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Abstract—The data-driven autonomous feedforward (FF)
control design technique known as frequency-domain modeling-
free iterative learning control (MFILC) has gained attention for
its ability to achieve fine motion control performance without
excessive labor. However, the existing frequency-domain MFILC
methods that rely on empirical transfer function estimation
are not suitable for point-to-point (PTP) motion due to the
leakage error that occurs in frequency response function (FRF)
estimation. To address this issue, this study proposes an improved
frequency-domain MFILC method that employs the differential
filtering-based empirical transfer function estimation for FRF
estimation. This enhancement enables the proposed method to
learn the FF compensation in both reciprocating and PTP motion.
Simulations were conducted to evaluate the effectiveness of the
proposed method in achieving fast and precise motion control of
a galvano scanner.

Index Terms—modeling-free iterative learning control,
frequency responses function, empirical transfer function
estimation with differential filtering, feedforward compensation.

I. INTRODUCTION

The implementation of feedforward (FF) compensation
via two-degree-of-freedom (2DoF) control has proven to
be a successful strategy for achieving fast and precise
motion control in various industrial mechatronic systems,
including semiconductor manufacturing machines, electronics
equipment machines, and machine tools [1], [2]. It is
widely recognized that model-based FF compensation is one
of the optimal approaches for achieving precise tracking
performance with respect to a target reference [3]–[5].
However, the identification of target system characteristics and
the construction of a precise parametric model for developing
high-performance FF compensation necessitate expert-level
proficiency and considerable effort [6], [7].

As one of the data-driven autonomous FF design
approaches, modeling-free iterative learning control (MFILC)
[5], [8] is promising to overcome the aforementioned
problem. Recently, significant research efforts have been
devoted to frequency-domain inversion-based MFILC [9]–
[12] which boasts several advantages such as stable inversion

This work was supported by The MAZAK Foundation and JSPS KAKENHI
(grant number 20K04545). The authors would like to thank Via Mechanics,
Ltd, for providing the experimental equipment.

implementation and elimination of the need for persistently
exciting signals. Notably, this approach has been extended
to nonlinear systems [13] and MIMO systems [14]. The
frequency-domain MFILC approach involves implementing
the inversion of system dynamics as a frequency response
function (FRF) derived from time-domain system input and
output data through the discrete Fourier transform (DFT)
during repetitive motion. The empirical transfer function
estimation (ETFE) method is the most commonly used
approach for FRF estimation due to its ease of use
and implementability in industrial machines [6]. However,
conventional frequency-domain MFILC methods are limited
to reciprocating motion to circumvent FRF estimation errors
resulting from DFT-induced leakage. Since repetitive motion
in industrial machines encompasses not only reciprocating
motion but also point-to-point (PTP) motion, extending the
learning conditions is critical.

This study proposes an improved frequency-domain MFILC
method that is applicable to both reciprocating and PTP
motion, as efficient automated FF design. The proposed
method builds upon the conventional MFILC approach [10],
with the exception of the ETFE method, which is replaced
with the differential filtering-based ETFE (ETFE-Diff) [15],
[16] to mitigate FRF estimation errors resulting from leakage.
The contributions of this study are summarized as follows.

1) Presents a novel algorithm for the proposed MFILC
approach, which employs ETFE-Diff-based FRF
estimation, and provides a theoretical explanation
of the principle of stable learning in PTP motion.
A comparison of this approach with conventional
ETFE-based MFILC [10] is also presented.

2) Simulation evaluations were conducted to demonstrate
the effectiveness of the proposed MFILC approach.
The results showed that the proposed approach can
successfully design FF compensation with monotonic
convergence even in PTP motion, resulting in fast and
precise position tracking performance that outperforms
the conventional method.

The simulation evaluations were performed using a galvano
scanner, which is an example of an industrial servo system
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Fig. 1. Representation of 2DoF control system.
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Fig. 2. Conceptual waveforms of reference r(t): (a) PTP motion; (b)
reciprocating motion.

used in printed circuit board laser processing machines. From
this point forward, the frequency-domain MFILC approach
will be referred to simply as MFILC.

II. PROBLEM FORMULATION

Consider a 2DoF control system shown in Fig. 1, where
P is the plant, C is the feedback (FB) controller, r is the
reference, u is the control input, y is the control output, uff

is the FF control input, e(= r − y) is the error, and v is the
disturbing noise, respectively. P and C are the linear time-
invariant discrete-time systems. The state-space expression of
P is described as follows:

xp(t+ 1) = Apxp(t) +Bpu(t)

y(t) = Cpxp(t) + v(t)
(1)

where xp(t) ∈ Rnp is the state vector at a discrete time t,
and Ap ∈ Rnp×np ,Bp ∈ Rnp , and Cp ∈ R1×np are the state
matrices.

The objective of this study is to automatically design the FF
control input uff such that y precisely follow to r by repeating
PTP motion. The detailed conditions in the FF design problem
are stated as follows:
C1: The reference r(t) is a fixed, smooth, and PTP waveform

as shown in Fig. 2(a).
C2: The N -point finite-length time-domain data r(t), uff(t),

u(t), y(t), and e(t), t = 0, 1, . . . , N − 1 can be used
for the FF design.

C3: The dynamics of plant P are unknown and modeling of
P with a parametric model is not performed.

C4: A PTP motion starts from and ends to settled states, that
is,

xp(t ≤ −1) = xp(0)

xp(t ≥ N) = xp(N − 1)
(2)

In this study, DFT of a time-domain data x(t), t =
0, 1, . . . , N − 1 is defined as

X(k) =

N−1∑
t=0

x(t)e−j 2πkt
N , k = 0, 1, . . . , N − 1 (3)
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Fig. 3. Block diagram of MFILC.

where the frequency index k corresponds to the frequency
Ωk = 2πk/(NTs) with the sampling time Ts.

III. FREQUENCY-DOMAIN MODELING-FREE ITERATIVE
LEARNING CONTROL (MFILC)-BASED FF DESIGN

The proposed MFILC is based on the conventional MFILC
[10], which is designed for reciprocating motion as shown in
Fig. 2(b). By applying the ETFE-Diff approach, the proposed
MFILC approach extends the conventional MFILC to enable
stable learning of the FF control input in PTP motion, as shown
in Fig. 2(a). In the following sections, we first present the
overall algorithm of the proposed MFILC-based FF design and
provide an explanation of the fundamental theory of MFILC.
Then, we describe the principle of ETFE-Diff-based FRF
estimation, with a focus on the leakage error that arises in PTP
motion. This is compared to the ETFE-based FRF estimation
method used in the conventional MFILC approach.

A. Autonomous FF Design Algorithm

Fig. 3 shows the block diagram of MFILC, where ⟨i⟩ is
the symbol expressing i-th learning iteration, L⟨i⟩(ωk) is the
learning filter, Q⟨i⟩(ωk) is the robustness filter for stabilizing
the learning process against the FRF estimation error or
disturbing noise, P̂ ⟨i⟩(ωk) is the plant FRF estimate, W ⟨i⟩(ωk)
is the reliability function expressing the reliability of P̂ ⟨i⟩(ωk),
E⟨i⟩(k) is the DFT of e⟨i⟩(t), and U

⟨i⟩
ff (k) is the DFT of

u
⟨i⟩
ff (t). Note that the ILC part is calculated in frequency-

domain via DFT and inverse discrete Fourier transform
(IDFT). Fig. 4 shows the flowchart of autonomous FF design
algorithm and processes in each step are summarized as
follows:

Step 1: Initialize the learning iteration counter i to i = 0.
Step 2: Perform a PTP motion using the control system

shown in Fig. 3 and obtain the N -point time-domain
data e⟨i⟩(t), u⟨i⟩

ff (t), u⟨i⟩(t), and y⟨i⟩(t).
Step 3: If i equals to the end learning iteration times

Nlrn, then end learning and obtain u
⟨Nlrn⟩
ff (t) as the

designed FF. Otherwise, go to Step 4.
Step 4: Estimate a plant FRF as P̂ ⟨i⟩(ωk) from the

input/output data u⟨i⟩(t) and y⟨i⟩(t) of the plant and
define the reliability function W ⟨i⟩(ωk).
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Fig. 4. Flowchart of MFILC-based FF design.
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Fig. 5. Conceptual diagram of reliability evaluation.

Step 5: Update the learning filter L⟨i⟩(ωk) and the
robustness filter Q⟨i⟩(ωk) using P̂ ⟨i⟩(ωk) and
W ⟨i⟩(ωk) obtained in Step 4, and generate the DFT
U

⟨i+1⟩
ff (k) of FF control input u⟨i+1⟩

ff (t) for the next
motion based on the learning law. Then, set i := i+1
and return to Step 2.

In Step 4, W ⟨i⟩(ωk) is defined considering the effect
of disturbing noise v⟨i⟩(t). Fig. 5 shows the conceptual
diagram of the amplitude spectrum of DFT Y

⟨i⟩
diff(k) of the

differential output y⟨i⟩diff(t) defined in Section III-C2. Yth is the
threshold of the disturbing noise effect. Typically, the DFT
R(k) of reference r(t) does not exhibit sufficient spectral
content at local frequencies and higher frequencies in PTP
and reciprocating motion, which leads to almost zero spectral
content in Y

⟨i⟩
diff(k) at those corresponding frequencies. At

around such frequencies, the disturbing noise effect tends to
be greater in Y

⟨i⟩
diff(k), and the reliability of P̂ ⟨i⟩(ωk) becomes

low. Therefore, as the reliability evaluation algorithm, define
W ⟨i⟩(ωk) by comparing |Y ⟨i⟩

diff(k)| and Yth as follows:

W ⟨i⟩(ωk) :=

{
1 : |Y ⟨i⟩

diff(k)| > Yth

W ⟨i−1⟩(ωk) : Otherwise
(4)

with W ⟨0⟩(ωk) = 0, ∀ωk.

B. MFILC

As is explained in Section III-A, the autonomous FF design
method learns the FF control input u⟨i⟩

ff (t), through repeated
execution of fixed PTP motion. Based on the general ILC
manner, the DFT of FF control input is updated by the
following learning law at every learning iteration [5], [8].

U
⟨i+1⟩
ff (k) := Q⟨i⟩(ωk){U ⟨i⟩

ff (k) + L⟨i⟩(ωk)E
⟨i⟩(k)} (5)

with u
⟨0⟩
ff (t) = 0, ∀t. According to the learning law of (5),

the frequency-domain error E⟨i+1⟩(k) at (i + 1)-th learning
iteration can be represented as

E⟨i+1⟩(k) =
1−Q⟨i⟩(ωk)

1 + C(ωk)P (ωk)
R(k)

+Q⟨i⟩(ωk)

{
1− L⟨i⟩(ωk)P (ωk)

1 + C(ωk)P (ωk)

}
E⟨i⟩(k)

(6)

where P (ωk) is the unknown plant FRF and C(ωk) is the
known FB controller FRF. Note that the effect of disturbing
noise is neglected to simplify the discussion. From (6),
when the following inequality condition is satisfied, the error
decreases monotonically with each learning iteration.

max

∣∣∣∣1− L⟨i⟩(ωk)P (ωk)

1 + C(ωk)P (ωk)

∣∣∣∣ < 1, ∀ωk (7)

Here, in order to obtain fast convergence of the learning,
it is desirable that L⟨i⟩(ωk) satisfies ideally the following
relationship [5], [10]–[12].

L⟨i⟩(ωk) =
1 + C(ωk)P (ωk)

P (ωk)
, ∀ωk (8)

Besides, Q⟨i⟩(ωk) should be unity in a wide frequency range
for fast convergence and fine tracking performance. Since
the true P (ωk) is unknown as stated in C3, it is difficult to
define L⟨i⟩(ωk) as (8). Therefore, in the conventional MFILC,
L⟨i⟩(ωk) and Q⟨i⟩(ωk) are constructed according to the plant
FRF estimate P̂ ⟨i⟩(ωk) and the reliability function W ⟨i⟩(ωk)
as follows [10]:

L⟨i⟩(ωk) :=


1 + C(ωk)P̂

⟨i⟩(ωk)

P̂ ⟨i⟩(ωk)
: W ⟨i⟩(ωk) = 1

L⟨i−1⟩(ωk) : W ⟨i⟩(ωk) = 0

Q⟨i⟩(ωk) :=

{
1 : W ⟨i⟩(ωk) = 1
Q⟨i−1⟩(ωk) : W ⟨i⟩(ωk) = 0

(9)

with L⟨−1⟩(ωk) = 0 and Q⟨−1⟩(ωk) = 0, ∀ωk. In order to
design the FF control input based on MFILC in a stable and
efficient manner, as shown in (7) and (9), it is crucial to have
an accurate estimation of the plant FRF in PTP motion.

C. FRF Estimation

1) ETFE: ETFE [6] is a simple FRF estimation method
commonly used in many existing MFILC methods [9]–[12].
However, it cannot provide an accurate plant FRF estimate
in PTP motion due to the non-periodic nature of input/output



data. From the state-space plant expression of (1), the DFT
Y ⟨i⟩(k) of output data y⟨i⟩(t) is formulated as follows:

Y ⟨i⟩(k) = P (ωk)U
⟨i⟩(k) + T ⟨i⟩(ωk) + V ⟨i⟩(ωk) (10)

with

P (ωk) = Cp(e
jωkTsI −Ap)

−1Bp

T ⟨i⟩(ωk) = Cp(e
jωkTsI −Ap)

−1ejωkTs{x⟨i⟩
p (0)− x⟨i⟩

p (N)}
(11)

where T ⟨i⟩(ωk) is the leakage error and V ⟨i⟩(k) is the DFT
of disturbing noise v⟨i⟩(t). In ETFE, the plant FRF estimate
P̂ETFE(ωk) is calculated as the ratio of Y ⟨i⟩(k) and U ⟨i⟩(k)
as

P̂
⟨i⟩
ETFE(ωk) :=

Y ⟨i⟩(k)

U ⟨i⟩(k)
= P (ωk)+

T ⟨i⟩(ωk)

U ⟨i⟩(k)
+
V ⟨i⟩(k)

U ⟨i⟩(k)
(12)

It is obvious from (12) that even if V ⟨i⟩(k) = 0, P̂ ⟨i⟩
ETFE(ωk)

includes estimation errors when T ⟨i⟩(ωk) ̸= 0, and the leakage
free condition under which Tdiff(Ωk) = 0 is derived as

x⟨i⟩
p (0) = x⟨i⟩

p (N) (13)

As is stated as C4 in Section II, since (13) does not hold clearly
in PTP motion (∵ x

⟨i⟩
p (0) ̸= x

⟨i⟩
p (N)), the FRF estimation

error is inevitable in the conventional MFILC.
2) ETFE with Differential Filtering (ETFE-Diff): To

overcome the aforementioned problem in ETFE-based FRF
estimation, ETFE-Diff [15] is newly introduced to the
proposed MFILC. In ETFE-Diff, first, the N -point time-
domain differential input/output data u

⟨i⟩
diff(t) and y

⟨i⟩
diff(t) with

t = 0, 1, . . . , N−1 are calculated from the original data u⟨i⟩(t)
and y⟨i⟩(t) as follows:

u
⟨i⟩
diff(t) = u⟨i⟩(t)− u⟨i⟩(t− 1)

y
⟨i⟩
diff(t) = y⟨i⟩(t)− y⟨i⟩(t− 1)

(14)

Next, calculate the DFTs U
⟨i⟩
diff(k) and Y

⟨i⟩
diff(k) of u⟨i⟩

diff(t) and
y
⟨i⟩
diff(t). Finally, by dividing Y

⟨i⟩
diff(k) by U

⟨i⟩
diff(k) as same as

ETFE, the plant FRF estimate P̂
⟨i⟩
ETFE−Diff(ωk) is defined by

P̂
⟨i⟩
ETFE−Diff(ωk) :=

Y
⟨i⟩
diff(k)

U
⟨i⟩
diff(k)

= P (ωk) +
T

⟨i⟩
diff(ωk)

U
⟨i⟩
diff(k)

+
(1− e−jωkTs)V ⟨i⟩(k)

U
⟨i⟩
diff(k)

(15)

with

T
⟨i⟩
diff(ωk) = Cp(e

jωkTsI −Ap)
−1ejωkTs[

{x⟨i⟩
p (0)− x⟨i⟩

p (N)} − {x⟨i⟩
p (−1)− x⟨i⟩

p (N − 1)}
] (16)

where T
⟨i⟩
diff(ωk) is the leakage error in ETFE-Diff and is

expressed as a term of xp(t) with t = −1, 0, N − 1, N which
is different from T ⟨i⟩(ωk) defined in (11) in ETFE. From (16),
the leakage free condition in ETFE-Diff is derived as

x⟨i⟩
p (0)− x⟨i⟩

p (N) = x⟨i⟩
p (−1)− x⟨i⟩

p (N − 1) (17)

Fig. 6. Appearance of laboratory galvano scanner.

As stated as C4 in Section II, (17) holds in PTP motion that
starts from and end to settled states and the leakage error
can be successfully removed from the plant FRF estimate.
In addition, (17) is also valid for periodic motion (x⟨i⟩

p (0) =

x
⟨i⟩
p (N)) including reciprocating motion as shown in Fig. 2(b).

For details of theoretical analyses of ETFE-Diff, see [15].
It should be noted that, from (12) and (15), the plant FRF

estimates in ETFE and ETFE-Diff are subject to estimation
errors due to disturbing noise V ⟨i⟩(k). Therefore, in the
MFILC, the effect of V ⟨i⟩(k) is removed based on the
reliability evaluation algorithm in (4) as explained in Sections
III-A and III-B.

IV. SIMULATION EVALUATION

A. Target System

Fig. 6 exhibits a laboratory galvano scanner for laser
processing of printed circuit boards [4]. A DC servomotor
is utilized to control the angle of a galvano mirror that
reflects a laser beam, with feeding back the motor angle
y [rad/s] detected by a rotary encoder (resolution of 1.498×
10−6 rad/pulse). The motor is driven through a current-
controlled servo amplifier and the current reference is input to
the amplifier as the control input u [V]. The control algorithm
is calculated with the sampling time of Ts = 20 µs in a DSP.

Black solid lines in Fig. 7 show the experimental plant
FRF from u to y measured by sine sweep. The galvano
scanner has two remarkable resonant modes at around 2.8 kHz
and 6.0 kHz owing to the torsion of motor shaft and
deflection of mirror. Therefore, taking into account the
resonant characteristics, the following parametric plant model
is established for the later simulation evaluation.

P (s) = Kae
−Las

(
k0
s2

+

2∑
h=1

kh
s2 + 2ζhωhs+ ω2

h

)
(18)

where Ka is the gain of servo amplifier, La is the equivalent
dead time for the amplifier and D/A conversion, k0 is the
rigid mode gain, ωh is the natural angular frequency of the
h-th resonance mode, ζh is the h-th resonance mode damping
coefficient, and kh is the h-th resonance mode gain. In the
later simulation, (18) is transformed to the discrete-time model
considering the zeroth-order hold (sampling time of Ts) as the
true plant and its output angular position is quantized with
resolution of 1.498 × 10−6 rad/pulse. The red dashed lines



Fig. 7. Bode plots of plant model.

(a) (b)

Fig. 8. Waveforms of position reference r(t): (a) PTP motion; (b)
reciprocating motion.

in Fig. 7 show the FRF P (ωk) that accurately reproduces the
experimental FRF.

B. Settings of Simulation and MFILC

The MFILC-based automated FF design shown in Fig. 3 is
constructed on MATLAB/Simulink and simulation evaluations
are performed. In this study, two-type angular position
references r(t), namely PTP motion and reciprocating motion
as depicted by blue dashed lines in Fig. 8, were employed to
validate the efficacy of the proposed ETFE-Diff-based MFILC.
r(t) was designed as the S-shape trajectory with the position
stroke of 0.2 rad, the maximum velocity of ±15 rad/s, and
the maximum acceleration of ±10000 rad/s2, considering a
typical laser processing motion. Note that, for estimating the
plant FRF with a sufficient frequency resolution, zero-padding
was applied to the end of M -point time-domain data obtained
by each motion to make the total data length N = 16384. In
this study, set M = 2500 (2500Ts = 0.05 s) in PTP motion
and M = 5000 (5000Ts = 0.10 s) in reciprocating motion,
respectively. For simplicity, a PID controller was selected
as the FB controller C and its proportional, integral, and
derivative gains were manually designed beforehand to ensure
a large stability margin (i.e., a low control bandwidth) under
the assumption that the true plant FRF is unknown as stated in
C3. The position responses before applying the MFILC-based
FF design are depicted by black solid lines in Fig. 8. The

position tracking performance is severely compromised in the
absence of FF compensation.

The setting parameters in MFILC are Yth for determining
the reliability of plant FRF estimate and the number of learning
iteration times Nlrn. Yth was set to Yth = 0.001, considering
the equivalent noise due to the quantization of detected angular
position. If the level of the disturbing noise is measured or
known beforehand, determining Yth can be straightforward
[10]. On the other hand, Nlrn was set to Nlrn = 10 by trial-
and-error to achieve sufficient convergence during learning.

C. Simulation Results

1) PTP Motion: The simulation results of the conventional
and proposed methods in PTP motion are respectively shown
in Fig. 9 and Fig. 10. For visibility of the figures, time-domain
results are depicted only for i = 0, 1, and 10, while frequency-
domain results are displayed only for i = 0, 1, and 9. In the
case of the conventional method, as explained theoretically in
Section III-C1, the ETFE-based FRF estimation causes leakage
error in PTP motion, and thus the plant FRF estimate P̂ ⟨i⟩(ωk)
includes significant errors compared to the true plant FRF
P (ωk). This is shown in Fig. 9(c) and Fig. 9(d). As a result,
the FF control input u

⟨i⟩
ff (t) cannot be learned appropriately

as shown in Fig. 9(b), and the position error e⟨i⟩(t) diverges
by repeating learning as shown in Fig. 9(a) and Fig. 9(e).
On contrast, in the case of the proposed method, the plant
FRF estimate accuracy gradually improves as the learning
iteration increases as shown in Fig. 10(c) and Fig. 10(d), and
the position error is successfully reduced by the learned u

⟨i⟩
ff (t)

as shown in Fig. 10(a), Fig. 10(b), and Fig. 10(e). The FRF
estimation errors in the higher frequencies are due to the fact
that the position reference r(t) shown in Fig. 8 does not have
sufficient frequency components in those frequencies.

In order to confirm the principle of the proposed MFILC,
the learning filter L⟨i⟩(ωk) when i = 0, 1, 3, and 9 are shown
in Fig. 11. When i = 0 shown in Fig. 11(a), since the
position response was very slow due to u

⟨0⟩
ff (t) = 0, the

reliability of P̂ ⟨0⟩(ωk) was limited under 430 Hz, resulting
that L⟨0⟩(ωk) matched the ideal L(ωk) defined as (8) under
430 Hz. When i ≥ 1, by repetitively learning the FF control
input from L⟨i−1⟩(ωk) (and the corresponding Q⟨i−1⟩(ωk)), a
faster position response could be obtained and the reliability
of P̂ ⟨i⟩(ωk) extended to a higher frequency range. Finally,
L⟨9⟩(ωk) well reproduced the ideal L(ωk) by 555 Hz, hence
the fine control performance shown in Fig. 10 could be
achieved.

2) Reciprocating Motion: The simulation results of the
proposed method in reciprocating motion are presented in
Fig. 12. These results demonstrate that the proposed method
achieves accurate FF compensation not only in PTP motion but
also in reciprocating motion. Therefore, the proposed ETFE-
Diff-based MFILC can extend the range of learnable operating
conditions beyond what is possible with conventional MFILC
methods [9]–[12] (i.e., the leakage free condition is extended
from (13) to (17)), which has potential advantages for
industrial applications. It should be noted that although the
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Fig. 9. Simulation results of conventional method in PTP motion: (a) position error e⟨i⟩(t); (b) FF control input u⟨i⟩
ff (t); (c) plant FRF estimate P̂ ⟨i⟩(ωk);

(d) FRF estimate error |P (ωk)− P̂ ⟨i⟩(ωk)|/|P (ωk)|; (e) sum of absolute error |e⟨i⟩(t)|.

(a) (b)

(c) (d) (e)

Fig. 10. Simulation results of proposed method in PTP motion: (a) position error e⟨i⟩(t); (b) FF control input u⟨i⟩
ff (t); (c) plant FRF estimate P̂ ⟨i⟩(ωk);

(d) FRF estimate error |P (ωk)− P̂ ⟨i⟩(ωk)|/|P (ωk)|; (e) Sum of absolute error |e⟨i⟩(t)|.

(a) i = 0 (b) i = 1 (c) i = 3 (d) i = 9

Fig. 11. Learning filter L⟨i⟩(ωk) of proposed method when i = 0, 1, 3, 9 in PTP motion.



(a) (b)

(c) (d) (e)

Fig. 12. Simulation results of proposed method in reciprocating motion: (a) position error e⟨i⟩(t); (b) FF control input u⟨i⟩
ff (t); (c) plant FRF estimate

P̂ ⟨i⟩(ωk); (d) FRF estimate error |P (ωk)− P̂ ⟨i⟩(ωk)|/|P (ωk)|; (e) sum of absolute error |e⟨i⟩(t)|.

results of the conventional method in reciprocating motion
are not included in this paper due to space constraints, the
conventional method also achieved satisfactory performance
in this type of motion.

V. CONCLUSIONS

We have presented an improved frequency-domain MFILC
method that can automatically design FF compensation
for achieving fine motion control performance in both
reciprocating and PTP motion. The proposed method employs
ETFE-Diff-based FRF estimation, which allows for expanded
learnable operating conditions compared to the conventional
MFILC. The theoretical principles and algorithm of the
proposed MFILC were described in detail, and simulations
were conducted to demonstrate its effectiveness in achieving
fast and precise motion control of the galvano scanner. The
proposed method can have practical advantages in industrial
applications, such as directly learning to design FF for PTP
motion.
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