1 increased 7500 times more than that in original gas and CF₃H in No.2 5100 times, respectively. The purity of CF₃H in original gas is 0.0002 %, but after corona discharge that became 1.4960 % in sampled gas No. 1 and 1.0220 % in No. 2, respectively.

- (2) KC-216 which was the poisonous materials was not detected.
- (3) Another fluorides were little detected. (In consideration of the sensitivity of gaschromatograph, the rest amounts are at least less than 0.0001 %.)
- (4) CO_2 and H_2O hardly increased even

after the corona discharge.

At present the authors carry on the investigations of the gaschromatographic analysis in more detail.

8. Conclusions

- (1) It is pointed out that the κ - I_t characteristics of C₂F₆ cannot be always represented by the equation of $\kappa I_t^B = A$, like in the case of c-C₄F₈.
- (2) The κ-I_t characteristics of N₂O ⊕ are similar to those of N₂⊕. On the contrary, in the characteristics of the negative corona, there are remarkable differences between N₂O⊖ and N₂⊖.

256

- (3) The corona starting voltage V_s of C₂F₆ mixing with N₂O increases a little when the volume percentage of N₂O is about 2%. And in the characteristic curve of V_s in SF₆ ⊖ mixing with N₂O, a maximum point arises at N₂O v. %=5~10%.
- (4) It is worth considering to mix N₂O with perfluorocarbon in application to electrical insulation. Because N₂O is effective to prevent carbon accumulation on the electrodes.
- (5) Even if N₂O is mixed with perfluorocarbon below ca. 5 %, the changes of the corona current distribution are not always large.
- (6) The results of the gaschromatographic analysis gives that c-C₄F₈ is decomposed by the corona discharge. CF₃H is the most of all the decomposed products.

Acknowledgements

The authors wish to thank the Mitsui-Fluorochemical Co. for carrying out the gas analysis and for supplying $c-C_4F_8$ and C_2F_6 and the information of perfluorocarbon to us, and Mr. T. Shibata, Mr. H. Yoshii and Mr. T. Suzuki for their help and cooperation.

References

- S. Muto: Bulletin of Nagoya Institute of Technology vol. 15 pp. 253~258 (1963)
- (2) S. Muto: ibid. vol. 16 pp. 264~268 (1964)
- (3) S. Muto & T. Tani: ibid. vol. 17 pp. 246~254 (1965)
- (4) S. Muto, T. Inaba & T. Shibata: ibid. vol. 19 pp. 283~294 (1967)
- (5) S. Muto, T. Shibata & M. Udaka: ibid. vol. 20
 pp. 257~263 (1968)
- (6) C. M. Brock, et al: Technical Bulletin of Du Pont (EL-10)
- (7) ibid. (E L-1)