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This paper is the summary of our reseaches on the calculational

procedure of the multicomponent distillation which were achieved during

these three years.

Introduction

The theories of the continuous multicom-
ponent distillation developed rapidly from
those of Lewis'®, Underwood??, and Fenske”
to those of Murdoch!'®, Acrivos? and

Holland'? during these thirty years.

Therefore, for an ideal system we regarded
the theory as generally established. But,
engaging in the study of this problem, we
noticed that there were many more questio;ls,
for instance

i) the treatment of non-distributed compo-
nentSIS) .

ii) the development of the high-speed
convergence method using the condition
of the matching at the feed plate!?2®

iii) the development of the very simplified
-calculational procedure of the multicom-
ponent distillation!>1”

iv) the analysis of the system with side cut
streams?>

On the other hand, for a non-ideal system
the step by step calculational procedure
proposed by Gilliland® was used in many
cases, and the perturbation method proposed
by Acrivos®® was the only analytical method.

Even Acrivos’ method was not useful in

préctice, because the higher perturbed term

was too complicated. Therefore we have
proposed Successive Approximation Method

and Successive Perturbation Method in § 3%,

But these methods are not so simple as the

step by step procedure, because these are

deduced using the perturbation theory, so
we shall next propose Successive Iteration
Method which have merits of both the
analytical method and the step by step me-
thod!®. Consequently we can simplify the
calculational procedures of the azeotropic
distillation and the extractive distillation not
to mention the ordinary distillation.1® 19

The exact solution for the case of minimum
relux was discovered by Underwood?? and,
later on, in a more general form, by Murdogh
and Holland®. This solution is useful only
for the designing problem under the given
separate ratio of the key components,
therfore we shall propose the calculational
method of the terminal compositions at the
minimum reflux state under the given reflux
ratio.?” On the other hand, for a non-ideal
system the solution was unknown untill now.
But, when nondistributed components don’t
exist, we can discover the exact solution for
the cases of the ordinary distillation and the
extractive distillation by the study of the
behaviour of the pinch point. 18 19

On the other hand, the theory of fhe batch
distillation had been developed by Rose?®,
Croseley®, Bowman®, Fujita® and Kojimal®,
In this case the still composition is the
function of the distillate, namely, it is the
problem at the unsteaby state. But this
probrem can be simplified by using the
calculational method of the terminal compo-

sition from the given composition in a column.
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So, we can easily calculate the distillation
curve by the method mentioned in §1 and

Rayleigh’s equation. 2% 2%

81 The calculating method of terminal
compositions from the given composit-
ion in a column 2%

For the enriching section Acrivos showed
the composition in a column z,(2) as a
function of the terminal composition zp(?).?
2p(1) ; Cods” 0, (1)

R 'Z Ci2," 1

2a(1)=

Where 2, is the k-th root of Eq.(2), v.(2)
and C, are defined by Eq.(3) and Eq.(4).

s PO 20D b payct<P(h—1)---(2)
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v, (%) :ikf—([q:')(i—) .................................... (3)
_ P@apo(@) 17!
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In order to get the terminal composition
as a function of the composition in a column,
we divide both sides of Eq.(1) by ((2,-P(%)),
and sum up for all components. Then, the
following equation can be deduced.

RONN N _ w1y
= (KSR I G )

On the other hand, the following equation
can be deduced from Eq.(2)V
. o =P

@) =Ra () Fe e Py —Poy3

Futher, summing up Eq. (6) for all
components,
I2.—P3))
RreOmierm—ray!

Consequently, if z,(%) is known, we can
obtain K and 2, from Eq. (6) and Eq. (7),
and calculate the terminal composition 25(%)
by Eq.(6). On the other hand, for the
stripping section we can also deduce analogous
equations.

If 2,(2) is made small, a useful asymptotic
form for xp(7) is made Z¥.

i) Application to continuous distillation?®

Taking the feed rate a unit, the over-all
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material balance for i-th component can be
changed into the following form.

N wr@E D)
1 (D =Dz (0) = W) (®)

Then, if we introduce a parameter @ for
the convergence into Eq. (8), and use the
value of xr(?) as a initial value of x,(%), the
value of z,(2) can be corrected by the
following equations.

This iteration must be continued until ¢
reaches a unit within a certain accuracy.

ML (N Oxr(Dxs™ (4)
BV = P 6y + Waw™ ()

_ 2r (D)2 (2) -t
4 —{? Dz (8 +foW<m><i)} """"" 10

ii) Application to batch distillation?®
We express Rayleigh’s equation in the

following difference form.
AGSZ (D)) =Lp(E)AS crvereeressanneennne i)
When D=tAD, the still composition can
be given by the following equation.
S(O) xs(ﬁ)(i)._ i xD(”_D(?:) AD
S(O)":;’;AD
Where S© z,®(7) is the initial feed moles

of i-th component in a still.

B (1) = ()

Consequently, we can easily obtain ‘a
distillation curve by the above mentioned
method with which we can calculate the
terminal composition xp(Z) from the still

composition z;(7).

§2 Calculational procedure of the
multicomponent distillation with side

cut streams for an ideal system

We shall develop the theory for the
conventional column into one for the column
with side cut streams, for instance the
topping in a petroleum refinery, and show
the calculational procedure of the composition
of each stream under given operating
variables.

At this stage now, in order to simplify the
problem, let us analize the column with a
side cut stream in each section, and withdraw
it in liquid condition.

We can use Acrivos’ equations from the
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terminal to the side cut plate. On the otherhand, we use the following equations from the
side cut plate to the feed plate in the enriching section.

7e(8) ; Cs 21w, (9)

T (1) = RS, IT s e {13
Where '
REDLM‘ (LE=Lg—E) eeeevereseeesireireeeiiiire st cinressineees e e (1)
75(8) :T)é‘E‘{ Dap(8) + Erp(6)} woevevereeririnieiieieenieeenineessessenneeneene 1
b3 %:R P(B) <Ay <Pk —1) veerrrersreemvieenirienineiicennes 16
. P®
Ve (7/) - Rl,“‘P(’L‘> (N)
_ P@) nz(3) P@)ns(@) 77
Ck_[i,-; 2= P02 +1][Z}m] ................................. 19

For the stripping section we can also deduce anarogous equations. Further, for non-distributed
components we can deduce useful asymptotic expressions.

On the other hand, taking the feed rate a unit we can easily obtain the correcting equations
of the terminal compositions from the over all material balance as follows.

N ZTF (t)
DwD (Z) — 1 " ( ExE(Z> E*xE*(i) WxW (Z) ) ................................. (19
"N\ Dxpr(®) Dzp(7) ‘ Dxp(2)
Waw(3) = er()
L Lto (Dxp(i)_I_E’xE(i) E*CCE*(i)) ..................... 0
A\ Waw @) Waw() Waw (2)

Where ¢, and 6. are determined by the conditions of 33 Dzp(3)=D and 3] Waw (i)=W and
the terms 2z(2)/2p(%), 5(®)/2w(t), xz*(2)/2p(%) and x;;*(i) /xw (i) are cailculated from the
initial value of the terminal compositions, but the value of zp (%) /2w (¢) is determined by
the conditions of the feed plate matching as follows.

W+

BXSICY#pn/==10,%()
L3

21. Ci¥ py=~t v (4)

xp(i) D+E |,

R*SIC% =
&k

R* ;: Citp—1

zw(?)  W+E*
D+

Eﬁz Ckl zkm/_lvk/(i)

;Ck "1 v, (2)

Finally, we can perform this calculation on
the very simplified assumption that the
initial values of the terminal compositions
are equal to the composition of raw material-

On the other hand, when the culumn has
side cut streams in each section, we can
similarly solve this problem by using Eq.(22)
and Eq.(23) in stead of Eq.(14) and Eq.(15)-

L 1
Rz:m (L=L'=31Ex) coeeeseeense @)

15.0)=p s Dop (D + D Eutta (i)}

R/ Z Ck, 2//,”’—1

R hZ Ci 2,71

§3 Caiculational procedure of the
muiticomponent distillation for non-

ideal systems

i) Successive Approximation Method?®

The material balance of the enriching
sectioncan be expessed in the following
equation.

 Re | Pu(Dya(d) , @20
Ui O=R 5 5P, Gy T Rar 1

Eq.(24) can now be linearized by the
introduction of a generating function X, (%)

defined by the following equations.
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X, (i) =P, (5) /R1 .................................... )
Xp11()) = RpPrs1(0) Xn (@) + Pry1 (1) X
PIETICIP. G103 JRI I PRI SRS 8
’I"hen, 2,(2) can be expreésed in

_ 2p() X, (1)

T, (1) _m .............................. oD

So, if one is able to obtain the function
X,(?) using Eq.(25) and Eq.(26), one can
calculate z,(%) using Eq.(27). After all, the
main object of the problem is a key to
solution of Eq.(26).

Acrivos solved Eq.(26) by means of pert-
urbation theory, and showed the first order
perturbed solution. But, the higher order
solution is neccessary to solve the problems
of any non-ideal systems. Accordingly, it
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is desired that a simplified general form of
the higher order solution is deduced. ‘

If we are prepared to neglect the second
and higher order correction terms, we can
deduce the following v-th order perturbed

solution. .

Xy () = HP X () - fO,(8) eeveereeess 28
Where

H®=ROP({) + P(%) ]Z NG I 9

[Ou(D=RTP 1 (D) =P (D)X (2)
+(R®,—ROIPI&) X, (4)
+ (P ()) = PP (DIT (D X0 (§) - 60

Finally, we can obtain the solution of the
generating functon X*,(7) in the following
form using the linear inhomogeneous differ-
ence equation(28).

X, (1) = 3 C@y(n) (RO AW ) P L Y () weerevrsreremsemsininisiniiinineiiinis @)
Where
POz (3 )
Z,: _j(_%_)%)f(%):}go POR) <A T PO (1) weemeeemvesussanseninniinnininns 9
v, ()= P ) e e 33

C@y(n) =C(1) +J§T%{))_’ ................................................... 64
1 P zp® (i PO 2™ (1) 1-1
C‘")k(l):[ o 2'4—‘ 11(”(‘23";0(75@) ,Z (,W():)j:POIES)L))Z] ........................ (35
@ (3) 2951 L POz p(d) ]
Q(u)k (%): [;ix(”f,}z ?DO(Z)LQ] [2%0(7%;%2] ........................... 36

On the other hand, for the stripping
section analogous equations can be obtained

in a similar way. Further, appropriate
asymtotic expressions of non-distributed

components are used, but we don’t discuss
these in this paper.

ii) Successive Perturbation Method?®

We shall report to an approximation which

is useful only where the perturbation is

small. This is a simplified method of
Successive Approximation Method for the
numerical calculation.

Accoding to i), we must calculate 2*’, from
the higher order equation (32) at each pert-
urbed state, because the operator H®
contains the function x‘’5(¢) for the v-th
perturbed state.

So, we deduce a simplified general form
of the higher order perturbation.

X1 (D) =HOX® (1) + 6P, (8) g p (1) +orerernrserrrruianniiiiiinnniiiin @7
Where

HO=ROPO(1) + PO(2) ST 0p(F) +rreerenerrorneerernniiiuniiniinineiieiiiieiiina, 39

P (D=RUCP (D) — PO X, (4) + PU(D (R, — R X, (7)

+ (P, 1 () —P(3)) Z,: 00 (F) Xu@D(F) weevenrernnimniimii 69

9P (D)=P(4) 2 (2Wp(7) —2%(§)) XD, (J) sveveererreesserinieeiiiiniiens 0

Finally, the following solution can be obtained corresponding to Eq.(31)
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X, ()= 3 C4(n) (ROA) W10, () erveveemrenmenneenmeruenienenienenensenieniens .
Where
0(, 0 y
;%:Ro POCR) <A PO(B—1) weeeerersereernaensarisanunsans )
vk(i) :Z% ........................................................................... @3)
C®,(n) =C™,(1) +:§; %%(3_)] .................................................... m
1 W, (a0, (i
C,(1) = [ 75 Z P X:SZ%)“;O(Z_)(O ................................................... )
QW (n) =C, [R“ I (n) + ;E“;:%%’if(ojp)(])il .................................... 9
_ [ P @ap () 17
C, = [Zm} .................................................................. i
rem=x T (F) =20 (7)) XED () ererreerersvemrrnesseeseensesssnsssessessenns 9

iii) Successive Iteration Methed I'5

The methods of i) and ii) are more
complicated than the step by step procedure
for the reason that these methods are
deduced by means of perturbation theory.
So, we shall now show more simplified
method, i.e. Successive Iteration Method I,
for the case in which the order of size of
the relative volatility is not reversible in the
column.

If P,(?), R, and z,(¢) are known functi-
ons, Eq.(26) is anordenary defference
equation. Then, we cancalculate the gener-
ating function X,(2) from 1 to » in order
by Eq.(25) and Eq.(26). Therefore, in order
to regard P,(i), R, and z,(2) as known
functions, if we adopt the idea of the
perturbation theory into this method, we need
not solve Eq.(26).

This method has two merits, first it don’t
need the asymptotic expressions, and secondly
it is as simple as the step by step procedure.

iv) Successive Iteration Method II'®

This method is used only for the case in
which the order of size of the relative
volatility is reversible in the column.

In this case, we use the general form of
the y-th order perturbed equation mentioned
in i), 7. e. Eq.(28), for the reason that the
existence of the deviation from the unpert-

urbed state within the radius of convergence

is the only key of the perturbation. Then,
as f“,() is the known function, we can
calculate the generating function X*,(¢) in
order by the same process as Successive
Iteration Method 1.

§4 Calculational procedure of the
azeotropic distillation 1826

At first, we shall calculate its degree ot
freedon. When the composition of raw
material and the thermal factor of column
feed are given, there are four degrees of
freedom for the conventional column, but
in this case there is one more degree of
freedom for the reason that the entrainer
feed moles are unknown, that is, the first
column has four degrees of freedom and the
second column which is constituted only by
the stripping section has three degrees of
freedom, besides there is a degree of freedom
for the whole of the system.

These degrees of freedom are given as
follows.

1-st column : bottoms of all components

and reflux ratio of the
stripping section

2-nd column : bottoms of the key ompone-

nts and reflux ratio of the
stripping section

the whole of the system : the determinant

condition of the optimum
feed plate
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Now, we show the calculational procedure
of the azeotropic distillation using Successive
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Iteration Method.

i) Stripping section of the 1-st column

Xo(£) =1 crreverrenrennnnmmumuinniieiieetriettrrinetateteetetettiniaissesessnesnsanaseaaes )
XD =Rs1—Dea, D) X, (@) + z: (DB (8) X (£) wovververrrnerinnnennsnne 60
%,(3) = 220D A0 N 6)

- Zﬁffl}w (%) X:(2)

Where R.=L./W. We can calculate z,(¢) from the bottom in order by the equation above

and a vapor-liquid equilibrium.

ii) Enriching section of the 1-st column

Xo(@)=Zp(8) wvvrerereoreornontintiiiiiiir e e 62
Xar1(D=Run1+1Dan(@) X, (D) —7() p¥ An(D) T (D) Xp ()  worervreerseesenns 63

0 =BT Xn() et \

2,(%) -‘Z—;’Wm .................... 54

Where
— La
R,= R 5)
Cr ) = W w0 e 69

TO="AZW) 2w

We can calculate z,(Z) from the feed plate in order by the same process as i).

iii) Stripping section of the 2-nd column

Xp* (D) =1

> SR ORIEIES IPRIOP SOFS IPRIOI LI OF 410 I &)
N 0. 4.0 .

251 = ST oG KAGR) s (58)'

Where R*=L*/W* And, we correct the ungiven W*zw*(i) by the following equation
deduced from the condition of the matching at the top of the 2-nd column.

Wkzw*(4) :_L;% ......
1+ —h e
Ty*(P)
yo*(d) _ as* (1) Xs*(%)

zw*(l) T Las*@)aty () X*@)

iv) The boundary condition at the top

When the liquid on the plate is one-layered,
it is the boundary condition that the distill-
ation curve just crosses the binodal curve at
the top. On the other hand, when the liquid
on the plate is two-layered, it is the boundary
condition that the distillation curve just
crosses the given tie-line at the top.

v) Calculation of the activity
coefficient of the two-layered liquid

In this case, as these layers are in equili-

................................................... (59)

brium each other, their chemical potentials
are equal each other, that is, 7;12;1=7r;1z;1
but 7;I7;I. Consequently each relative

volatility is not equal, but the vapor comp-
ositions in an equilibrium with these liquid
layers are equal each other. In this case, the
operating line denotes the relation of the
apparent composition, on the other hand,
the vapor-liquid equilibrium denotes the

relation of the true composition. Therefore,

we must deduce the special calculational
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procedure, which is different from the one-
layered case, for the two-layered case. But,
if we take care to calculate the activity
coefficient of the two-layered liquid, we can
express the vapor-liquid equilibrium of the
apparent composition using 7;=7;Iz;1/x;=
Tile /2.

Consequently, if we take care of the
calculation of the activity coefficient, we can
also use the above mentioned Successive

i) Solvent recovery section
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Iteration Method in this case.

§5 Calculational procedure of extractive
distillation!®

We have shown the calculational procedure
of the multicomponent distillation for a
conventional column using Successive lteration
Method in §3. This method is also applic-

able to the extractive distillation system.

X1 (D) =P1(B) /Ry ++ovveereeemremmmniiiiiis it s ©)
Xn11()=R,Ppi1(D) X (@) +Prin(9) ; Ly (DXu(f)  ceeeremevememmnenenenn )
B ) X ) ettt aae @3

O =50, (D X

ii) Enriching section
Solvent is generally more non-volatile than
key components, so, if we are prepared to

consider the composition of solvent in the
enriching section to be constant, the following
results can be obtained.

X, () =Xx§@) 69
Ko 1(8) = R Pyr 11 (8) X (0) + Pri1 (2) PN B (7) X/ (F) wreeerrressnnnsuennenns )
o 2, (1) X, (3) N
Zu (D) =Q—2.,1) m (T3] erevrrmmnnirmiiniii )
iii) Stripping section
XoH(E) = @g(E)  weveereerrermmmminininii s @7
X*S+1(7/) = (R*5+1_1)a*5+1 (’L)X*s (’l:) +C¥*s+1 (i) ’Z xw(])X*s(]> ----------- (68)
= PFOTw XX e,
PO =P aw (D XAD) ®
iv) Convergence method
(1) _ PR XY | FoWDXa @ -
o) XD EPAFD R (DXNG ‘
. N Xk (DX ()
2p()) _ PADOXA@ | G
a0 (0I5, @ SPFOEOXFG T m
. (@) +Srer (D)
Dz, (%) MW ............................................................... 7
" Dz, (®
. xr()+Sxsr (1)
wa(z) _:—m_;(_{j— ............................................................ ('73)
Waw (1)

Where the symbol (1) denotes solvent. reflux which was only useful to calculate

86 Minimum reflux calculation of the minimum reflux ratio under the given

ideal multicomponent distillation?”

Underwood?? and Acrivos? discovered the

exact solution for the case of minimum

separate ratio of two arbitrary components.
We shall here derive the method which is

useful to calculate the terminal compositions
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under the given reflux ratio and infinite
plate number, and discuss the behaviour of
pinch points. At this stage now, we are in
a position to extend the treatment given on
§1.

We first note that the functional properties
of G, in m—>co was given as the following
relations by Acrivos?.

1 G,—~0 k>h

2) G—~1

3) G.—~finite k<h

Where G, is defined by

Gi= g: ( j: )"_1 .............................. )

We can easily derive the determinant

equations of 1, in n—>co using Eq.(5), Eq(7),

and above.
1) k<h
zs(1)
Z:lp—fp(i) ( cererererneenninieria ™)
2) k<h Ae=P(B)eeereervererseneninens )
3) k=h
1 H(R)(A4—P(%)]
-+ A
R (Ol ORD (oM

Ty PG
2= tpRy — PG

Consequently, we can calculate z,(z) in

n—oo under the given reflux ratio and z,(%)
using Eq.(6). On the other hand, for the
stripping section we can similarly derive
anarogous equations. Futher, the correcting
method of z,(4) is the same as Eq.(9) and
Eq.(10).

While, when non-distributed components
do not exist, we can next show that a pinch
point exists arround the feed plate and it’s
composition is identical with that of the
liquid part of raw material.

First, the composition of the liquid part of
raw material is given by the following
equation.

=g <1—q>a3€f>(% FOFMO

Substituting Eq. (78) into Underwood’s
determinant equation of, 4;, t.e. into
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PO (D) e,
PG 1 e
We can easily obtain the following equation.

B10CE) (3 e
5P 0 &

So, if we compare Eq.(80) with Eq.(75),
we immediately obtain the following result.
2,4 (0) =2,(%)

§7 Minimum reflux ratio of a non-ideal
multicomponent distillation!®

If we assume that for the enriching section
a pinch point exists below the E-th plate
from the top and for the stripping section
above the E*-th plate from the bottom, we
can obtain the same fundamental equation
as that of the ideal system, because relative
volatilities of each component and molar flow
rate are constant through the pinch zone.

For the enriching section solving the
equation, we can express the liquid compos-
ition of the m-th plate from the E-th plate
in the following form.

x5 (1) Z‘ Ci2y" 0, (%)

2, (1) = RSO AT 81
Where '

OO T S
?W_R ....................... ®)
RO :L%%)(E .................................... &

[« POYs@ [ PO 8@ 17
C=[x e oulb GoPy]

At this paper, we shall discuss the minim-
um reflux ratio of the case in which non-
distributed components don’t exist.

For an ideal system we have already shown
that a pinch point exists around the feed
plate and its composition is equal to that of
the liquid part of raw material.

At this stage now, we shall advance the
analysis of thié problem on the assumption
that the above mentioned fact holds good for
a non-ideal system.

As we have shown in Eq. (84), although
the definition of C, is different from that of
an ideal system, the functional properties of
G; in m—>oo is identical with that of an
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ideal system, and the determinant equation,
. e. Eq.(82), of minimum reflux ratio is also
identical with that of an ideal system.

Consequently, when non-distributed comp-
onents don’t exist, the minimum reflux ratio
of a non-ideal system can be calculated by
the same method as that of an ideal system
using P(7) calculated from the composition
of the liquid part of raw material.

And further, the behaviour of a pinch
point is also identical with that of an ideal

P@zr()
T A—P@

Ru+

S P(@) (2, (8)—S/Dxsr ()]
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system. But when non-distributed compon-
ents exist, for the reason of, P(i)=xP*(i),
at this stage now we cann’t make clear the
probrem of this case.

§8 Minimum reflux ratio of the

extractive distillation!®

Hitherto, when a system is not so non-
ideal, the following equations have been used
on the assumption that a pinch point exists
around the feed plate.!®

P(B) << Ay<TP (1) vesesvsrrvrrnrrnaesnsserssiiienennns &)

DX L—P@)

But, as the result of calculating its degree
of freedom, we discovered that the above
mentioned method is not correct and a pinch
point exists all over the enriching section
and around it.

P (xr (1) +Sxsr (2)])
2 —PQ) =

P(@i) Dz, (i) = B(D) {RD

—(S+a)
P(1) Dx,(1)

Using this facts, we deduce the determin-
ant equations of the minimum reflux ratio
by the same technique mentioned in §7.

Then, the following results are obtained.

Where
i = P(@)
1 (P —P(®))

I, —PQa))
B(1) =4
I (P(R)—P(1))

P(%) in the equations above is the value
calculated from the composition of the pinch
point. Now, we assume that the composition

of the pinch point is given by the following

equation.
R L QR C0) S o
$P(i) Eqii(i})z;fxﬂ @__ s+0)

Consequently, if we compare Eq.(87) with
Eq.(93), when g=1, it is clear that these
equations are identical. Namely, when ¢g=1,
the composition of the pinch point is given
by Eq.(91).

B PEH—-PM))]

QLB weeererrrrerniniinn e, &)

} M evrerevmnrrenanennn 89
.................................................. 9
.................................................. ()

And, we substiture Eq.(91) into the dete-
rminant equation of 2, in, n—>co, i.e. into

Tﬁ“i_gg()i) =0 2B ereereiineens )

The following equation can be obtained.

2<k<m ........................... @3

But, when ¢=1, we must calculate the
composition by trial and error using the
minimum reflux calculation mentioned in § 6.
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Nomenclature
Corhmon
D:moles of distillate per unit feed
L:molar flow rate of liquid
P(%):reciprocal relative volatility of 4-th
component
m:number of components
q:thermal factor of column feed
V:molar flow rate of vapor
W :moles of bottoms per unit feed
2(%):molar fraction of liquid of i-th component
(i) :molar fraction of vapor of ¢-th component
a(7):relative volatility of ¢-th component based
on the most non-volatile component
§1
C,:function defined by Eq.(4)
K:function defined by Eq.(5)
n:number of plates from the column top
S:moles remained in the still
v,(7) :function defined by Eq.(3)
o :correcting parameter defined by Eq.(10)
Ap:k-th root of Eq.(2)
§2
C,:function defined by Eq.(18)
E :moles of side cut product of enriching section
E*:moles of side cut product of stripping
section
minumber of plates from the side cut plate of
enriching section
%/ :number of paltes from the column top
R*:modified reflux ratio (=L*/(W+ E*))
s :number of plates from the side cut plate of
stripping section
8’ :number of plates from the column bottom
v,(%) : function defined by Eq.(17)
n£(1):function defined by Eq.(15)
9 :correcting parameter defined by Eq.(19),(20)
Ay tk-th root of Eq.(16)
R :modified reflux ratio defined by Eq.(14)
§3
C,:function defined by Eq.(47)
C,(1) :function defined by Eq.(35), or(45)
C,(n):function defined by Eq.(34), or(44)
@, (i) :function defined by Eq.(30)
9, (1) :function defined by Eq.(40)
Ho¢:operator defined by Eq.(38)
H(>:operator defined by Eq.(29)
qn :number of plates from the column top

Q@ ,(n):functionn defined by Eq.(36), or(46)
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Ry:reflux ratio(=Lx/D)
), (%) :function defined by Eq.(33)
v, (1) :function defined by Eq.(43)
X (%) :function defined by Eq.(25),(36)
re(n) :function defined by Eq.(48)
A, : k-th root of Eq.(32)
Az tk-th root of Eq.(42)
84
L*p:molar rate of 2-nd column feed
R.:modified reflux ratio defined by Eq.(55)
R;:modified reflux ratio (=L:/W)
R*;:modified reflux ratio (=Ls*/Wjx)

V*p:molar rate of vapor at the top of the 2-nd

@

column
W:moles of bottoms of the 1-st column per
unit feed
W *:moles of bottoms of the 2-nd column per
unit feed
xi:molar fraction of liquid
v
n(%):function defined by Eq.(56)
§5 )
R, :modified reflux ratio (=L»/D)
R, :modified reflux ratio (=Lax-/D)
R *:modified reflux ratio (=L*/W)

S :solvent feed moles per unit raw material

:activity coefficient of i-th component

9§ :correcting parameter defined by Eq.(72),(73)
§6, 87, §8
B(?):function defined by Eq.(89), (90)
C, :function defined by Eq.(84)
Gp:function defined by Eq.(74)
7 :number of plates from the column top
R :reflux ratio (=L/D)
Ry :minimum reflux ratio
S :solvent feed moles per unit raw material
() :function defined by Eq.(83)
yr(2):molar fraction of vapor on the F-th plate

Subscript

Common
D:distillate
F :raw material
f :feed plate
2,j,k:kind of component
W :bottoms
§1, §2 §3
F :side cut product of enriching section
E*:side cut product of stripping section
n :n-th plate from the column top
S :still pot
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SF:
sf:

§6,

lg

SF:
:pinch point

g1
0):

(m):
®):

82
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:top of the 2-nd column
L*:
:m-th plate from feed plate of the 1-st

a layer of the 2-nd column feed

column

:s-th plate from bottom of the 1-st column
*:8*-th plate from bottom of the 2-nd column
:number of plates of the 2-nd column
:bottoms of the 1-st column

:bottoms of the 2-nd column

:m-th plate from the column top of solvent

recovery section

:m/-th plate from the solvent feed plate of

enriching section

:s-th plate from the column bottom of

stripping section
solvent

solvent feed plate

87, §8

theavy key component
:light key component

:liquid part of raw material

solvent
Supperscript
initial value

m-th corrected value
value at D=t4D

/ :section from terminal to the side cut plate

*

83

*

v

(v):

§4

stripping section

:stripping section

:v-th perturbed term

approximate value determined by sumation

up from (-th to v-th perturbed term

* :2-nd column

LII:
§5

sign of layer

senriching section

:stripping section
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