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Chapter 1

Introduction

1.1 Tensor completion

Several real-world data are multidimensional. For example, a recommender system is
based on customer purchase history data of customer x merchandise x time [1], image
processing is based on three-dimensional data of height x width x channel [2], [3], video
processing is based on four-dimensional data of frame x height x width x channel [4],
[5], knowledge graph is facts in the triple form of subject entities X relation X object
entities [6], and EEG analysis is based on three-dimensional data of sensors x time x
frequency [7], [8], [9]. Tensors are mathematical models that represent such data. Tensor
is defined as a multidimensional array and is a generalization of a vector and matrix
[10]. The data modeled as tensor is often corrupted by measurement errors and missing
observations [11], [12], [3], [13], [14], [15]. Also, in the case of the recommender system,
unrated items are considered missing values (not every customer can evaluate every item).
Tensor completion is the task of filling-in the missing values of the tensor data using the

Prior : smoothness Prior : similarity

Figure 1.1 An example of the signal completion by prior. In this example, a completion
based on similarity prior is the natural.
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Figure 1.2 An example of collaborative filltering by low-rank prior. In this example, the
assumption is made that the matrix is rank 2, and the two components are extracted.
This information is used to predict (completion) the unrated items (missing) for new
customers.



values of the reference elements [2], [16], [17], [18].

Tensor completion is an ill-posed problem that does not satisfy solution uniqueness [19]
because the number of elements of the tensor to be estimated (number of parameters) is
greater than the number of observations (number of equations). Thus, we consider the
prior structure in the target tensor to narrow down the solution set. The completion value
should be appropriate as per the properties of the analyzed data, and it is important to
employ prior in accordance with these properties flexibly. Prior includes smoothness [20],
[21], [16], nonnegativity [22], [23], [24], sparsity [25], low-rank (3], [2], etc.

We use several examples of tensor completion to explain the prior. First, we consider
signal completion as an example. Figure 1.1 shows the completion of the signal (first-
order tensor) with the center portion missing. As seen in Figure 1.1, there are countless
candidates for the solution to complete the missing parts, and the solution varies greatly
depending on the prior. In this example, since there is a periodic pattern in the observed
area, it is natural to use similarity prior.

Recommender system, especially in collaborate filtering, often uses low-rank prior [26],
[27]. The task of the collaborate filtering is to predict (completion) ratings for unrated
items (missing values) [28], [29]. In collaborative filtering, customer reviews of the items
are represented by a matrix of customers x items. Assuming that the matrix is low-rank,
the idea is that items that have already been highly rated will also be highly rated by
those who have yet to rate them. Also, the number of ranks corresponds to the number
of latent shared features in the items. Figure 1.2 shows a collaborative filtering example.
In the example in Figure 1.2, by assuming that the rank of a matrix is 2, the components
of the two types of items are captured, and forecasts are executed for each type.

In the case of image completion, smoothness prior and low-rank prior are important
factors. In image data, adjacent pixels tend to be of similar colors; smoothness often
appears. Also, images tend to show the same pattern for straight lines (see Figure 1.3),
which induces low-rankness of the image data. Figure 1.4 shows image completion per-
formed using low-rank prior and smoothness prior. Both priors can achieve relatively high
precision completion, but there are differences in the completion results. For example,
smooth prior results are slightly blurred, and low-rank prior shows vertical and horizontal
streaks.

Here are two things we note about the prior-based image completion. First, note that
transforming the space changes the natural prior. For example, smoothness in the original
space corresponds to sparsity in the frequency space. This is because smoothness means
pixel values are concentrated in the low-frequency components in the frequency space.
Figure 1.5 shows the image’s intensity and Discrete Cosine Transform (DCT) coefficients.
As can be seen in the figure, there is no sparsity in the image itself, but sparsity appears
in the frequency space.

Also, note that smoothness and low-rankness are not valid prior at any time. Image
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Figure 1.3 The figure shows the focus on the similarity of the lines in the image (low-rank
prior). The graph on the right shows a cross-section of the image (red and blue lines),

each of which shows many similar parts.

(a) True (b) Missing (¢) Low-rankness (d) Total Variation
Figure 1.4 Example of RGB image completion by low-rank prior and smoothness prior.
Total Variation is used for smooth prior. The experimental result is based on the existing
method Linear Total Variation approximate regularized Nuclear Norm (LTVNN) [30].

smoothness tends to remove high-frequency components such as edges. On the other
hand, image low-rank information has drawbacks such as difficulty in capturing diagonal
features. In fact, it is known that rotational transformations can significantly alter the
rank of an image [31]. Thus, prior should be employed flexibly according to the features
of the image.

Our thesis focuses on low-rank prior in tensor completion. Unlike other priors, low-rank
priors are tensor-specific features that appear only when data is represented as a tensor.
In addition, the method using low-rankness in tensor completion is mainstream. Section
1.5 discusses Low-Rank Tensor Completion (LRTC).
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Figure 1.5 The figure shows the histogram of image intensities and the histogram of DCT
coefficients when the blocked-wise DCT transform is applied. Although the image itself
is not sparse, it is sparse in frequency space.

1.2 Preliminaries for handling tensors

Tensor is defined as multidimensional array, following the [10]. In mathematical no-
tation, variables with subscripts such as x;; or z;;; are described, and the number of
subscripts is referred to as the order. That is, a zero-order tensor is a scalar, a first-order
tensor is a vector, a second-order tensor is a matrix. Figures 1.6, 1.7, 1.8 show examples
of tensors. The axes of a tensor are defined as mode, and the operation that fixes a specific
mode (mode n) and unfolds the tensor into a matrix is defined as mode n-unfold (See
figure 1.9).

(10 4 9) 31 2 4 foly D
5 10 21 2w lay b
4:0 3:2 5:7

Figure 1.6 vector (first order Figure 1.7 matrix (second Figure 1.8 tensor (third or
tensor) order tensor) more order)

Vectors are represented as lowercase boldface a € RY, matrices as uppercase A € RI*/
and higher-order tensors are written by calligraphic letters A € R <IN = A single entry
of a tensor is represented as A;, ;. (Only Chapter 3 expresses A;, ;\ as A(i1,...,in).).
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Figure 1.9 the example of mode 1-unfold of third order tensor A € RIt>*2x1s

An N — 1th order tensor that fixes only one mode of the tensor is denoted as A;, =

A

R PR

The inner product of a tensor is defined as (A, B), where

n In
(A, B) = Z e Z Ay i By i (1.1)
=1  iy=1
The Frobenius norm is defined as || Al|r = /(A, A).

The Hadamard product of the matrices A € R/ and B € R’/ is A® B € RI*/,
and the Kronecker product of the matrices A € R’ and B € RE*l is A B € RIKX/L,
and the Khatri-Rao product of the matrices A € R™*X and B € R7*¥ is denoted by
A ® B € RY*E respectively. In particular, the Hadamard product of a set of matrices
is denoted by

@ AM = AN @ AN-D g ... AN (1.2)

and the Khatri-Rao product of a set of matrices in reverse order is denoted by

@A(”) =AM o AN-D o ... AW, (1.3)

A mode-n unfold (matricization) of a tensor X is denoted as X,y € R Meznr, A
mode-n multiplication between a tensor X € R** /v and a matrix/vector A € Rf*/»

is denoted by X x, A € RV >In-1xBxnpixxIN “where the entries are given by

In
Yityin_1,7ing1,0in = E Yit,in—1,inint1,in Aryin s (1'4)

in=1

and we have Y,y = AX(,). We consider N matrices U™ € R*f» (n =1,...,N) and
an N-th order tensor X € RFfv* B~ The all-mode product is denoted as

Xx{U} =X x,UY xy... xy UM, (1.5)

A outer product of N vectors aV) € R1, ... a™) € R™ is denoted aV oaPo--.0a™ ¢

RIxIN “wwhere the entries are given by



1.3 Tensor decompositions and tensor ranks

The tensor increases exponentially in the number of its elements with the number of
order. In addition, since many data contain noise, it is often required to extract essential
features hidden in high-dimensional data. From the analogy of the matrix factorization
[32], [33], which is a low-rank approximation method for matrices, we consider decom-
posing tensors into tensors with small degrees of freedom (latent factors). This is defined
as a tensor decomposition [10]. There are two standard representative models of tensor
decomposition: CANDECOMP /PARAFAC (CP) decomposition' and Tucker decompo-
sition [10]. CP decomposition is a method of approximating an N-th order tensor of the
size I1 X - -+ x Iy by a sum of R rank-1 tensors (the outer product of N vectors a;(?»)) (34],
[35], [36]. Taking a N-th order tensor X € RI">*I~N ag an example, CP decomposition
of the tensor is defined as

R
X ::Za:(pmuoa(m. (1.6)

or
r=1

The entries in X can be computed individually as

R
Xirig,in = a’a? .- al) (1.7)

N 11,7 19,T IN LT
r=1

Figure 1.10 shows the diagram for CP decomposition of the third-order tensor. A matrix of
the size I,, X R with the column vector a,;(fl) is defined as a factor matrix and corresponds
to a latent factor in CP decomposition. Latent factor matrix A™ (n = 1,---,N) is
defined as

AW = az(ﬁ),...,a,:(”;),...,a:(f;% e RIn*E, (1.8)
Also, considering that tensors A™ are normalized to length 1 and their weights are
introduced by A = [A1, Ag, ..., Ag] € R, the CP decomposition is also defined as

R
x =) xnallo---oal) (1.9)

where [|a{?| = 1.
On the other hand, the Tucker decomposition is represented by factor matrices and a
core tensor that describes the relationships between the factors [37], [13]. Given a tensor

L CP decomposition is also called ”canonical polyadic” in honor of Hitchcock [34], who is credited
with first thinking of the concept.



X € RivxIv and U™ € RIn*fin (n, = 1,2,..., N), Tucker decompostion of the tensor
is

X =g x{U}, (1.10)

where G € RF1<R2xxEn g core tensor. The entries in X' can be computed individually

as
R1 Ra2 Ry
_E'E' E 1 @ (N)
XilinruyiN - U g7‘177'2 77777 7'Na’i1,7"1ai2,’r‘2 U aiN,TN' (]‘1]‘>
ri=1ro=1 ry=1

Figure 1.11 shows the diagram for Tucker decomposition of the third-order tensor.

Since the Tucker decomposition is equal to CP decomposition when its core tensor
is super-diagonal (Figure 1.12), we can consider that CP decomposition is a more con-
strained model than Tucker decomposition [38]. Here, the super-diagonal (In case of
G ¢ RExIexR ) ¢ RInXE (p =12 ... N) ) is defined as

)\T ’ilz’igz"':iN:T
Girigin = ' . (1.12)
0 otherwise

I Al

I
I I I Iy I I
3 R az.‘. IQ.
P L = I I o

= Rl 7 k) [A® 0
rR I

12 Il A(l

Figure 1.12 Tucker decomposition when the Figure 1.13 Singular value decomposition
core tensor is super-diagonal



CP decomposition is a natural extension of Singular Value Decomposition (SVD) [39],
and we can interpret the core tensor as representing something like singular values in CP
decomposition. Figure 1.13 shows the SVD.

The concept of rank exists in tensors as well as in matrices. In general, tensor rank refers
to CP rank. CP rank is the minimum value of R in a decomposition that reconstructs
the original tensor without error (referred to as exact decomposition) [34], [40]. As an
example of CP rank, we present the third-order tensor X € R1*2%3  Quppose that the
CP decomposition of X is expressed as

R
x=> xaloal?oal (1.13)
r=1
then the minimum possible R is the CP rank. Here, we describe some peculiar properties
of CP rank. First, CP rank is that there is no straightforward algorithm for determining
the rank of a specific given tensor. In fact, it is NP-hard to find the CP rank of a given
tensor [41]. Second, the uniqueness of the tensor decomposition is conditioned by CP
rank R. When the CP decomposition of a tensor X is expressed in Equation (1.6), the
tensor X satisfies uniqueness if the following conditions are satisfied.

N
> kaw > 2R+ (N - 1), (1.14)

n=1

where k4 is named k-rank and is defined as the maximum value k£ such that any &
columns of A™ are linearly independent [40]. Finally, it is possible that the best rank-k
approximation may not even exist. [42], [43] explain it with the following example. We
consider the rank-3 tensor

x=a¥oa?0a? +a¥0a?o0a® +al 0aoa®, (1.15)

where AM € R1*2° A@) ¢ R2%2 and A®) € R»*2 and each has linearly independent
columns. This tensor can be approximated arbitrarily closely by a rank-2 tensor

1 1 1
Y=o (as? " _a.@;) o (a@g " _a@;) o (a@g " _a@;) —aa®oa®oa®. (L16)
b a A * a *y *y a *y A A *y
In fact, from Equation

1
X =Y = ||a(12) oa(; oa(l) —|—a(2) oa(Ql) oa(g) —|—a(1) oa(z) oa(3) + a(IZ) o a' 2 o a' ' ||
(1.17)

the distance between two tensors can be described as X and Y can be arbitrarily close
at a — oo. This example shows that the rank-2 tensor converges to a rank other than
rank 2, indicating the difficulty of the best rank-k approximation.
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On the other hand, there is also the concept of n-rank for tensor rank [44], [45]. N-
rank is also known as Tucker rank. Tucker rank of a tensor X € RI*XIN ig the ranks
of matrices X(,). That is, if the rank of the n-unfold is R,, N matrices are generated
for n-unfold, so Tucker rank are obtained in tuple (Ry,..., Ry). We can easily find an
exact Tucker decomposition of rank (Ry,...,Ry) [10]. In general, the rank of a tensor
refers to CP rank, but Tucker rank is also often considered when considering low-rank
approximations of the tensor. Here, we define fran(X) as the function that returns the
rank of a tensor X'. However, whether fran(X) refers to the CP rank or the Tucker rank
depends on the problem (we will specify the details in each case).

1.4 (eneral observation model for tensor completion

The tensor completion discussed in Section 1.1 is again defined mathematically. Equa-
tion (1.18) shows the commonly used general observation model of the tensor data for
tensor completion.

Y=0® (X +§&). (1.18)

X represents the true tensor, O is the mask, € is the noise, and Y is the observed tensor.
The mask O is defined as

(1.19)

11,02, IN

) . {1 Vivsio,.in 18 Observed.

0 otherwise

The unknown variable in Equation (1.18) are X and €. X has a choice of prior structure,
and € has a choice such as Gaussian, Laplacian, Poisson, and so on. We consider the
inverse problem of estimating an unknown true tensor X from an observed tensor Y.
Here, we assume Gaussian in the noise tensor €. Therefore, an important discussion in
our study is about the mathematical model that represents the prior of the true tensor
X. As described in Section 1.1, we focus on low-rank prior.

1.5 Low-rank tensor completion (LRTC)

Low-rank tensor completion (LRTC) is the most major tensor completion technique.
LRTC has two approaches: rank minimization and tensor decomposition. Rank mini-
mization can be defined as

H‘l)i’]fl frank(x)
st 0@ (Y =X)|r <, (1.20)
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where ¢ is a value dependent on noise, and the tensor decomposition can be defined as

min 0@ (Y — f(AD, AP . A3, (1.21)
.A<1),A(2)7...,A(N)
where f(AY, AP . AW is an arbitrary tensor decomposition.

First, we will discuss the rank minimization. Therefore, we consider rank minimization
of the matrix X € R™ " before the tensor. Since rank minimization is NP-hard, we use
the fact that nuclear norm minimization is a convex relaxation of the rank minimization
problem [46]. The nuclear norm of the matrix X is defined

X = > oi(X), (1.22)

where 0;(X) is the i-th singular value of the matrix X. Subsequently, [47] introduced
nuclear norm minimization was introduced for low-rank matrix completion. This work
also theoretically guaranteed that solving the completion problem

min [ X].
st. O®Y =0®X, (1.23)

for a matrix X of true rank r is fully completable when the number of observations m
satisfies

m > Cn'?rlogn, (1.24)

where C' is a positive constant. Note that Equation (1.23), unlike Equation (1.20), de-
scribes the exact completion. A new method of LRTC based on nuclear norm minimization
is proposed by [48]. In this study, the LRTC is defined as

1 -
min S| X - X%
XX 2

st. OeY=0aX

N

1

2 Il < (1.25)
=1

which describes low-rankness by considering the nuclear norm of all modes of the tensor.
This method is for applications to tensor completion and claims the superiority of methods
that use the global information of low-rankness over methods that use neighborhood
information, such as Markov Random Field [49] and anisotropic diffusion [50]. As a
parallel study, [3] achieves LRTC in a form similar to Equation (1.25). However, [3]
uses the extended lagrangian method and Alternating Direction Method of Multipliers
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(ADMM) [51] to provide theoretical guarantees regarding convergence. Also, this work
defines the observation model of the tensor as an inverse problem

y=A(X) +e (1.26)

where A is a linear map A : RN 5 RP with p < [[2_, I,, and given y € R?, find the
tensor X that minimizes a function of the n-rank of the tensor. Our observation model
Equation (1.18) of the tensor is based on Equation (1.26), but Equation (1.18) changes A
in Equation (1.26) to the mask O. [52] imposes a smoothness constraint on the nuclear
norm minimization for LRTC. The optimization Equation is defined as

N
. 1
min afTV<X)+ﬂN;|’X(i)H*
S.t. Umin S X S Umax
10O® (Y —X)|r <, (1.27)

where fry is Total Variation (TV) regularization operator. The introduction of TV is
based on the assumption that much real-world data, such as natural images/videos, spec-
tral signals, and biomedical data, are smooth. There are several studies of TV+LR tensor
completion [20], [53]. For example, [53] has set up weighted nuclear norm minimization
problems. Furthermore, various other nuclear norm minimization methods exist, includ-
ing the introduction of latent variables [54], setting convex relaxation stricter than the
nuclear norm [55], and Robust-PCA based [56], [57].

Another LRTC is a tensor decomposition approach, such as CP decomposition or Tucker
decomposition [13], [35], [58]. CP Weighted OPTimization (CP-WOPT) [11] proposed a
weighted CP decomposition for tensor completion as

R
- N aWoa® o0 a2
i lo® ;a 0al o - 0al))|. (1.28)

Here, the weight O represents the mask. [59] defines

min [O® (Y — & x; AW x3 AD x4 xy AN)|2, (1.29)
A A@) . AWD)
as the Tucker decomposition model for CP-WOPT. Since it is difficult for both methods
to solve optimization problems (1.28) and (1.29) directly, the majorization-minimization
(MM) algorithm [60], [61] is used to solve them. Many of these approaches are nonconvex
optimization and heuristic methods with no theoretical guarantees. On the other hand,
they are superior to nuclear norm minimization approaches in that they have better
completion performance and are low computational cost (avoiding the computation of
SVD). Tensor completion by parallel Matrix factorization (TMac) proposed matricization
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(n-unfold) of the tensor [62] and then consider a low-rank matrix factorization model
defined as

min
x,A0) .. AN) B . B(N)

N
> X — AWBY|L
=1

s.t. O®Y=06X
A ¢ RIvEn B0 ¢ REnTin I, (1.30)

TMac achieved a highly accurate completion and a highly efficient computation compared
to the nuclear norm minimization approach. This research also found that an approach
that greedily increases the rank R, stepwise from 1 achieves particularly accurate comple-
tion. Furthermore, [16] introduced smoothness into each factor of the CP decomposition
as Equation

R o N
i g
X - Z|; I ()| () 4 () ||
. ”F+; 2 ;p L

s.t. O®YyYy=06X
1-0)@Z2=1-0)®X

R
2= gulo---oul, (131)
r=1

where L™ is difference transformation matrix, which the second term in the equation cor-
responds to the smooth constraint. Similar to the method in [62], this method is a stepwise
increase in rank, and although computationally expensive, it has very high completion
performance. Tensor decomposition approaches are often incorporated simultaneously
with other prior structures. For example, non-negative tensor factorization (NTF) [63],
[64] has been applied to various fields, such as sparse coding of images [65], traffic analy-
sis [66], and EEG analysis [7]. Other prior structures include studies incorporating graph
structures and sparse regularization to achieve a super-resolution in multispectral images
[67]. Also, some methods apply tensor decomposition to stochastic modeling, and one of
our proposed methods is a kind of stochastic tensor decomposition [68], [69].

The two approaches of LRTC are summarized here in Table 1.1. The approach with
rank minimization is a convex optimization, and there are several theoretical guarantees
regarding completion accuracy. Furthermore, the ranks can be roughly estimated from
the nuclear norm values. However, it lacks scalability, and many methods have poorer
completion accuracy than the tensor decomposition approach. On the other hand, the
tensor decomposition approach is scalable and flexible. In addition, the completion accu-
racy tends to be higher than that of the rank minimization approach. However, it requires
hyperparameter adjustment for rank setting.
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Table 1.1 This table summarizes the advantages and disadvantages of the two approaches
to LRTC. Note that they are only trends.

Rank minimization | Tensor decomposition
Theoretical guarantees on completion v
Automatic rank determination v
Scalability v
Performance of the completion v

In our study, the tensor decomposition model is employed as the LRTC. The reasons
are described as follows:

e The tensor decomposition represents the structure of the data appropriate to the
problem and suitable for data analysis [59], [62], [16]. Hence, high completion
accuracy is often achieved. Note that this advantage is shared in matrix completion
by using matrix factorization methods [70], [71].

e In the case of rank minimization (nuclear norm minimization), since the computa-
tion of the SVD is unavoidable, the model is often not scalable, and the computa-
tional cost of the SVD is high. In the case of tensor decomposition, there are other
alternatives, such as computing with the gradient method [59].

On the other hand, the tensor decomposition approach has the problem that rank deter-
mination is difficult. Rank is basically determined heuristically by the algorithm, and in
particular, overly large estimates of ranks lead to increased computation time and worse
completion performance due to noise tolerance. One of the proposed methods is a frame-
work that can automatically and more accurately estimate rank while simultaneously

achieving efficient and accurate tensor completion.

1.6 Tensor completion by convolution

We have focused on tensor decomposition as a method for LRTC. Here, we explain
tensor decomposition by convolution, a new tensor completion framework in recent years.
In particular, this thesis focuses on the t-SVD model [72]. t-SVD model is a method
for third-order tensors and was initially conceived as a tensor decomposition method
for a video whose time direction corresponds to the third mode [73]. Therefore, a new
operation, t-product, is defined in t-SVD, focusing on the third mode. T-product of
tensors A € R™*"™¥" and B € R™"2*" is defined as

A x3 B = permute(fold(beric(A) B(y), [1,3,2]) € RM*"2xms, (1.32)
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where bcire(+) of A is

A:,:,l A:,:,n3 A:,:,ng—l e A:,:,Z
A:,:,Q A:,:,l A:,:,n3 o A:,:,3

beric(A) = : . . y : € RMm3xms, (1.33)
A:,:,n3 A:’:’n3,1 . A:,:,Q A:,:,l

fold(-) is the inverse of unfold and is an operation that folds the tensor to a higher order,
and permute(+) is an operation to reorder mode into the permutation of [-]. This operation
is equivalent to performing a convolution operation only in the third mode and a matrix
product operation in the other modes. Based on this operation, t-SVD is formulated as

X :u*3D*3 v, (134)

where U and V are orthogonal®. Figure 1.14 shows the t-SVD concept. The tensor tubal
rank of X is defined to be the number of non-zero singular tubes of D. The minimization
of the tubal rank is a convex relaxation of the minimization of the tensor nuclear norm.
Tensor nuclear norm is defined as

X:,:,l

X2

HX“TNN — 5 . 6 Rn1n3><n2n3, (135)

A~

X ing

where X:ﬁ,l, XA:y:’g, - 7X:,:,n3 are the Fourier transform of X. ., X..o,..., X, . ,, along the
third mode. Based on this idea, [74] reported on video completion with tensor completion
using nuclear norm minimization, defined as

min ”XHTNN
X

st. O®X=0a). (1.36)

n2

pr 777/

Figure 1.14 The t-SVD of an n; x ny X ng tensor

2 See [72] for the definition of orthogonal in t-SVD.
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Since this framework is based on matrix completion by nuclear norm minimization (see
Equation 1.23), [72] shows theoretical guarantees regarding completion performance. There
are also various extension techniques, such as studies that reduce the cost of nuclear norm
minimization [75], [76], studies that introduce higher compression performance through
framelet representation [77], and studies that improve completion performance by intro-
ducing arbitrary linear transformations [78]. However, t-SVD approaches are only for
third-order tensor methods, and their completion capability is inferior to that of the
common tensor decomposition model.

One of the proposed methods is also a convolutional tensor decomposition framework.
However, the proposed method is much more accurate than the t-SVD model. This
method has no restriction on the number of tensor orders and performs convolution in
all modes. Also, our thesis shows that the proposed method is strongly related to LRTC
on delay-embedded space [79], which has recently achieved highly accurate completion.
In addition, by imposing smooth constraints on the tensor factors, the proposed method

achieves more accurate completion.

1.7 Proposed method

Here, we propose two methods for accurate and efficient tensor completion: Automatic
Rank Determination with Multiplicative Gamma Process (MGP-ARD) and Smooth Con-
volution Tensor Factorization (SCTF). Figure 1.15 shows an overview of the two proposed
methods.

MGP-ARD is kind of LRTC. This method aims to achieve tensor completion and rank
determination simultaneously. This can be achieved using Bayesian CP decomposition
with Multiplicative Gamma Process (MGP) as the prior distribution. MGP is a distribu-
tion that decays the components. Using MGP, the proposed method avoids duplication
of components and enables highly accurate rank estimation in Bayesian tensor modeling.
In addition, MGP helps to reduce noise sensitivity and estimation time, which achieves
highly accurate and highly efficient completion. Numerical experiments using artificial
data and image data demonstrate the effectiveness of this method. Details of the method
are described in Chapter 2.

On the other hand, SCTF is a kind of completion method by convolutional tensor
decomposition. The concept of SCTF is based on a delay-embedded space. Recently,
Multiway Delay-embedding Transform (MDT), which considers a low-dimensional space
in a delay-embedded space with high expressive capability, has attracted attention as
a tensor completion method. Although MDT has a high complementary performance,
its computational cost is considerably high. SCTF is small in computational complexity
because of its concise model of rank-1 decomposition in the delay-embedded space and
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(a) MGP-ARD (b) SCTF
Figure 1.15 Concept of tensor decomposition model of the two proposed methods.

because it does not directly perform optimization in the delay-embedded space. In addi-
tion, a smooth constraint term is assigned to the factor tensors as a prior data structure
in the optimization to further improve the completion accuracy. In our experiments, we
completed clipped and randomly missing image data and confirmed that the proposed
method achieved high completion accuracy without high computational cost. Details of
the method are described in Chapter 3.

At first glance, both MGP-ARD and SCTF appear to be different frameworks, LRTC,
and convolutional tensor decomposition. However, when considered in terms of the con-
cept of low-rankness, we can think of MGP-ARD as a low-rank model in the original space
(CP decomposition), and SCTF as a low-rank model in the delay-embedded space (rank
1 decomposition), and can see two methods in a unified way. Figure 1.16 summarizes the
proposed method from the unifying perspective of low-rankness. Note that low-rankness
on delay-embedded space is a similarity prior (see Section 3.2.3), so it is not the same as

Delay-embedded Space

/ — \
Block-unfolding .
Hankel =
tensor Low-Rank
model
Low-Rank
tensor model Hankel
y 4 te?1nso(:
— [
4
Low-Rank model in |
Original space Low-Rank model in

Delay-embedded space

tensor

Figure 1.16 Concept of the two our proposed models through the unifying perspective of
low-rankedness.
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a low-rank prior after all. The main goal of our thesis is to achieve highly accurate and
efficient tensor completion by focusing on the prior of an unknown true tensor.

Here, we describe the structure of this thesis. The remainder of this thesis is organized
as follows: Automatic Rank Determination with Multiplicative Gamma Process (MGP-
ARD) in Chapter 2, Smooth Convolution Tensor Factorization (SCTF) in Chapter 3,
and their summary in Chapter 4.
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Chapter 2

Tensor completion by Automatic
Rank Determination with

Multiplicative Gamma Process
(MGP-ARD)

There are many approaches for tensor completion using CP decomposition. A typical
way is minimizing the loss function such as Euclidean distance between a low-rank CP de-
composition model and the observed tensor. CP Weighted Optimization (CPWOPT) is a
method that formulates CP decomposition with missing data as an weighted least squares
method [11] and has been applied to extract traffic patterns in Intelligent Transportation
Systems (ITS) where missing data is a common problem [80]. However, tensor completion
based on the least-squares method without regularization may not uniquely determine the
solution and tends to be sensitive to noise when the rank is estimated to be larger than
true rank. In this sense, this is considered as overfitting in tensor decompositions, which
causes a severe deterioration of estimation accuracy. In addition, these methods require
the rank to be determined in advance, which incurs a high computational cost in rank
selection.

Another way to perform CP decomposition is Bayesian approaches. It is a type of
method to infer the posterior probability distribution of parameters, such as a factor ma-
trix. Unlike optimization methods, it has the advantage of being able to evaluate not
only the estimated value but also its ambiguity. Some of the reported works include net-
work structure analysis and collaborative filtering using tensor decomposition estimated
by MCMC [81], [82]. However, the convergence speed of the MCMC estimation method
is very slow.

ARD (Automatic Rank Determination) is a technique for tensor completion using CP
decomposition with variational Bayes [69]. ARD is an algorithm that can perform rank
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estimation as well as tensor completion and employs a hierarchical Bayesian model with a
prior distribution that induces group sparsity in all factor matrices to improve robustness
against noise. ARD allows us to avoid costly rank selection and achieve efficient tensor
completion and rank estimation. However, ARD often causes duplication in the column
vectors of factor matrices in replicated experiments. This leads to over-estimation of the
CP rank, which deteriorates completion accuracy, estimation time and reduces compres-
sion performance.

In this chapter, we propose a new tensor completion method based on Bayesian CP
decomposition with ARD using Multiplicative Gamma Process (MGP) shrinkage prior.
MGP shrinkage prior is a distribution so that the core tensor of ARD is shrunk as much
as possible [83], [84]. Since the core tensor and the factor matrix are linked, when the
core tensor decays, the column vectors of factor matrices is ordered, and duplicates are
removed. By applying MGP shrinkage prior to ARD, the proposed method can improve
the accuracy of rank estimation, reduce the estimation time, and enhance robustness to
noise.

Our contribution can be summarized as follows:

e We confirmed duplication in the column vectors of factor matrices in ARD by nu-
merical experiments. We also gave mathematical proof of a property concerning the
duplication of bases in particular situations. It is a significant contribution to point
out this issue because duplication of the column vectors of the factor matrix leads
to an overestimation of the rank, resulting in worse estimation accuracy, an increase
in the estimation time, and reduced compression performance.

e To reduce the redundancy of the model based on the duplication of the column
vectors of the factor matrix, which is a drawback of ARD, We proposed a new
probabilistic model by using MGP. We also derived a variational Bayesian inference
algorithm based on this probabilistic model that simultaneously performs tensor
completion, denoising, and rank estimation.

e Experiments using synthetic data showed an increase in the accuracy of rank esti-
mation and a decrease in estimation error. Experiments on real-world image and
traffic data show that the estimation time is significantly reduced.

The rest of the paper is organized as follows: related works are described in Section
2.1, the review of conventional ARD method and its problems are described in Section
2.2, the proposed MGP-ARD method is described in Section 2.3, the experiments of the
proposed method are described in Section 2.4.
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2.1 Related works

There are four approaches for the CP rank estimation: Supervised learning, optimiza-
tion, probabilistic estimation, and Bayesian inference.

First, supervised learning can be used for rank estimation. [85] proposed to use a CNN
for CP rank estimation. Note that this approach requires training data.

On the other hand, there is a method of rank estimation based on optimization. In
some studies, this has been applied to tensor completion [2], [59], [86].

There are also several methods based on probabilistic approaches. One method is to use
probabilistic CP decomposition to estimate the CP rank by MAP estimation [87], which
has been applied to channel estimation in MIMO systems [88]. Another approach is to
use the EM algorithm to perform CP rank estimation and image denoising [89]. Although
these studies are also stochastic approaches, they differ from our method in that they are
based on point estimation and therefore cannot infer uncertainty in the solution.

On the other hand, there are methods to estimate the tensor rank using Bayesian es-
timation. For example, there is a method to obtain the CP rank for binary and real
number tensors [84]. This method is different from our method in that it uses MCMC
and convergence is slow. Also, this method is challenging to incorporate constraints such
as smoothness into the Equation because the Equation is complicated due to the explicit
mathematical model of the core tensor. There is also a method that uses variational Bayes
to estimate the Tucker rank instead of the CP rank [90]. The ARD method is a vari-
ational Bayesian method that can simultaneously perform tensor completion, denoising,
and rank estimation [69], and has been applied to the spatiotemporal traffic data impu-
tation [91]. However, ARD has the disadvantage of duplication in the column vectors of
factor matrices, making the model redundant.

2.2 Review of ARD

ARD is an algorithm for tensor completion based on Bayesian CP decomposition [69].
ARD can be applied to noisy data and can also perform rank estimation simultaneously.
The modeling is constructed using hierarchical Bayes with a prior distribution that induces
sparsity, and variational Bayes is used as the inference method.

2.2.1 Modeling

The Y is an N-order tensor containing missing entries of size I; X Iy x --- x Iy. We
define (iy,i9,...,1x) € Q as the index of the observation part, and the O is the mask
tensor such that the observed part is 1 and the missing part is 0. The Yo =Y ® O is
defined as the element being observed. We also assume that Y is the observed data with
noise added to the latent tensor X', and formulate it as Y = X + €. Here, € is assumed
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to follow the independently and identically distributed (i.i.d.) Gaussian distribution. The
latent tensor X is defined as

X::Zaf})o---oafm (2.1)

which is represented by CP decomposition model. We define {A™}N_  as the factor
matrix such that

T
AW = [agn), e ,az(»n), o ,agz?:} = [a:(ﬁ), al ,afﬁ%} € RIn*E, (2.2)

nyt? LT

The probabilistic models for CP decomposition is represented by

O. .
n N _ i1 eens iN
D altA1Yn) = 1T - IIJM(}QM,, @\, ali) ) (2)
11 1 ZN 1
where N (z|p, o) = W exp{— } is Gaussian distribution, and 7, is precision,
ORPC) av)
(a; a5, .. .,a; ) =2 1], aw Oi, ..iy is the value of mask tensor O.

Next, we Wlll discuss rank determmation in ARD. In general, it is very difficult to
estimate the dimension R of the latent space with the least redundancy, i.e., CP rank
[92]. By the definition of CP rank [10], R should be a minimum value. ARD attempts
to automatically determine CP rank in the process of Bayesian inference by setting up a
prior distribution that induces sparsity for all factor matrices. This is based on the idea
of sparse Bayesian learning [93], automatic relevance determination [94], [95], [96], and
automatic association decision [97]. We will explain the discussion so far in more detail
using formulas.

For all the factor matrices A™, prior distribution of ARD is defined as

In
p(A”N) = [T M(ailjo, A7, (24)
in=1
where A = [Af,...,Ag] (A = diag(A)) is precision. In addition, prior distribution of
precision is defined as

R
p(A) =[] GalAlcp, dy), (2.5)

where Ga(z|a,b) = %

matrix (Equation (2.4)) has a mean 0, so its value approaches 0 as the precision increases.

is Gamma distribution. The prior distribution of the factor

Furthermore, since all factor matrices share the precision parameters, that is, the inverse
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of the precision can be interpreted as super diagonal entries of the core tensor. This prior
distribution is sparse because it sets the unimportant components of the factor matrix
to zero. The number of components of the factor matrix obtained from the inference
corresponds to CP rank. Since the model is robust to noise because of its sparsity,
denoising can also be achieved from this prior distribution. With this prior distribution,
ARD can efficiently derive CP rank.

The precision of CP decomposition model is also set as a probability distribution, and
the distribution is defined as

p(7e) = Ga(7e|ao, bo). (2.6)
In summary, we define the unobserved latent parameters as @ = {A® ... AN X\ 7.},

probabilistic modeling of ARD is defined as

PV, ©) = p(Vol{A" N, m)p(re) [ [ (AT IN)p(N). (2.7)

n=1

2.2.2 Inference

Next, we will give an overview of inference methods. The goal of Bayesian inference is
to derive the posterior distribution of parameters. The posterior distribution is derived

as

p(Va,O)
/(Y. ©)de

The missing entries are estimated by calculating the predictive distribution, and the

p(O[Ya) = (2.8)

predictive distribution is derived by

p(VialVe) = / P(V\0|©)p(©[V0)dO. (2.9)

In Equations (2.8), (2.9), we need to calculate the multiple integrals with parameter ©,
which is very difficult with complex latent variables.

In variational Bayes, in order to find a distribution ¢(®) that approximates the true
posterior distribution p(©|Ygq), we derive ¢ such that the KL divergence is minimized.

This derivation is

argmin KL (¢(©)||p(®|Yq)) = argmax L(q), (2.10)
q

q

where L(q) = [¢(©)In {%} d® is the variational lower bound. In this study, we

employ the mean-field approximation for ¢(@), is defined as

4(©) = (N)g-(7) [ [ = (A7) . (2.11)
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Computing Equations (2.10), (2.11) after the mean field approximation, we get
Ing;(®;) = Eq(@\@j)[lnp(yg, ©)] + const, (2.12)

and the approximate distribution ¢;(©;) is obtained in a closed form. Note that Eye\e,)[]
is the expected value for © of all variables except ©;.

From Equation (2.12), the parameters ® = {A®M ...  AMN) X 7} can be inferred alter-
nately. Since there are dependencies among the variables, it is necessary to obtain them
using an iterative method.

After obtaining the approximate posterior distribution, the approximate predictive dis-
tribution can be obtained from

P NalVa) = /p(y\g|®)q(®)d®, (2.13)

and tensor completion, including ambiguity, can be achieved.

In ARD, the rank is obtained simultaneously with tensor completion. In the process
of Bayesian inference, the result of the update of A affects the new posterior distribution
of the entire factor matrix A" which in turn affects the next update of X. Therefore,
when A, becomes very large, the prior distribution forces the r-th component of A
toward zero. The tensor rank can then be obtained by counting the number of non-zero

components of the factor matrix.

2.2.3 Overestimation of the CP rank by ARD

In this section, we discuss a phenomenon that ARD sometimes generates redundancy in
CP decomposition model. In our experiments, we found that ARD can cause duplication
in the column vectors of the factor matrix, and it was difficult to improve even with more
iterations. Duplication in the experiment is shown in Figure 2.1. This is the factor matrix
obtained by the ARD inference results when using a third-order tensor with true rank 3
and size 30 x 30 x 30 as the data for completion. We can see that the ARD estimated
the CP rank as 5 with redundant bases. This phenomenon occurs quite frequently. The
results of the previous experiment after 100 trials show that in as many as 40 out of 100
trials, the estimated rank is greater than the true rank of 3.

It can also be shown mathematically that, under very specific conditions, when du-
plication in the column vectors of one factor matrix, the other factor matrices will also

overlap.

Theorem 1. Let the n-th factor matriz A™ be from Equation (2.2). If factor matrices
AR (E=1,....n—1,n+1,...,N) are rank 1 for all k, then the mean of A™ is less

than or equal to 1.
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* The red letters :
True column vectors
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Figure 2.1 An example of duplication of the column vectors of the factor matrices. True
rank is 3, it is shown in (a). The matrices are shown in (b). The 1st, 2nd, 4th, and 5th
bases are essentially the same.(c) shows the estimation of the column vectors in 3-D space.
The red letters represent the true column vectors, and the black trajectory represents the
estimation process. We can see that the 2nd, 5th and 4th trajectories overlap.

Proof. In the proof, we show that the approximate distribution ¢(A®™) is Gaussian, and

~(n)

the mean matrix A with mean vector ;. of a Gaussian is of rank 1 or less. A is

defined as
N T
AT — [ag@,...,agg;,...,ag:?:] . (2.14)

By computing Equation (2.12), the approximated posterior distribution of the factor
matrix A™ is defined as

vy, (2.15)

Zn 'L'n

A(”) H N(a;,.la

in=1

and its parameters can be calculated by

7477,7

V;fzn) — (E [A(\n)TO A(\n } [Tc] + Eq [A])_l ’
where AN y; O, denote parameters is defined as

AN — @A(k) c RnkyénIkXR,
k#n
v, = vec(Y;,) € Rznle,

O, = dlag(l(ozn — 1)) c Rﬂk;snlkxﬂk#nlk,

in
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where the Y, denotes the n-mode 7,-th N — 1th order tensor of the observation tensor,
and O;  denotes the n-mode i,-th N — 1th order tensor of the mask tensor. I(-) is the
indicator function and vec(-) is the vectorization function of the tensor.

The mean matrix can be calculated from Equation (2.14), (2.15) to

_ T -1
A o (Eq [A] + E, [(@,#nA(@) 0. (@k#A(’“))D
E, [@,@énA(’@T] 0, Y™, (2.16)
where Y ™ is defined as

Y(n) - [y17"' 7yin7"'7yln] N
Since rank of A%*#7) is 1, it is represented as

A(kin) = [Ck,la;(ﬁ)a c. ,ckvra:(ﬁ), e ,ckﬂafﬁ)] € R[kXR

(k=1,...,n—=1,n+1,...,N).
Now, from

]Eq [@k;énA(k)} - |:®k7énck,la;(7k1)a ceey ®k7ﬁnck7ra:(,k1)7 ceey ®k7£nck,Ra(ﬁ)j| )

rank (Eq [@k;énA(k)]) = 1. From rank(XY) < rank(X) and Equation (2.16),
rank <A(”)> < 1, so the rank of A(™ is less than or equal to 1. O

Since basis duplication is equivalent to rank reduction, Theorem 1 shows mathemati-
cally that the basis duplication of the Nth factor matrix is induced by the duplication of
the basis of the non-Nth factor matrix. However, note that since this is a theorem under
the very restrictive conditions of rank 1, basis duplication is essentially an assertion based
on experimental results.

Overestimation of the CP rank causes at least three kinds of issues in applications. First,
it directly reduces the data compression performance of the CP decomposition. Second,
it reduces robustness to noise because the extra components out of the true rank may fit
to the noise parameters. Third, it increases the computational cost of the algorithm since
the computational complexity of ARD is proportional to R3.

2.3 Proposed method

In this section, we propose a new tensor completion/decomposition method that uses a
prior distribution in which the core tensor is decayed with Multiplicative Gamma Process
(MGP). We call the proposed method as MGP-ARD. Because of the effects of MGP
shrinkage prior, MGP-ARD reduces the problem of model redundancy in ARD.
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2.3.1 Modeling

MGP-ARD is a method in which the MGP [84] distribution is set as the prior distri-
bution of accuracy A in ARD (see Equation (2.4)). The distribution of MGP used in the
proposed method is defined as

p(\e|T) = Ga(\|eo, 7)),

T = H(Sl (0 <o < 1), (2'17)
=1

p(0,) = Ga(d.|eo; fo)-

In this study, we employ somewhat different formulation/modeling of MGP of original
one. Equation (2.17) is a model that expresses that as the index r increases, the accuracy
A increases, and the core tensor decays. The accuracy increases as the index r increases
because ¢, is a truncated gamma distribution from 0 to 1, and the scale parameter 7, of the
gamma distribution is a multiplication of §,. An overview of the decay of the core tensor
is illustrated in Figure 2.2. MGP is based on the idea of nonparametric factor analysis
[83]. In nonparametric factor analysis, to resolve the indistinguishability [98] caused by
the rotational invariance of factor analysis, a gamma distribution has been introduced
such that the values decay to zero as the index increases in the column direction of the
loading matrix, achieving a significant reduction in the number of parameters. MGP-ARD
avoids duplication of bases by having the factor matrices be ordered, thus improving the
redundancy of the model, which is an issue in ARD. An overview of the improvement of
duplication is illustrated in Figure 2.3. It is also expected that the order invariance of
CP decomposition is resolved in the proposed method, which narrows down the solution
space of parameters and achieves efficient estimation.

The graphical model of MGP-ARD is shown in Figure 2.4. The parameters of the MGP-
ARD are © = {AM ... AWM X §,7.}, and the probability modeling of the MGP-ARD
is defined as

p(V0,0) = pVal{A"}, m)p(re) [[ (AP N [[ oA l7)p(6,),  (2.18)

from (2.17). The prior distribution of A™, 7, other than MGP shrinkage prior distribution
is identical to ARD, i.e., Equations (2.4) and (2.6).

2.3.2 Inference

The distribution of the parameters to be estimated is @ = {AM, ... AN X §,7.},
derived from the Equation (2.12), respectively.
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Figure 2.2 An overview of the decay of the core tensor by MGP. The scale parameter 7,
of the gamma distribution decreases as the index 7 increases. Thus, A, increases as the

index r increases, resulting in a decrease in core tensor %
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Figure 2.3 An overview of how duplication is improved by MGP. The core tensor - L decays

as the index 7 increases. This results in an ordering of the factor matrices hnked to the
core tensor, which improves the duplication in the factor matrices.
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Figure 2.4 Graphical model of MGP-ARD. The parameters to be estimated is
O = {AW . AWM X § 7.}. Observed data are represented by colored circles and
unobserved data by white circles.

The approximated posterior distribution of the factor matrix A™ is defined as

In
w(A") = [[NMa,.la, Vi), (2.19)
in=1

and its parameters can be calculated by

in,t

V(n) — (Eq [A(\n)TOlnA(\n)} Eq[TC] + ]Eq [ADil )

n

a. = EfnlV."E, [A"] Oy,

where ANy O; denote parameters is defined as

A0 @A(k) c RnkysnkaR’

k#n
y’in = Vec<yin) c Rnk;&nlk’
Oin = diag(ﬂ((’)in = 1)) c Rnk;ﬁnlkxnkyﬁnlk7

where the Y; denotes the n-mode i,-th (N-1)th order tensor of the observation tensor,
and @;, denotes the n-mode 7,-th (N-1)th order tensor of the mask tensor. I(-) is the
indicator function and vec(-) is the vectorization function of the tensor.

Focusing on the expression of the posterior covariance V;in), we can see that it is con-
trolled by the noise precision parameter 7. of CP decomposition model. In other words,
if 7, is large, the contribution of the factor matrix AN which is a model term, will be
large, and if it is small, the contribution of A, which is a term related to decay (MGP),

will be enormous. Focusing on the expression for the posterior mean V;i"), we can see
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that I, which represents the observed data, and AN\, which represents the factor matrix
of the model, are correlated.

The approximated posterior distribution of the factor matrix accuracy A, is defined as
q(A) = Ga(Alch, diy), (2.20)

and its parameters can be calculated by

1 N
C?\J = (o + 5 Z Ina
n=1
&y = Byln]+ 2> ElfalTal)].

Focusing on the expression for d);, the first term is 7,., which is related to the decay (MGP),

and the second term is [E, [a;(f;)Ta;(?)], which is related to the model. In other words, in

the case of ARD, when the r-th component of the factor matrix, ||a.,||3, becomes small,
the accuracy of the r-th component increases and induces sparsity, while in MGP-ARD,
also, the decay mechanism 7, also affects the accuracy.

The approximated distribution of the posterior distribution of the degeneracy mecha-
nism 9, is defined as

q(6:) = Ga(drlehs, fir), (2.21)
and its parameters can be calculated by

6?4 = (R—T+1)<C0—1)+60,

R h
fir = D BN ] Edo]+ fo.
h=r

I=1,l#r

The approximated posterior distribution of the accuracy 7. of the model for CP decom-
position is defined as

q(r.) = Ga(re|ay,br), (2.22)

and its parameters can be calculated by

1
ay = ag+ 5 Z Oir.ins
T1yesiN
1 2
by = by + §]Eq [HO@ = X)“F} :

Focusing on the expression for by, the second term represents the error between the
observed data ) and the latent tensor X (factor matrix A™), which is the model.
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Algorithm 1 MGP-ARD
Require: Observation tensor Yg, mask tensor Ogq
Initialize: A®™), Vifflvzn € [1,1,],Vn € [1,N],ag, by, co, do, €9, fo,and 7. = B A =
9.6, = %V,r € [L,R).
repeat
forn=1,...,N do
Update the approximated posterior distribution ¢(A™) using Equation (2.19).

end for
Update the approximated posterior distribution ¢(8) using Equation (2.21).
Update the approximated posterior distribution ¢(A) using Equation (2.20).
Update the approximated posterior distribution ¢(7) using Equation (2.22).
Calculate the variational lower bound £(q) using Equation (2.24).
Reduce the rank R by removing the 0 component of {AM™}.

until £(q) converges by checking Equation (2.23).

Compute the predictive distribution from Equation (2.25).

Next, we will discuss the specific formulation for the variational lower bound. The
convergence of the algorithm is determined by

L(q)" = L(q)"V
' L(q)®

<€, (2.23)

where € is the convergence threshold. The variational lower bound £(g) can be calculated
by

L) = —2E, 0@ Y- X)|2]

2bns

_ 2 )T Z(n) (n) 1 (n)
Tr{AZ( A +Zmn>}+2;;1nv

+ Z {InD(ch,) +InT(eh,) + chy (1= Inbyy) (2.24)

+ely (1 — ey In fr, —

i I 7))}

+1DF(6LM> + apr (1 —lnbM — b—0> .

b

Finally, we discuss the specific formula for predictive distribution. The purpose of
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predictive distributions is tensor completion. The predictive distribution can be approxi-
mately calculated by

PV il Ve) = / PV i |©)P(O| V) dO

~ /p (yil,...,iN {CLE:)} ,T_1> q <{a§:)}> q(r)daSZidT

~T (3}“ ..... iN7Si1,...,iN7 Vy) ) (2'25>
where 7T is Student’s t-distribution and
~ ~(1 (N
y’il,...,iN = <a’£1,):7 ety a”EN,):>’
vy = 2au,
; T
M ~(k n ~(k
Sitrin = P + Z (@ az(‘k,):> V;EL ) (@ az(k,):>
M n k#n k#n

The process of deriving Equation (2.25) is described in [99].

An overview of the algorithm is shown in Algorithm 1. Similar to ARD, when the value
of the 7-th element of the factor matrix A™ becomes zero (below the threshold) during
the inference process, the r-th factor is removed. The number of components in the factor
matrix is the rank, enabling rank determination.

2.3.3 Computional complexity

The computation cost of the factor matrices A™ in Equation (2.19) is O(NR*M +
R*>" 1), where N is the order of the tensor, M denotes the number of observations,
i.e., the input data size. R is the number of latent components in each A™. i.e., model
complexity or tensor rank. The computation cost of the hyperparameter A in Equation
(2.20) is O(R* ", I,,). The computation cost of the hyperparameter § in Equation (2.21)
is O(R?). The computation cost of the hyperparameter 7 in Equation (2.22) is O(R*M).
Therefore, the overall complexity of our algorithm is O(N R?M + R?), which scales linearly
with the data size but polynomially with the model complexity. It can be seen that the
algorithm strongly depends on the tensor rank, i.e., the complexity R of the model. The
computational complexity of ARD is O(NR?>M + R?), which is the same as the proposed
method. However, unlike ARD, MGP-ARD does not evaluate R excessively high, so the
computation time is shorter, and the algorithm is faster.

2.4 Experiment

In this section, we describe the experiments to verify the effectiveness of the proposed
MGP-ARD. Since MGP-ARD is proposed to correctly estimate the CP rank, which was
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overestimated in ARD, the following points are verified from both artificial data and image
data.

1. By attempting to estimate the CP rank for artificial tensor data, we examine whether
the estimation accuracy of MGP-ARD is improved compared to ARD [69], an orig-
inal method. We also examine whether the estimation error is reduced by not
overestimating the rank in the problem of noisy tensor completion.

2. We attempt to recover incomplete images with noise. We verify that the estimation
time is reduced by suppressing the overestimation of the rank while maintaining a
high estimation system by comparing it to ARD [69] and MGP-a [84].

The experiment was conducted in the following environments: CPU: Intel(R) Xeon(R)
Silver 4214R CPU @ 2.40GHz, 12 cores, Memory: 512GByte, Software: Matlab R2019a.

2.4.1 Experiments on artificial data (Rank is known)

In tensor completion, we verify whether the duplication of column vectors is improved
and the accuracy of rank estimation is improved compared to the existing original ARD
method. In order to check the accuracy of the rank estimation, we use synthetic data.
In this experiment, the number of tensor orders is 3, and the sizes are 30 x 30 x 30 and
20 x 40 x 10. The true rank is 3 or 5, respectively. To investigate the robustness to the
missing, we experiment with different observation rates (0.2, 0.5, and 0.9). The noise

is 20 [dB], and 50 trials are performed for each experimental pattern. The convergence
X —X||r

EAEmE The initial value

threshold € is 1.0 x 107?, and the estimation accuracy is RSE =

of R is twice the true rank.

The experimental results are shown in Figure 2.5. In all cases, the accuracy of rank es-
timation of MGP-ARD (the proposed method) was higher than that of ARD (the original
method). In particular, when the loss rate is low, ARD tends to overestimate the rank
because the amount of noise in the data is large. At the same time, MGP-ARD estimates
the true rank, resulting in a significant difference in estimation accuracy.

Table 2.1 shows the mean and median RSE of the proposed method (MGP-ARD)
and the existing method (ARD). Both mean and median RSE were lower in MGP-ARD
under most conditions, suggesting that RSE was improved. This suggests that the MGP-
ARD does not overestimate the rank, thereby reducing the redundancy of the model and
avoiding sensitivity to noise.

Next, we also compared ARD and MGP-ARD in various noise levels: SNR is 0, 10,
and 20 [dB]. The size of the tensor is 30 x 30 x 30, the missing rate is 0.5, the true rank
is 3 and 5, and each combination is tried 50 times. The experimental results are shown
in Figure 2.6, Table 2.2. In all cases, the accuracy of rank estimation of MGP-ARD (the
proposed method) was higher than that of ARD (the original method). The proposed
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Figure 2.5 Rank estimation results for tensor completion using MGP (original method)
and MGP-ARD (proposed method). The top two rows show the results when the true
rank is 3, and the bottom two rows show the results when the true rank is 5. The loss rate
is 0.1, 0.5, and 0.9, and the SNR is 20 [dB]. 50 trials were performed for each pattern.
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Figure 2.6 Rank estimation results for tensor completion using MGP (original method)
and MGP-ARD (proposed method). The top row shows the results when the true rank is
3, and the bottom row shows the results when the true rank is 5. The size of the tensor
is 30 x 30 x 30, and the missing rate is 0.5, and the SNR is 0, 10, 20 [dB]. 50 trials were
performed for each setting.
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method has a minor change in the distribution in response to noise than the conventional
method.

The actual improvement in duplication is shown in Figure 2.7. This figure shows the
factor matrices finally obtained by ARD and MGP-ARD when the true rank is 5, the
observation rate is 0.5, and the SNR is 20 [dB|. In ARD, the number of components
in the obtained factor matrix is 8, so the rank estimation result is 8. On the other
hand, the number of components in the factor matrix obtained by MGP-ARD is 5, which
results in a rank estimation result of 5. Since the true rank is 5, we can see that MGP-

Table 2.1 Mean and median of the estimation error (RSE) in tensor completion. True
ranks are 3 and 5, sizes are 30 x 30 x 30 and 20 x 10 x 40, and missing rates are 0.1, 0.5,
and 0.9. Each pattern consists of 50 trials.

True Size Missing Mean Median
rank rate ARD MGP-ARD | ARD MGP-ARD
3 30 x 30 x 30 0.1 0.0040 0.0033 0.0040 0.0033
0.5 0.0115 0.0108 0.0115 0.0107
0.9 0.0322 0.0322 0.0320 0.0320
20 x 10 x 40 0.1 0.0065 0.0054 0.0064 0.0054
0.5 0.0181 0.0175 0.0183 0.0172
0.9 0.0674 0.0672 0.0564 0.0563
) 30 x 30 x 30 0.1 0.0049 0.0046 0.0049 0.0047
0.5 0.0139 0.0136 0.0140 0.0134
0.9 0.0522 0.0517 0.0437 0.0435
20 x 10 x 40 0.1 0.0049 0.0046 0.0049 0.0047
0.5 0.0077 0.0073 0.0077 0.0073
0.9 0.4748 0.4674 0.5461 0.5434

Table 2.2 Mean and median of the estimation error (RSE) in tensor completion. True
ranks are 3 and 5, sizes are 30 x 30 x 30, and SNR are 0, 10, and 20 [dB]. Each pattern
consists of 50 trials.

True | SNR Mean Median

rank | [dB] | ARD MGP-ARD | ARD MGP-ARD
3 0 0.0991 0.0987 0.1012 0.1010

10 | 0.0341 0.0327 0.0337 0.0324

20 | 0.0115 0.0108 0.0115 0.0107

5 0 0.1317 0.1305 0.1301 0.1295

10 | 0.0423 0.0415 0.0419 0.0412

20 | 0.0139 0.0136 0.0140 0.0134
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Figure 2.7 The improvement in the duplication of the column vectors. true rank is 5,
observation rate is 0.5, SNR is 20 [dB]. In ARD, the 1st and 5th, 7th, and 8th components
overlap, but MGP-ARD improves this and correctly estimates the true rank of 5.
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Figure 2.8 The figure shows the convergence of ARD and MGP-ARD. The left figure shows
the variational lower bound and the right figure shows the process of rank estimation. The
size of the tensor is 30 x 30 x 30, true rank is 3, observation rate is 0.5, SNR = 20 [dB].
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Figure 2.9 The average runtime (seconds) in tensor completion. True ranks are 5, 10, 15,
and 20, size is 30 x 30 x 30, SNR is 20 [dB], and missing rate is 0.5. Each setting consists
of 50 trials.

ARD more accurately estimates the rank, while ARD overestimates 3. This is because
of the duplication in the column vectors of the factor matrix of ARD, and MGP-ARD
has improved this. Furthermore, the RSE of MGP-ARD is lower than that of ARD,
suggesting that sensitivity to noise is avoided by not overestimating the ranks.

Figure 2.8 shows the convergence of the ARD and MGP-ARD algorithms, i.e. the
variational lower bound and rank. The size of the tensor is 30 x 30 x 30, true rank is 3,
observation rate is 0.5, SNR is 20 [dB]. From Figure 2.8, the convergence of MGP-ARD
was slightly slower than ARD, but the variational lower bound of MGP-ARD was better
than that of ARD finally. In addition, the estimated rank of MGP-ARD was significantly
decreased in early stage of the iterations.

Figure 2.9 shows estimation time against the rank values in both methods for ARD and
MGP-ARD. True ranks are 5, 10, 15, and 20, size is 30 x 30 x 30, SNR is 20 [dB], and
missing rate is 0.5. It can be seen that MGP-ARD is faster than ARD in all ranks. The
gap of computation times between ARD and MGP-ARD becomes larger as the true rank
increases. This is because the computational complexity of both methods is dominated

by O(R?).
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Figure 2.10 (Best mewed magmﬁed) Results of 1mage 1npa1nt1ng using MGP-a a ARD,
and MGP-ARD. There are 8 types of experimental images with an uniform area missing.
The 1st row is the original complete image, the 2nd row is the image with noise added
(SNR = 20 [dB]) plus 90% missing. The 3rd and subsequent rows are the complementary
results of each method.

2.4.2 Experiments with image data (Rank is unknown)

We experiment with MGP-ARD using real data as well as artificial data. In this
experiment, we try to recover the missing image with noise for image inpainting. Since
the true rank is not yet known, we mainly evaluate the estimation accuracy and time.

First, we use 8 types of uniform missing images. The observation rate is 0.1 (90%
missing) and the SNR is 10 [dB]. The original image and the image with further missing
data that contains noise are shown in Figure 2.10. We experiment with image inpainting
using MGP-a [84], ARD and MGP-ARD. The convergence threshold e is 1.0 x 1074,
and the estimation accuracy is RSE = IX=%lr We also use PSNR and SSIM as other

B4
assessment measures. The initial value of R is set to 100.

The completion results are shown in Figure 2.10. The recovery performance (RSE,
PSNR, SSIM) and runtime are also summarized in Table 2.3. Table 2.3, MGP-ARD
is the fastest while maintaining a high performance among the three methods. MGP-
ARD is only slightly less accurate than ARD, but not enough to be distinguished by the
naked eye, referring to the image inpainting results in Figure 2.10. In terms of estimation
time, we achieved completion in about half the estimation time of ARD. This can be
attributed to the fact that the computation time of MGP-ARD is proportional to R?, and
the improvement of redundancy reduces R, which in turn reduces the computation time.
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Figure 2.11 Results of image inpainting using MGP-a, ARD, and MGP-ARD. There are 2
types of experimental images with a specific area missing. The 1st column is the original
complete image, the 2nd column is the image with large missing upper left part. The 3rd
and subsequent rows are the complementary results of each method.

Next, we have also experimented with images in which certain areas are completely
missing. We use two types of images (baboon, sailboat) in which the upper left corner
is largely missing in a rectangular shape. The original image and the image with further
missing data are shown in Figure 2.11. The algorithm, the convergence threshold, initial
R, and the metrics are the same as for the uniform missing images experiment.

The completion results are shown in Figure 2.11. The recovery performance (RSE,
PSNR, SSIM) and runtime are also summarized in Table 2.4. Table 2.4 shows that MGP-
ARD has the highest accuracy and the fastest estimation for both images. Figure 2.11
shows that MGP-ARD performed the smoothest completion due to its low rank property,
which is considered to increase the completion accuracy.

In summary, we confirmed that MGP-ARD significantly reduces the estimation time
while maintaining the same level of estimation accuracy compared to ARD in image
inpainting.

2.4.3 Experiments with trafic data (Rank is unknown)

With Intelligent Transportation Systems (ITS) operation, the analysis of large-scale
traffic data in urban centers is becoming more and more critical. In general, traffic data
contains information about time, space, and individual attributes, and the number of data
is enormous. Such high-dimensional data with multiple characteristics can be regarded
as tensor data. The problem in analyzing such high-dimensional data is missing values
due to hardware/software or communication network failures. In this experiment, we
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Table 2.3 The recovery performance (RSE, PSNR, SSIM) and runtime (seconds) on uni-
form missing eight images. For methods that need to tune parameters, the runtime with
the best tuning parameter.

MGP-a | ARD | MGP-ARD
RSE 0.2031 | 0.1481 0.1485
PSNR 19.44 22.06 22.03
SSIM 0.4204 | 0.6107 0.6099
Runtime 111 177 97

Table 2.4 The averaged recovery performance (RSE, PSNR, SSIM) and runtime (seconds)
on two types of images with specific areas missing. For methods that need to tune
parameters, the runtime with the best tuning parameter.

baboon sailboat
MGP-a | ARD | MGP-ARD | MGP-a | ARD | MGP-ARD
RSE 0.3995 | 0.3532 0.3447 0.5937 | 0.7349 0.5565
PSNR 28.06 | 29.1266 | 29.3396 | 24.2892 | 22.4362 | 24.8514
SSIM 0.9602 | 0.9613 0.9631 0.9545 | 0.9579 0.9599
Runtime 393 335 60 395 142 57

use MGP-ARD to perform tensor completion on incomplete traffic data and estimate the
missing values.

In this section, we conduct numerical experiments based on a traffic speed dataset
collected in Guangzhou, China. This experiment is based on the work of Chen et al [91].
This data set is available at https://doi.org/10.5281/zenodo.1205229. This dataset
consists of travel speeds observed at 10-minute intervals (144-time intervals per day) from
214 road segments over two months (61 days from August 1, 2016, to September 30,
2016). The speed data can be organized as a third-order tensor (road segment x day X
time interval, 214 x 61 x 144). Of the approximately 1.88 million data, about 1.29%
are not observed or provided in raw data. To evaluate how well the method works in
cases with more missing observations, we create an artificial version of the data where
70% of the entry is assumed missing. The algorithms used in the experiments are ARD
and MGP-ARD. The convergence threshold € is 1.0 X 1074, and the estimation accuracy
is RSE = 1X_Xlr  The initial value of R is set to 100.

%
The completion results are shown in Figure 2.12. The recovery performance (RSE) and

runtime are also summarized in Table 2.5. Table 2.5 shows that better estimation can be
achieved with a faster estimation time. Figure 2.12 also shows that MGP-ARD estimates
better than ARD at the 1:00 p.m. time point on the first and third days, where the true
value drops significantly.

In summary, we confirmed that MGP-ARD significantly reduces the estimation time
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Figure 2.12 Completion results of traffic speed data [km/h]. The graph shows the ARD
of the data with 70% of the elements missing, the completion result by MGP-ARD, and
the data before the missing elements (True). The range of the data is three days.

and improves estimation accuracy compared to ARD in speed traffic data completion.

Table 2.5 The recovery performance (RSE) and runtime (seconds) on missing speed traffic

data. For methods that need to tune parameters, the runtime with the best tuning
parameter.

ARD | MGP-ARD
RSE [km/h] | 4.9047 4.8377
Runtime 477 219

2.4.4 Hyper-parameter sensitivities of rank estimation

In this section, we conduct numerical experiments on the dependence hyper-parameter
sensitivities of rank estimation results in MGP-ARD and discuss the experimental results.
The representative hyperparameter of MGP-ARD is ey, which is related to the degree
of degeneracy of the core tensor (see Equation (2.17)). When e is large, the degree of
degeneracy is small, and when ¢ is small, the degree of degeneracy is large. In other words,
the results of rank estimation vary greatly depending on the value of the hyperparameters,
and MGP-ARD may not be able to automatically estimate ranks from data, unlike ARD.
Therefore, we experiment to confirm that MGP-ARD estimates rank not only based on
the hyperparameters that determine the degree of shrinkage but also on information from
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Figure 2.13 The result of rank estimation when the hyperparameters are varied (true rank
is fixed at 12)

the data. In the experiment, we show the rank estimation results of MGP-ARD when
only the hyperparameters are changed while the true rank is fixed. We use a third-order
tensor of size 30 x 30 x 30 and two true ranks of 12 and 15. The hyperparameters eq are
0.79, 0.81, 0.83, 0.85, and 0.87 for both, and 50 trials are made for each. SNR is 20 [dB],
and the observation rate is 0.5. The initial value of R is twice the true rank.

Figure 2.13 and 2.14 show the estimation results when the true rank is 12 and 15. The
rank estimated is prone to be larger as hyperparameters increase for both true ranks of
12 and 15. However, the rank estimated is larger when the true rank is 15 than when the
true rank is 12, indicating that the rank is estimated at around 12 when the true rank
is 12 and around 15 when the true rank is 15. In other words, MGP-ARD is not only
influence of the hyperparameters, but is also influenced by the data.

Next, we conducted the experiment of rank estimation of MGP-ARD when the true
rank is varied under fixed hyperparameter conditions. The data is a third-order tensor of
size 30 x 30 x 30, the SNR is 20 [dB], and the observation rate is 0.5. The hyperparameter
e is fixed at 0.8, and we confirm how the estimation results change when the true rank
is changed from 10, 11, 12, 13, 14, to 15.

Figure 2.15 shows the experimental results. We confirm that as the true rank increases,
the rank estimation results also increase (11, 12 — 13, 14). This indicates that information
from the data also influenced the rank determination.
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Figure 2.14 The result of rank estimation when the hyperparameters are changed. The
color type indicates the true rank. (true rank is fixed at 15)

In summary, MGP-ARD is affected by hyperparameter but the information from the
data absorbs the influence. For example, if the hyperparameter eg is set too large and
the reduction is too strongly, the information from the data can suppress the excessive

removal of rank.
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Chapter 3

Tensor completion by Smooth
Convolution Tensor Factorization

(SCTF)

Recently, tensor completion for considering low-rank structures in delay-embedded
spaces has attracted attention [79], [100]. A delay-embedded space is a high-dimensional
space that represents time delay. In particular, the embedding of tensor data is called
Multiway Delay-embedding Transform (MDT), which is mathematically equivalent to
multi-level Hankelization. MDT has been widely applied to the tensor completion of im-
ages and videos [101], [102], [100], [17], [5], [79]. MDT-Tucker [79], the original model of
tensor completion using MDT, consists of the following steps:

1. Hankelization of the observed tensor by MDT.
2. Completion of the Hankelized tensor using Tucker decomposition.
3. Inverse MDT of the completed tensor.

This method considers a delay-embedded space with a high expressive capability and
exhibits higher completion accuracy than existing methods [2], [21], [52], [68], [16]. How-
ever, MDT-Tucker has the disadvantages of considerable time requirement and space
computational complexity. For example, for an Nth-order tensor of average size T, if
the delay window size is 7, the space complexity is O(7VT?) and the time complexity is
O(TNHITN): thus, the complexity increases exponentially with order.

In this chapter, we propose a novel smooth convolutional tensor factorization (SCTF)
model, which decomposes a tensor into two smooth factor tensors by convolution instead
of a product. Figure 3.1 shows a schematic of the algorithm. This model implicitly
implements tensor decomposition in the delay-embedded space, whereas optimization is
performed in the original space. The model is based on the relationship between the
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Figure 3.1 Comparison between the existing MDT-based and proposed convolution-based
methods. (a) The existing method computes the optimization on the delay-embedded
space. (b) Whereas, the proposed method computes the optimization in the original
space, but implicitly considers the delay-emabedded space.
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inverse MDT of the rank-1 model and the cyclic convolution of the factor tensors. In
addition, because it is a rank 1 model, the SCTF is simpler than the MDT-Tucker model,
which considers the Tucker decomposition model. These properties are expected to reduce
computational complexity. In addition, a smoothness constraint was imposed on the
factor tensors to further narrow the solution set. Our contributions can be summarized
as follows:

e We have mathematically proven that tensor decomposition based on inverse MDT
has sufficient representation ability in rank-1 decomposition.

e Based on the relationship of inverse MDT of rank 1 decomposition and cyclic con-
volution of factor tensors and the introduction of smooth prior structure into factor
tensors, we proposed a new tensor completion model named smooth convolutional
tensor factorization (SCTF).

e We derived a solution method of the proposed SCTF with the Majorization-Mini
mization (MM) algorithm [60], [61], which is expected to provide a stable optimiza-
tion in which the cost function decreases monotonically. Moreover, we exploit the
equivalence of cyclic convolution in the time domain and Hadamard product in the
frequency domain to reduce computation time.

The remainder of this chapter is organized as follows: related works in Section 3.1, a
review of MDT in Section 3.2, the proposed method in Section 3.3, experiments using the
proposed method in Section 3.4.

3.1 Related works

t-SVD [72] is a convolutional tensor decomposition method as well as the proposed
method. It can achieve accurate tensor recovery based on group theory. t-SVD considers
a new SVD for tensors by using some convolution, and the rank in t-SVD (tubal rank)
is defined as the number of non-zero singular values. Since it is difficult to minimize the
tubal rank directly, its convex relaxation is usually employed. The convex relaxation of
tubal rank is given by the sum of singular values based on t-SVD, and it is called as the
tensor nuclear norm (TNN). Low-rank approximation in the t-SVD is substituted for a
problem of minimizing TNN, which has the advantage of incorporating a global structure.
TNN [72] is a typical model for tensor completion problems based on t-SVD, and PSTNN
[103] is a further developed model. PSTNN suppresses the excessively low rank of the
estimated tensor by considering partial sums of only small singular values in the tensor
nuclear norm. RTF [75] and UTF [76] have also been proposed as models that avoid the
high computational cost of these t-SVD models. RTF considers a factorization model
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of a low-rank tensor of small size and a dictionary (orthogonal) tensor. Since t-SVD is
applied only to low-rank tensors of small size, the computational cost is lower than that of
other t-SVD models. On the other hand, UTF uses the fact that the TNN is transformed
to the minimum sum of the Frobenius norms of the two low-rank tensors so that the
algorithm does not directly compute t-SVD in its calculation. UTF achieves very fast
inference despite t-SVD model. However, these methods differ from the proposed method
because it uses only the third-order tensor, and the convolution operation is performed
only in the channel direction. Also, unlike the proposed model, these models do not have
a smoothness term.

CNNM [104], [105] is a mathematical model of nuclear norm minimization of convo-
lutional tensors applied to image completion and time series prediction. This research
shows the equivalence of nuclear norm minimization of the convolution tensor and sparse
approximation in Fourier space. However, the relationship between inverse MDT and
cyclic convolution, and smoothness constraints is not discussed.

3.2 Review of MDT

This section summarizes the Multiway Delay-embedding Transform (MDT). Note that
there are two types of MDT: noncyclic MDT [79] and cyclic MDT [5]. In this study, we
consider a cyclic MDT. First, we discuss the Delay-embedding Transform (DT) for one-
dimensional data (vectors), which is then extended to multidimensional data. Next, we
introduce the overview of Multiway Delay-embedding Transform (MDT) and describe the
outstanding points and drawbacks of MDT. Finally, Fast-MDT-Tucker [5], for avoiding
drawbacks of MDT.

3.2.1 Delay-embedding Transform (DT)
Overview of DT

A delay-embedding Transform (DT) is the transformation of data into a high-dimensional
space representing a time delay. In physics, DT has been studied by reconstructing dy-
namic attractors from time-series data in a delay-embedded space [106]. Mathematically,
the DT converts a vector into a Hankel matrix (Hankelization) [107]. When embedding
an observed signal from the original space into a high-dimensional space, it is assumed
that the signal is represented by a low-rank and smooth manifold in the delay-embedded
space [108], [109], [110]. Figure 3.2 shows the results of DT of the signal generated by the
Lorenz system, indicating that the transformed signal is smooth and low-dimensional in
the delay-embedded space. Based on this assumption, a low-rank approximation of the
Hankel matrix is used in the data analysis [111], [107].
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Delay-embedding Transform
x(t)

o x®

@ “wn  Embedded space (3D)

Figure 3.2 The figure shows the delay-embedded of signals generated from the Lorenz

system. The embedded signal is smooth and low-dimensional in the delay-embedded
space.

Mathematical operation of DT

Following [5], the DT for an observation vector & = (x1,...,2z7)T € RT with a delay
window size 7 is defined as

x T2 Tr—1 Tr
Ty Tz o Ty Trypy
X =H,(x) =
Tr—1 T ... Tr_3 Tr-2
T ry ... Tr—o Tr_1
€ R (3.1)

where the DT operation is denoted as H,. Because X is a Hankel matrix, DT is also
called Hankelization. Each row of X is identical to the local window of vector . Notably,
this study assumes that the signal is cyclic. Figure 3.3a shows a concrete example of a
DT operation.

The DT can be considered a linear operation. By using the duplication matrix S €

RT™T we obtain

S(i.) = {1 j=(((i=1) mod T) + |(i = 1)/T]) mod T+ 1

(3.2)
0 otherwise

DT can be given by
'HT(iﬂ) = fOld(TJ)(SZB), (33)
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where fold(y,,): RVY — RY*" is a folding operator, that is reshaping from a vector to a
matrix.

The pseudo-inverse of the DT can be expressed as the average of the anti-diagonal
entries. Considering a matrix X € RT*", the inverse DT operation H! can be given by

HI(X) = STvec(X), (3.4)

where ST := (STS)"1ST is a Moore-Penrose pseudoinverse of S, and vec(-) represents an
operation of vectorization. We note that (ST8)~! = 1I. The ¢th element of the inverse
DT is given by

[HLX))(t) = [STvec(X)](t)

zli){((t—kmod T)+1,k). (3.5)

T
k=1

Figure 3.3 illustrates the DT and inverse DT matrix computations.

3.2.2 Multiway Delay-embedding Transform (MDT)
Overview of MDT

A Multiway Delay-embedding transform (MDT) is an Delay-embedding transform (DT)
for tensor data of two or more orders. Tensor decomposition based on the MDT has various
applications, particularly for tensor completion. A representative model is MDT-Tucker,
which considers the Tucker decomposition model of the Hankel tensor and has been ap-
plied to image completion [79] and time-series data [112]. Another model, the HT-RPCA,
was proposed in [113]. Unlike general RPCA, HT-RPCA solves the rank minimization
of the tensor Hankelized by MDT, instead of the rank minimization of the matrix. This
method enables anomaly detection by considering the time series. Furthermore, the T'T
and TR decomposition models of the Hankel tensor have been proposed and applied to
image completion and time-series data [102], [100].

Mathematical operation of MDT

The DT can be naturally extended to an N-th order tensor X € RTt >IN of size
T = (Ty,...,Ty) € RY. Let us consider N duplication matrices S,, € {0,1}Tn™*Tn (p =
1,...,N) with a window size 7 = (71,...,7y) € RY (see Equation (3.2)). The MDT is
defined using an all-mode product and folding as follows:

M, (X) = fold g (X x {S}), (3.6)
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zS:X((tfkmod T)+1,k).

Figure 3.3 Matrix computation of DT operation and inverse DT operation. In particular,
the computation of the pseudo-inverse matrix in the inverse DT corresponds to the average
of anti-diagonal elements of the matrix.
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where fold(y ) : RV Wvon — RVIxvrxxVnvxon g the folding operator from an N-th

order tensor to a 2N-th order tensor. Conversely, the inverse MDT is defined as
HI(X) = unfoldp . (X) x {ST}, (3.7)

where unfoldy ) : RVixvixxVyxon _y RV1vxxVNon jg an unfolding operator from the

2N-th order tensor of an N-th order tensor.

3.2.3 Relationship between MDT and similarity

We discuss the relationship between MDT and non-local-similarity /self-similarity. Fig-
ure 3.4 explains the procedure of MDT using a graysclae image (2nd-order tensor) as
an example. First, DT is performed on all columns of the image. Next, considering the
matrix of DT created for each column as a single block, we can see that a vector was
created with the block as a single element. DT again for that vector produces a block
matrix, which is the result of the MDT of the 2nd-order tensor. As can be seen in Fig-
ure 3.4, the area of one column of the block matrix created by MDT corresponds to the
area of the patch in the original image. That is, the low-rankedness prior on the delay-
embedded space becomes another prior patch similarity in the original space. In image
analysis, similarity based on patches, not neighborhoods, has been discussed in research
as nonlocal similarity. In particular, nonlocal similarity has been studied as a denoising
method, of which NL-means [114] and BM3D [115] are typical examples. These methods
perform denoising by selecting a reference patch from an image, extracting similar patches
by template matching, and averaging similar patches by weighted average. Low-rankness
in the delay-emabedded space automatically performs reference and feature extraction
simultaneously.

The proposed method is a completion problem not denoising, and this is where self-
similarity is also important. Many images are constructed entirely from similar structures
of the same patterns (lines, textures, etc.). Self-similarity is the repetition of a local
pattern that constitutes a whole, called fractal in geometric properties [116]. Fractals
occur frequently in many physical processes in nature, i.e., for example, in an image,
similar lines and textures often appear repeatedly [117]. The proposed method is based
on the belief that even if most of the structure is missing if the structure that appears
locally remains, the whole can be completed.

There is also a study of low-rank patterns on delay-embedded space, which is for basic
sine/cosine waves [118], [119]. For example, [118] is based on the fact that functions ap-
pearing in the world can be described on a Fourier basis and image data are represented by
DCT, and [119] is based on the fact that time delays can be represented by multiplication
in Z transform.
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Figure 3.4 This figure represents the process of MDT by grayscale image. It can be seen
that the low-rankness in the delay-embedded space represents a patch of the image.
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3.2.4 Fast-MDT-Tucker

The methods introduced in Section 3.2.2 have the disadvantage of considerable time
requirement and space computational complexity because of the Hankelization in each
mode of the tensor. Fast-MDT-Tucker [5] was proposed to improve the high computa-
tional complexity of MDT-Tucker. This method focuses on the redundant structure of
the Hankel matrix and improves the time complexity to O(NT® log NT') and the space
complexity to O(T™) using two techniques:

1. Omission of duplicate computations.

2. Equivalence of cyclic convolution in the time domain and Hadamard product in the
frequency domain.

In 2), the Fast-MDT-Tucker exploits the relationship between the inverse MDT and cyclic
convolution. Fast-MDT-Tucker provides a fast and accurate completion; however, only
low-rank priors are available.

The proposed method is also an algorithm based on the relationship between the in-
verse MDT and cyclic convolution and similarly avoids the issues of MDT. Note that
the low-rank model of the proposed method is not a Tucker decomposition but a rank-1
decomposition. In addition, the proposed method imposes a smoothness constraint on
the factor tensors.

3.3 Proposed Method

The proposed method solves the optimization problem by assuming that the observation
tensor can be represented by a cyclic convolution of two smooth factors of the same size
(See Figure 3.1). We describe the key theory behind the proposed method in Section
3.3.1, the smoothness constraints in Section 3.3.2, and the formulation and algorithm in
Section 3.3.3.

3.3.1 Key theory of proposed method
Relationship between the inverse DT and cyclic convolution

Any rank-R matrix X € RT*7 has a singular value decomposition that can be expressed
as

R
X=UxV"'=> suwv (3.8)
r=1
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where U = [uy,...,ug] € RT*% and V = [vy,...,vg] € R™*® are orthonormal matrices
and ¥ = diag(oy,...,0r) € R is a diagonal matrix. Because the inverse DT is a
linear operation, HI (X)) can be separated into rank-1 bases:

HUX) =D o Hi(w,0)). (3.9)

From Equations (3.5) and (3.9), the tth element of the inverse DT for a single basis u, v,
is given by

1 T
(H(w0))](t) = = > u((t — k mod T) + 1)v,(k). (3.10)
T
k=1
Now, let us consider the matrix P = (I, O)T € RT*™ and set v € R” to be the same
vector as the dimension of u € R” i.e., zero padding operation is given by

¥ = Pv = [v(1),v(2),...v(7),0,...,0]" € R. (3.11)
——
T—1
Note that the sizes of w and v are equal and the elements of ¥ are zero after the size
of the delay window 7. From Equations (3.10) and (3.11), the inverse DT of the rank-1
basis uwv? is given by

T

(M (w,v1)](t) = - > un((t — k mod T) + 1), (k)

1
= —[u, * 0,|(1), (3.12)
-
where * denotes a cyclic convolution operation. From Equation (3.12), the inverse DT

of the rank-1 basis can be formulated in terms of a cyclic convolution. Eventually, from
Equations (3.9) and (3.12), the inverse DT of X is

R
1
HI(X) = - PRCRTE S (3.13)
r=1

Sufficient representation ability even with a rank-1 matrix

We now discuss the rank-1 representation of X. From Equation (3.13), the rank X
denotes the number of convolutional bases. The degrees of freedom of each convolutional
basis determine the representational ability of the model. In this study, we consider X to
be rank-1 and show that it has sufficient representation ability for vector reconstruction.
Rank-1 matrix model X = uvT € RT*™ can generate any € R”. Let us put

u:[zc],v:[OT ] (3.14)

T—1
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where 0,1 is a (7 — 1)-dimensional vector of zeros and we have
Hi (uv™) = HI ([ T Op,_4 ]) =z (3.15)

This suggests that the inverse DT of a matrix, even rank-1, is over-parameterized and
does not work as a model. Therefore, u and v must impose constraints to narrow the
solution.

Extention to MDT

The properties of DT can be applied to the MDT. First, we show the relationship
between the inverse MDT and N-dimensional cyclic convolution. Let us consider factor
tensors A € RTxTn B € R > and we define a := vec(A) € RII. T b := vec(B) €
RIL ™ We assume X € RTixmxxINXTv ig oiven by

bunfoldr ) (X) = vec(A)vec(B)"
= ab’ € Rl TnxILam (3.16)

where bunfold(y ) : RY1>vrx>Vvxon —y RIL VaxIl.ve ig the unfolding operator from an
2N-th order tensor to the block matrix. We also define bfoldgy ) : R VexIlave —
RYixowx-xVvxon a5 the inverse transform of bunfold(y ). Using the zero padding matrix
P, = (I, 0)" € {0,1}7*™ (n=1,...,N), we define a tensor B = B x {P} € RTt<"*T
of the same size as A. The inverse MDT of X = bfold(, 1)(ab") is derived by

[H(bfold 7y (ab™))] (t1,.. ., tw)

T1—1 T~v—1

A(tl - kl mod Tl, Ce ,tN — kN mod TN)B(k‘l, cey kN)
1 T1—1 Tn—1
p—y H 7- Z DY Z

m =0 kn=0

Aty — ky mod Ty, ...ty — ky mod Twn)B(ky,. .., ky)

— HiTn [A* B} (t, ..., tx). (3.17)

Thus, the inverse MDT is represented by an /N-dimensional cyclic convolution.

Furthermore, we show that the tensor which is folded from rank-1 matrix has suffi-
cient representation ability. Rank-1 tensor model of X := bunfoldr,)(X) = ab' €
RIL TexIln ™ can generate any X € RT*Tn Let us

[L7 ] , (3.18)

a= [vec(X) } , b= 0 ot
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X = fold(a) fold(b) X

\

Figure 3.5 Cyclic convolution of a tensor X with only one element fold(v) corresponds to
the Equation (3.19). This operation is identically derived from the tensor X.

where Oy -1 is an (][, 7» — 1)-dimensional vector of zeros, and then we have
[H(bfold(r 1y(ab"))] (t1,... . ty) = X. (3.19)

Because this operation is equivalent to the cyclic convolution of a tensor X with only
one element, the tensor X is derived identically (See Figure 3.5).

The inverse MDT of an unconstrained tensor, even rank-1, is over-parameterized and
does not work as a model. In this study, additional constraints were imposed on A and
B (see Section 3.3.2).

3.3.2 Smoothness constraints

Because the convolution of factor tensors can represent any tensor (even rank 1 models),
it is necessary to impose constraints to narrow down the candidate solutions. In this study,
smoothness is used as a constraint. The reasons for introducing smoothness as a constraint
are as follows.

e As shown in Figure 3.2, the embedded data is represented by a smooth manifold on
the delay embedded space.

e The data mainly targeted in our study are images, and there are many reports that
smooth constraints are effective in image completion [20], [21], [16], [52].

Note that we do not introduce smoothness for the reconstructed tensor but the factor
tensors. Unlike the model which smoothens the reconstructed tensor, the proposed model
enables completion without excessive smoothing. We also set the scale adjustment terms
for both A and B in the optimization equation to avoid smoothing by increasing only
one factor of the tensors.
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3.3.3 Optimization formulas and algorithm
Optimization formulas

In this thesis, we propose a new tensor completion model. We assume that the observed
tensor Y € RT1**In is incomplete and that some entries have no values. The projection
tensor @ € {0, 1}71*I¥ passes the observed entries and makes the missing entries equal
to zero. The entries are given by

1 Y(ti,...,ty) is observed

Ofts, ... tx) = { (3.20)

0 otherwise

The problem involves obtaining the complete tensor A x B. In this study, we impose a
smoothness constraint on A4 and B. The optimization problem is then given by

2

ugloe@-AsB

F

+ D AanllCox AR+ Apall Lo Bl

+nall Al + 5Bl
s.t. B=B x {P}, (3.21)

where

L, = foldr(ly ® - ®1;) € RIv>In
i=1,...,N

L {[1,—1,0,...,0] (i=n)

is a differential filter, and A € RT>**In B ¢ R™**™N are factor tensors and foldy :
RV1V2 Vv RVIXV2xXWN g a folding operator from a vector to the N-th order tensor.
Equation (3.21) evaluates the reconstruction loss in the first term. The second and third
terms are smooth penalties for A and B, and the fourth and fifth terms adjust the scales
of A and B. The equality constraint is for zero padding, based on Equation (3.11). Note
that when 7 = 1, Equation (3.21) is equivalent to QV regularization. The relaxation
of optimization problem (3.21) for an unconstrained optimization problem including a
penalty term yields the following equation:
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min L(A, B) = |0 ® (¥ — A« B)[;
+9)1Z- @ B}
+> AanllLo sk AL+ Apall Lo Bl7

+nall AllE + 5Bl (3.22)
where Z, = foldp(i,, ® ... ® 1., ) € RT>*IN
i, =[0,...,0,1,...,1] € RT". 4_ serves as a penalty for B and simulates zero padding
—— \?F/

{P}. Note that we also redefine the size of B as T} x - -+ x Ti.

Algorithm for solving optimization

In this study, we solved the optimization problem (3.22) using MM [60], [61]. The MM
algorithm is an iterative method involving two steps.

1. Constructs a auxiliary function h(.A, BJA® B®) for L(A, B) at A® B®. Note,

VA, B L(A B) < h(A B.AY B®)
LAY B®) = h( AW B®|AK BE)

2. Update as in

AR aremin h(A, B®|A® BE), (3.23)
A

3. Update as in

BE « arg min h(AFTD, B|AKTD B, (3.24)
B

A conceptual diagram of the algorithm is shown in Figure 3.6. The MM algorithm was

used because of convergence due to its monotonic convergence and ease of analytical
computation.
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hA,B|AY BF) L(A, B)
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h(A, BlAFTY B

Ak+D) gl

Figure 3.6 Concept of the two proposed models in our research.
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The auxiliary function h is defined as follows:
L(A,B) < h(A,B]A® B®)
=|0® (Y- AxB)|%+1|Z. ®B|>
t[oe b By - asB)|
+9]|1Z- ® (B - BY)|%
) Al AR+ Apall Lo x Bl
+nall Al + nsl1BIl%
=12 - A*B| +|W - B|%
) Ml AR+ Apall Lo+ Bl

+nallAllE +ns|Bl1%, (3.25)
where
Z-=00Y+0a (A“f) *B(k)>, (3.26)
and
W=1I-®B". (3.27)

Furthermore, we exploit the property that the cyclic convolution of the time domain
is a Hadamard product in the frequency domain to reduce the time complexity of the
optimization problem. Because the Frobenius norm is invariant to the Fourier transform,
the auxiliary function A is redefined as

WA, BlAP, B = A, BlAY B")
~ ~ ~ |12 ~ ~
- Hz —A® BHF +HW - B2
S Al e A
+> Apal L. ® B}

+ nallAll% + sl Bl (3.28)

where £,, A, B, Z, W are the Fourier transform of £,,, A, B, Z, W.
The final auxiliary function is A, which is minimized using Equations (3.23) and (3.24).
To minimize il, we derive A and B such that

h h
o _yg oh _

M (3.29)
HA OB



63

Algorithm 2 MM algorithm in the proposed method
Require: Y, O, I, v, Aa, A\, na, np, maxiter

1. A+ FFT(A)

2: B« FFT(B)

3: for ¢ = 1 to maxiter do

4: Update Z by (3.26)

5. Z+ FFT(2)

6: Update W by (3.27)
7. W <« FFT(W)
8
9

Update A by (3.30)
Update B by (3.31)

10: A<« IFFT(A)

11: B « IFFT(B)
12: Calculate L(A, B).

13: if convergence of L then break
14: end if
15: end for

Note that (3.29) is substituted by alternating the optimization with (3.23) and (3.24)
because they are not satisfied simultaneously. Thus, at every optimization step, although
the cost function L decreases monotonically, the auxiliary function A is not always optimal.
After solving Equation (3.29), we obtain

A:{Z*@@B}@{Bz+2/\A7n£i+m}, (3.30)
B= {Z*®A+7W}®{A2+ZAB,HZ:Z+UB+’V}, (3.31)

where Z" is the complex conjugate of Z. In summary, Equations (3.26) and (3.27)
correspond to Step 1 of the MM algorithm, and Equations (3.30) and (3.31) correspond
to Step 2. Algorithm 1 summarizes the proposed method.

3.3.4 Computational complexity

The algorithm consists of updated Equations (3.26), (3.27), (3.30), and (3.31). The
time complexity of (3.27), (3.30), and (3.31) is O(T™), and that of (3.26) is O(NT"logT).
Since (3.26) is derived from the cyclic convolution by A B = IFFT(FFT(A)®FFT(B)),
the time complexity O(NT™NlogT') of the FFT is dominant. Consequently, the overall
time complexity of the update equation is O(NTNlogT).
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3.3.5 Extension to non-periodic signals

Since the proposed method uses FFT, we assume periodicity in the signal ) € RT1xxn
Therefore, only when the first-order tensor (vector y € RT), the resulting observation sig-
nal may force the leading and trailing values to be equal, which may worsen the complete
accuracy. We address this problem by concatenating zero vectors 0r € RT of the same
size in y, as in

Yaoutle = [y, 07] € R*T (3.32)

The projection vector og € RT (Og € RT*XTN in tensor) is also extended as in
._ o
0q double = [00, 0] € R*". (3.33)

That is, we extend any signal y to a periodic signal and set the extended portion as
unobserved. Equations (3.32) and (3.33) are then reset as inputs to Algorithm 2 (y «+
Ydouble, 00 < 0. double)- The algorithm’s estimation result a * b € R?% then uses only the
values of the first half.

3.4 Experiment

The experiment was conducted in the following environments: CPU: Intel(R) Xeon(R)
Silver 4214R CPU @ 2.40GHz, 12 cores, Memory: 512GByte, Software: Matlab R2021b.

3.4.1 Completion of clipped data

This section presents the evaluation of the proposed method (SCTF) for reconstructing
clipped data (declipping) as a type of completion. Clipping is an operation that uses a
certain clipping level ¢ > 0 to replace entries above ¢ and below —c with ¢ and —c. The

clipping operation on the entry of a tensor is given by
X(t1,ta,...,ty) = min(c, max(—c, Xo(t1,...,tn)))- (3.34)

The value range of the clipped data was [—c, c|.
The indices of the clipped entries were recorded and treated as missing values for
reconstruction. Thus, the set of observed entries can be expressed as

O(ty,... (3.35)

1 —ec< X(ty,...,ly) <c
7tN)_ .

0 otherwise
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Figure 3.7 Example of declipping experiment: (a) original signal of the sine function, (b)
clipped signal with clipping level = 0.2, and (c¢) these reconstructed signals by using QV
regularization, cubic spline interpolation, and SCTF
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Figure 3.8 Example of declipping experiment: (a) original signal of wavelet function, (b)
clipped signal with clipping level = 0.2, and (c) these reconstructed signals by using QV
regularization, cubic spline interpolation, and SCTF.
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Figure 3.9 Values of SNR in declipping experiments with various clipping levels.
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Clipped signal completion (1st order tensor)

In this experiment, we evaluated SCTF using signal completion. The signals to be
completed were the sine and wavelet functions with a clip level of 0.2, and both had a
maximum amplitude of 1. Examples of clipping are presented in Figures 3.7 and 3.8.
The original signals are shown in Figures 3.7a and 3.8a, and the signals after clipping are
shown in Figures 3.7b and 3.8b. We compared SCTF with QV regularization and spline
interpolation. In SCTF, we set 73 =32, v =1.0x10% , and a1 = Ap1 =na = np = 0.1.

Figures 3.7c and 3.8c show the signals reconstructed using QV regularization, spline
interpolation, and SCTF. The signal completed by SCTF had a maximum amplitude
of approximately 1, which was the best among the three methods. The spline method
reconstructs the waveform signals; however, its amplitude is smaller than that of the
original signal. However, the QV method failed to restore the signal.

Figure 3.9 shows the signal-to-noise ratio (SNR) values of the declipping experiment for
various clipping levels. The clipping levels were 0.8, 0.6, 0.4, and 0.2, and the parameters
(A, 7) were adjusted for all levels. SCTF achieved significantly higher values of SNR than
QV regularization and spline interpolation.

Completion of clipped data (2nd order tensor)

In this experiment, we evaluated SCTF by completing a clipped image of 2D-sin. The
maximum value of the image (amplitude of 2D-sin) was 255, and the clip threshold ¢ =
230. The original image is shown in Figure 3.10a, and the image after clipping is shown

in Figure 3.10b. We compared SCTF with the QV model and Fast-MDT-Tucker [5]. The
QV model is the model without convolution in Equation (3.21), and is formulated as

Z ¢« argmin |0 ® (Y — Z)|5+ anHﬁn * 2|7,
Z n

and Z denotes the estimated completion tensor; In SCTF, we set m = m» = 151, v =
1.0 X 103, Aa1 = Aaa = Ap1 = Ap1 = 200, and n4 = np = 400.

Figures 3.10 and 3.11 show the images reconstructed using the QV model, Fast-MDT-
Tucker, and the proposed SCTF. In addition, Table 3.1 shows the numerical evaluation
of the completion accuracy. The completion image by SCTF has a maximum amplitude
close to 255 and shows an improvement in the oscillations that occurred in Fast-MDT-
Tucker, indicating the effect of the smoothing term. In fact, SCTF had the best value in
PSNR. However, SCTF had a flat shape that differed from that of sine at a maximum
amplitude of 255. This affects the numerical evaluation of the completion accuracy, and
SCTF is worse in SSIM than in Fast-MDT-Tucker. On the other hand, the QV model

fails to recover 2D-sin because it flatly completes the missing parts.
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(a) Original image (b) Clipped image (c) QV (d) Fast-MDT (e) SCTF
Figure 3.10 Results of recoverd cliped image using QV (c), Fast-MDT-Tucker (d) and
SCTF (e).

Table 3.1 Comparison of the peak signal-to-noise ratio (PSNR), the structural similarity
(SSIM), and the computing time (sec) of recovery clipped images using TV, Fast-MDT-
Tucker, and proposed method.

QV  Fast-MDT-Tucker Proposed
PSNR 34.9 50.8 55.1
SSIM 0.910 0.987 0.974
computing time 3.29 8.74 72.46

260 T T T T T T

250 — i
240 //\\ Qv |
. Fast-MDT | |

220+ \ SCTF ]

S
S
P

Il Il Il Il Il Il

VA
0 50 100 150 200 250 300

Figure 3.11 Cross-sectional view of the recoverd cliped image at height 157.
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3.4.2 Completion of random missing data

This section presents the results of the completion of random missing data.

Completion of RGB images (3rd order tensor)

In this experiment, we evaluated SCTF using RGB images. Six images were tested,
with a missing rate of 85%. Figures 3.12a and 3.12b show the original image and the
image with missing data, respectively. We compared SCTF with TVLR [52], SPCQV
[16], Fast-MDT-Tucker [5], BCPF [69], UTF [76], TNN [72], and PSTNN [103]. In SCTF,
weset 1 =Ty =73 =9,v=1.0x 107, Mg = A2 =Ap1 = A2 =90, Aa3 = Aps =0,
and ng = np = 5H0.

Figure 3.12 shows the experimental results. SCTF improves the image blur in TVLR,
SPCQV, and BCPF and the jaggies in Fast-MDT-Tucker, UTF, TNN, and PSTNN. This
may be because SCTF is based on the idea of both smoothness and MDT. Table 3.2
summarizes the recovery performance (PSNR and SSIM) and runtime. SCTF had the
highest PSNR for five images and SSIM for four images. It is also slower than Fast-MDT-
Tucker and UTF but has a faster computation time than SPCQV, which is the second
most accurate method. In other words, SCTF is completed with high accuracy and at a
modest computational cost.

Completion of MRI images (3rd order tensor)

In this experiment, we evaluated SCTF using MRI images. We prepared MRI images
with sizes of (100 x 91 x 91) with 70% and 95% of the random voxel missing. Figures
3.13a and 3.13b show the original image and the image with missing data, respectively.
We compare SCTF with TVLR [52], SPCQV [16], Fast-MDT-Tucker [5], BCPF [69], UTF
[76], TNN [72], and PSTNN [103]. In SCTF, we set 71 = 75 = 73 = 4, v = 1.0 x 107,
>\A,1 = >\A,2 = )\371 = AB’Q = 50, )\A’g = )\373 = 0, and na ="nNp = 1000.

Figure 3.13 shows the experimental results. SCTF showed successful completion in both
the 70% and 95% missing cases. In the 95% case, TVLR, Fast-MDT-Tucker, BCPF, and
UTF fail to recover, and SPCQV smoothes the image excessively. In addition, TNN and
PSTNN do not restore smoothly compared to SCTF. Table 3.3 summarizes the recovery
performance (PSNR and SSIM) and runtime. We can confirm that SCTF has the best
completion accuracy compared to the other methods; it takes longer to execute than
Fast-MDT-Tucker and UTF but more than half the time of SPCQV.
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(a) (b) (c) (d) (e) Fast- (£) (&) (M (i) (3)
Original Missing TVLR SPCQV MDT BCPF UTF TNN PSTNN SCTF

Figure 3.12 Results of recoverd RGB images completion using TVLR (c), SPCQV (d),
Fast-MDT-Tucker (e), BCPF (f), UTF (g), TNN (h), PSTNN (i), and SCTF (j). The im-
age types are listed in order from the top row: pappers, house, airplane, parrots, mandrill,
and lena.
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Table 3.2 Comparison of the peak signal-to-noise ratio (PSNR), the mean absolute error
(MAE), the structural similarity (SSIM) and the computing time (sec) of recovery RGB
images. Missing ratio is 85%.

Image name evaluation  TVLR SPCQV  Fast-MDT BCPF UTF TNN PSTNN SCTF
peppers PSNR 23.5 25.5 25.3 23.5 14.8 18.3 19.2 26.5
MAE 1.80 x 106 1.52 x 10 1.36 x 106 1.87 x 105 6.92 x 106 4.21 x 10° 3.62 x 105 1.32 x 108
SSIM 0.931 0.950 0.951 0.770 0.547 0.786 0.825 0.961
rumtime 37.07 54.19 3.02 88.59 0.61 19.52 21.2 38.20
house PSNR 24.3 26.8 25.4 25.5 17.3 22.4 22.5 27.3
MAE 1.42 x 106 1.27 x 10°  1.35 x 106 1.34 x 105 5.04 x 106 2.44 x 10° 2.36 x 105 1.24 x 108
SSIM 0.892 0.913 0.897 0.797 0.463 0.766 0.771 0.923
runtime 35.20 35.62 2.66 105.94 0.45 18.37 20.93 25.07
airplane PSNR 22.2 24.3 22.8 23.2 17.6 20.6 20.8 24.3
MAE 1.92 x 106 1.62 x 108 1.67 x 10° 1.73 x 105 3.91 x 10° 2.896 2.71 x 108 1.73 x 108
SSIM 0.655 0.669 0.706 0.797 0.225 0.364 0.378 0.685
runtime 42.95 38.99 2.85 59.28 0.40 18.37 20.77 14.69
parrots PSNR 24.6 25.4 24.5 24.5 15.6 20.4 21.2 25.9
MAE 1.48 x 106 1.33 x 10°  1.21 x 106 1.50 x 105 5.72 x 106 2.99 x 10 2.63 x 105 1.52 x 108
SSIM 0.899 0.902 0.906 0.820 0.375 0.721 0.748 0.913
runtime 40.63 51.44 2.73 55.44 0.39 17.80 20.48 49.53
mandrill PSNR 21.1 21.8 19.4 21.3 16.1 18.6 19.0 21.5
MAE 3.04 x 10 2,72 x 10 3.40 x 105 2.93 x 10¢ 5.81 x 105 4.24 x 105 4.02 x 10® 2.92 x 105
SSIM 0.667 0.720 0.648 0.583 0.375 0.545 0.567 0.706
runtime 31.75 63.97 4.87 99.38 0.42 17.51 20.35 18.97
lena PSNR 24.3 26.0 25.0 25.8 16.2 20.9 19.9 26.2
MAE 1.70 x 10° 1.43 x 10% 1.44 x 10° 1.52 x 105 5.81 x 105 3.01 x 10 2.77 x 105 1.52 x 108
SSIM 0.938 0.950 0.939 0.783 0.566 0.856 0.876 0.952
runtimes 36.94 45.99 4.61 72.94 0.41 17.44 19.95 23.93

(a)
Original Missing TVLR SPCQV MDT

(b)

()

()

(e) F-

(f)

BCPF UTF

TNN

(3)

PSTNN SCTF

Figure 3.13 Results of recoverd MRI image completion using TVLR (c¢), SPCQV (d),
Fast-MDT-Tucker (F-MDT) (e), BCPF (f), UTF (g), TNN (h), PSTNN (i), and SCTF
(j)- The time slice ¢ is 50. The 1st column is the image with 70% missing, the 2nd row is

the image with 95% missing.
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Table 3.3 Comparison of the peak signal-to-noise ratio (PSNR), the mean absolute error
(MAE), the structural similarity (SSIM) and the computing time (sec) of recovery MRI
images. Missing ratio are 70% and 95%. Note that SSIM is averaged over time.

missingrate evaluation =~ TVLR SPCQV  Fast-MDT BCPF UTF TNN PSTNN SCTF

70% PSNR 23.8 26.5 23.8 20.1 14.4 22.7 23.4 27.0
MAE 6.76 x 10 5.70 x 105 6.52 x 10° 1.26 x 10”7 2.86 x 10° 9.84 x 10° 8.76 x 10 5.21 x 10
SSIM 0.619 0.633 0.638 0.330 0.360 0.521 0.528 0.700
rumtime 39.24 230.91 7.67 176.43 7.30 77.64 90.86 48.12

95% PSNR 16.3 20.6 18.0 10.5 12.3 17.1 17.8 21.1
MAE 1.94 x 107 1.29 x 107 1.58 x 107 3.24 x 107 4.40 x 105 2.17 x 10 1.90 x 107 1.13 x 107
SSIM 0.139 0.391 0.312 0.207 0.071 0.203 0.220 0.459

runtime 99.94 187.58 11.68 130.48 6.54 77.03 87.95 70.42
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3.4.3 Applications to audio inpainting

In this section, we compare SCTF with existing methods for audio inpainting [120],
[121]. Audio inpainting is a method to estimate missing entries of a single audio signal. In
this study, we addressed two types of missing: clipping and random missing. Four levels of
clipping ¢ € {0.8,0.6,0.4,0.2} and four rates of missing {10%, 30%, 50%, 70%} are tested.
Noise was not assumed. We apply the proposed method to the audio inpainting problem
and compare it with QV regularization, spline interpolation, and orthogonal matching
pursuit (OMP) [120], [121]. OMP is one method of sparse modeling.

Clip level = 0.8 Clip level = 0.6 Clip level = 0.4 Clip level = 0.2 Clip level = 0.8 Clip level = 0.6 Clip level = 0.4 Clip level = 0.2
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Figure 3.14 Box-plot of SNR values in declipping experiments with clip levels 0.8, 0.6,
0.4, and 0.2. Segments of music and speech audio signals were recovered by quadratic
variation regularization (QV), cubic spline interpolation (Spline), orthogonal matching
pursuit (OMP), and SCTF (Proposed).
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Figure 3.15 Box-plot of SNR values in completion experiments with random missing rates
10%, 30%, 50%, and 70%. Segments of music and speech audio signals were recovered by
quadratic variation regularization (QV), cubic spline interpolation (Spline), orthogonal
matching pursuit (OMP), and SCTF (Proposed)

Figures 3.14 and 3.15 and Tables 3.4 and 3.5 show the completion accuracy SNR [dB]
for the proposed and existing methods, respectively. Table 3.4 shows that the proposed



Table 3.4 Average and standard deviation of SNR [dB] in declipping

clip level QV Spline OMP SCTF

Music(0.8) | 23.3+85 27.9+15.0 274+90 28.9+7.0
Music(0.6) | 13.0+7.0 163+12.1 21.94+7.4 17.9+6.1
Music(0.4) | 6.4+2.9 96+49 11.84+5.7 106+53
Music(0.2) | 2.0+1.4 3.4+3.7 1.6£19 3.5+3.1
Speech(0.8) | 25.6 £10.0 33.6+20.2 33.6 7.5 32.8+6.6
Speech(0.6) | 13.34+2.8 21.7£50 23.2+7.1 21.5+6.2
Speech(0.4) | 7.2+18 145+44 134+6.2 13.7+5.3
Speech(0.2) | 2.7+08 7.54+3.8 28+3.2 6.6 +4.0

Table 3.5 Average and standard deviation of SNR [dB] in completion

missing rate QV Spline OMP SCTF
Music(10%) | 27.44+10.5 28.84+13.7 272+11.6 29.14+10.9
Music(30%) | 20.84+9.9 21.9+13.1 20.8+11.7 23.0+11.1
Music(50%) | 16.4+8.7 16.84+12.0 163+10.8 16.1+7.9
Music(70%) | 12.2+7.6 11.1 +9.1 11.5+86 12.9+8.1
Speech(10%) | 31.2+76 37.84+9.9 3524+78 358+6.7
Speech(30%) | 22.7+7.3 27.3 £ 8.7 244+82 282+74
Speech(50%) | 16.7£7.0 19.6+9.2 17.3+84 171+£7.0
Speech(70%) | 10.7 £6.1 12.2 £ 8.3 111+74 13.3%+7.9

73
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A A
original missing completion

Figure 3.16 Extrapolation of a typical wave signal. The completion data is the image of
size 256 x 256 with 32 pixels missing from the periphery.

method performed the best in the clip levels 0.8 and 0.2 for Music and 0.4 for Speech in
terms of completion of clipped signals, while OMP was more accurate in the other cases.
For signals with large missing parts, such as clipped signals, a sparse modeling such as
OMP is considered more effective than the proposed method. In contrast, the proposed
method has high completion accuracy for random missing signals as shown in Table 3.5.

From the above experiments, the proposed method is highly accurate for Audio inpaint-
ing for some data. Still, other methods often shows better completion accuracy, which is
a challenge for audio inpainting problems.

3.4.4 Signal extrapolation

Experiments are conducted to apply the tensor completion technique using the proposed
method to the extrapolation of tensors. Here, experiments were conducted on artificially
created periodic signals. The experimental results are shown in Figure 3.16. This signal
is a sin function oscillating in the oblique direction. The size of the signal is 256 x 256,
and it is missing 32 pixels on the top, bottom, left, and right sides. The experimental
results show a very natural complement of the periodic function. This is considered to be
because the signal is typical and compatible with the proposed method that focuses on

similarity.

3.4.5 Analysis of algorithm
Convergence of algorithm

Monotonic convergence is expected because the proposed algorithm uses the MM algo-
rithm. Figure 3.17 shows that the objective function converges monotonically and that

the algorithm works correctly.
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10° 10t 102 103 10*

Figure 3.17 Optimization behavior: This figure shows 50 curves for 50 different initial
values. The completion problem deals with the completion of clipped 2D-sin.

Hyper-parameter sensitivities

We investigated the effects of hyper-parameters of SCTF in the completion. SCTF has
three hyperparameters: the delay window size 71,..., 7n, smoothing level A 1,..., A4 N,
AB1,.-.,Ap N and scale adjustment 74, 7p (see Equations (3.22)). We redefine each of the
three parameter typesas 7:=7 = ... =Tn, A== A1 = ... = AN =Ap1 = ... = Apn,
and n = n4 = np.

The experimental setup was the same as that in Section 3.4.1; we recovered the clipped
2D-sin image. Three hyper-parameters were varied in the range 7 € {1,9, 25,81, 151,315}
and A € {0,200, 400,600,800, 1000} and n € {0, 200,400,600 ,800,1000}. A declipping
experiment was performed for all the combinations to calculate the recovery accuracy.

Figure 3.18 shows the experiment’s five-time average of the PSNR. Increasing 7 im-
proves the accuracy, whereas making it too large worsens the accuracy. For example,
when 7 = 1, the algorithm matches the QV regularization and recovers smoothly; how-
ever, when the delay window is smaller than the clip range, such as when 7 = 9 or 7 = 25,
it cannot recover at all. Therefore, it is important to set 7 appropriately.
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Figure 3.18 Results of extrapolation using the proposed method for periodic and simple
signals.
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Chapter 4

Conclusions

Tensor completion by Automatic Rank Determination with Multiplicative
Gamma Process (ARD-MGP)

We proposed a method to avoid the model redundancy in ARD, an original Bayesian
CP decomposition, and achieved more accurate and efficient tensor completion and rank
estimation. A proposed method is called MGP-ARD), in which the MGP prior distribution
is set such that the core tensor is decayed. The redundancy of the model described here
refers to the overlap of the column vector of the factor matrices, which causes the original
ARD method to overestimate the rank. In the proposed method, MGP-ARD sets an
ordinal order to the factor matrix, eliminating the duplication of the column vectors
of the factor matrix. The avoidance of model redundancy leads to an improvement in
sensitivity to noise and estimation time.

The effectiveness of the proposed method is confirmed by experiments on synthetic data
and real data. In the experiment of tensor completion on synthetic data, we confirmed that
the rank estimation accuracy is improved compared to the original method by removing
the duplication of the column vectors of the factor matrices. This also ensured that
sensitivity to noise was avoided. In the experiments of tensor completion on real data, we
mainly investigated the accuracy and estimation time of completion estimation for image
inpainting. We confirmed that the estimation time was reduced while maintaining high
estimation accuracy. In addition, because of its robustness to noise, MGP-ARD is a very
good technique that provides not only rank estimation and tensor completion but also
tensor decomposition.

Tensor completion by Smooth Convolution Tensor Factorization (SCTF)

We proposed a new model and algorithm for tensor completion using a convolution of
smooth-factor tensors. Because the proposed method corresponds to a rank-1 decompo-
sition in the delay-embedded space, it can achieve high completion accuracy in a short



78

computation time. In the optimization formulation, we extended the existing mathemat-
ical model based on the inverse MDT by adding a penalty term for the factor tensor
corresponding to the delay-embedding width. In addition, we set smoothing constraints
for the factor to narrow down the candidate solutions. As for the algorithm for solving
the optimization, we employed the MM algorithm with the expectation of monotonic
convergence. Our experiments mainly completed clipped and random missing image data
and confirmed that the proposed method achieves high completion accuracy with low
computational cost. In the experiment, we also confirmed the effect of the completion
accuracy on the variation in the delay-embedding width and monotone convergence of the
algorithm.

Overall summary and future outlook on research

In this study, we proposed two methods: Automatic Rank Determination with Mul-
tiplicative Gamma Process (ARD-MGP) and Smooth Convolution Tensor Factorization
(SCTF) for the purpose of accurate and efficient tensor completion.

Concerning ARD-MGP, we will attempt to expand on the aspects related to a rank
determination conducted concurrently with the tensor completion. The proposed method
works well for rank estimation when the true rank is small, such as 3 or 5. In the future, we
aim to develop a method that can accurately estimate ranks, even for larger ranks. Also,
future works include the extension of this study to other tensor decomposition models,
such as tensor train and ring decompositions [122], [123], [122], [124].

As for SCTF, we would like to extend a discussion on the convolution. In recent years,
Deep Image prior (DIP) [125] has attracted attention as an image completion technique
related to convolution. DIP uses Convolutional Neural Network (CNN) as its architecture.
While image completion using CNN often requires a large amount of training data [126],
[127], DIP is an optimization method that minimizes the difference between the completed
image obtained from the untrained CNN and the known image to be completed. In other
words, DIP does not need training data. In considering the completion performance of
DIP, it is necessary to evaluate whether the convolution architecture itself has completion
capability. Based on that, we would like to attempt to theoretically and experimentally
prove the validity of the completion capability of CNN by considering multi-stage tensor
convolution operations.
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Appendices

Derivation of approximate posterior distribution

This section describes the derivation of the approximate posterior distribution ¢ of
parameter ©@ = {AM .. AN X\ § 7.} in Chapter 2.

Derivation of ¢(A™)
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Derivation of ¢(\)
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ey = (R—r+1)(co—1)+eg

fu = ZEQ[AT] H Eq[01] + fo.

h=r I=1,l#r
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Derivation of ¢(7,.)

In g, (7.) = Ego\r) [Inp(Ya, ©)] + const
o Eqor) [Inp(Pal{A™W )1 70)] + Inp(re)

R
r=1

+ (CLO — 1) In Te — boTC

2

TC
= =5 Eyam)

F 11y IN

— | bo + _Eq(A(n))

=In Ga(Tc\aM, bM),

where parameters are defined as
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Derivation of approximate posterior distribution
L is calculated as follows
L(g)= [ q(©)] ie)
0= [a@m {2

_ /q(@)lnp(yg,@)d@ - /q(@) In ¢(©)dO

= Ey0) [Inp(YVa, ©)] — Eye) [In¢(O)]
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+Eq) [mp(A)] + Eqes) [Inp(9)] + Eqg(r) [Inp(7e)] = By ramy, [Z In q(A(”))]
— By [Ing (N)] = Eqs) In q(8)] — Eq(r,) [Ing (7)) -

Next, the expected value E of each term is computed.

Eq({A(”)}J-C) [Inp(Yal {A(")} )] = % In(27) + —(E, [In7.))

1
- §Eq [TC]EQ
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The above is the calculation of the expected value of each term, E. Substitute these
equations into the expression for the variational lower bound L(q).
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Derivation of approximate posterior distribution

T
-/ N(yz.l ..... (@@:1) (®a§:>) v (@a%i)
n#l n#l n#l

T T
<o (@)ag:z) aE::i,T;l+(®&£Zi> y (@agzi)

n#l n#l

,2@&0.

The following formula for the marginal Gaussian distribution is used in the transformation
of the formula in the fourth line. The process of deriving the formula is described in [99].
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~ Formula for Gaussian Peripheral Distribution ~

Suppose that the Gaussian distribution around « and the conditional Gaussian dis-

tribution of y given x are given by

p(x) = N(zlp,A™)
p(yle) = N(y|Az+b L")

The marginal distribution of y at this time is

p(y) =N(ylAp+b L7 + AATTAT).
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