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Chapter 1

　　Introduction

1.1 Tensor completion

Several real-world data are multidimensional. For example, a recommender system is

based on customer purchase history data of customer × merchandise × time [1], image

processing is based on three-dimensional data of height × width × channel [2], [3], video

processing is based on four-dimensional data of frame × height × width × channel [4],

[5], knowledge graph is facts in the triple form of subject entities × relation × object

entities [6], and EEG analysis is based on three-dimensional data of sensors × time ×
frequency [7], [8], [9]. Tensors are mathematical models that represent such data. Tensor

is defined as a multidimensional array and is a generalization of a vector and matrix

[10]. The data modeled as tensor is often corrupted by measurement errors and missing

observations [11], [12], [3], [13], [14], [15]. Also, in the case of the recommender system,

unrated items are considered missing values (not every customer can evaluate every item).

Tensor completion is the task of filling-in the missing values of the tensor data using the

Prior : smoothness Prior : similarity
Figure 1.1 An example of the signal completion by prior. In this example, a completion
based on similarity prior is the natural.
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Item1 Item2 Item3 Item4 Item5

Person
A 4 1 1 4 1
Person
B 5 2 1 5 1
Person
C 1 5 5 1 5
Person
D 5 1 2 5 1
Person
E 1 5 4 1 5
Person
F 1 ? ? 1 ?

Item1 Item2 Item3 Item4 Item5

Person
A 4 1 1 4 1
Person
B 5 2 1 5 1
Person
C 1 5 5 1 5
Person
D 5 1 2 5 1
Person
E 1 5 4 1 5
Person
F 1 5 5 1 5

Component 1

Component 2

≒

＋ ＋≒ ・・・・・・

Generalization

Component 2Component 1

＋

Figure 1.2 An example of collaborative filltering by low-rank prior. In this example, the
assumption is made that the matrix is rank 2, and the two components are extracted.
This information is used to predict (completion) the unrated items (missing) for new
customers.
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values of the reference elements [2], [16], [17], [18].

Tensor completion is an ill-posed problem that does not satisfy solution uniqueness [19]

because the number of elements of the tensor to be estimated (number of parameters) is

greater than the number of observations (number of equations). Thus, we consider the

prior structure in the target tensor to narrow down the solution set. The completion value

should be appropriate as per the properties of the analyzed data, and it is important to

employ prior in accordance with these properties flexibly. Prior includes smoothness [20],

[21], [16], nonnegativity [22], [23], [24], sparsity [25], low-rank [3], [2], etc.

We use several examples of tensor completion to explain the prior. First, we consider

signal completion as an example. Figure 1.1 shows the completion of the signal (first-

order tensor) with the center portion missing. As seen in Figure 1.1, there are countless

candidates for the solution to complete the missing parts, and the solution varies greatly

depending on the prior. In this example, since there is a periodic pattern in the observed

area, it is natural to use similarity prior.

Recommender system, especially in collaborate filtering, often uses low-rank prior [26],

[27]. The task of the collaborate filtering is to predict (completion) ratings for unrated

items (missing values) [28], [29]. In collaborative filtering, customer reviews of the items

are represented by a matrix of customers × items. Assuming that the matrix is low-rank,

the idea is that items that have already been highly rated will also be highly rated by

those who have yet to rate them. Also, the number of ranks corresponds to the number

of latent shared features in the items. Figure 1.2 shows a collaborative filtering example.

In the example in Figure 1.2, by assuming that the rank of a matrix is 2, the components

of the two types of items are captured, and forecasts are executed for each type.

In the case of image completion, smoothness prior and low-rank prior are important

factors. In image data, adjacent pixels tend to be of similar colors; smoothness often

appears. Also, images tend to show the same pattern for straight lines (see Figure 1.3),

which induces low-rankness of the image data. Figure 1.4 shows image completion per-

formed using low-rank prior and smoothness prior. Both priors can achieve relatively high

precision completion, but there are differences in the completion results. For example,

smooth prior results are slightly blurred, and low-rank prior shows vertical and horizontal

streaks.

Here are two things we note about the prior-based image completion. First, note that

transforming the space changes the natural prior. For example, smoothness in the original

space corresponds to sparsity in the frequency space. This is because smoothness means

pixel values are concentrated in the low-frequency components in the frequency space.

Figure 1.5 shows the image’s intensity and Discrete Cosine Transform (DCT) coefficients.

As can be seen in the figure, there is no sparsity in the image itself, but sparsity appears

in the frequency space.

Also, note that smoothness and low-rankness are not valid prior at any time. Image



4

overlay

Figure 1.3 The figure shows the focus on the similarity of the lines in the image (low-rank
prior). The graph on the right shows a cross-section of the image (red and blue lines),
each of which shows many similar parts.

22低ランクと平滑性の組み合わせ
原画像 未完画像

核ノルム&TV

-- An example of result by LTVNN method 
[Han et al., 2014] --

核ノルムのみ TVのみ
(a) True

22低ランクと平滑性の組み合わせ
原画像 未完画像

核ノルム&TV

-- An example of result by LTVNN method 
[Han et al., 2014] --

核ノルムのみ TVのみ
(b) Missing

22低ランクと平滑性の組み合わせ
原画像 未完画像

核ノルム&TV

-- An example of result by LTVNN method 
[Han et al., 2014] --

核ノルムのみ TVのみ

(c) Low-rankness

22低ランクと平滑性の組み合わせ
原画像 未完画像

核ノルム&TV

-- An example of result by LTVNN method 
[Han et al., 2014] --

核ノルムのみ TVのみ

(d) Total Variation

Figure 1.4 Example of RGB image completion by low-rank prior and smoothness prior.
Total Variation is used for smooth prior. The experimental result is based on the existing
method Linear Total Variation approximate regularized Nuclear Norm (LTVNN) [30].

smoothness tends to remove high-frequency components such as edges. On the other

hand, image low-rank information has drawbacks such as difficulty in capturing diagonal

features. In fact, it is known that rotational transformations can significantly alter the

rank of an image [31]. Thus, prior should be employed flexibly according to the features

of the image.

Our thesis focuses on low-rank prior in tensor completion. Unlike other priors, low-rank

priors are tensor-specific features that appear only when data is represented as a tensor.

In addition, the method using low-rankness in tensor completion is mainstream. Section

1.5 discusses Low-Rank Tensor Completion (LRTC).
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Blocked-wise DCTOriginal

Figure 1.5 The figure shows the histogram of image intensities and the histogram of DCT
coefficients when the blocked-wise DCT transform is applied. Although the image itself
is not sparse, it is sparse in frequency space.

1.2 Preliminaries for handling tensors

Tensor is defined as multidimensional array, following the [10]. In mathematical no-

tation, variables with subscripts such as xij or xijk are described, and the number of

subscripts is referred to as the order. That is, a zero-order tensor is a scalar, a first-order

tensor is a vector, a second-order tensor is a matrix. Figures 1.6, 1.7, 1.8 show examples

of tensors. The axes of a tensor are defined as mode, and the operation that fixes a specific

mode (mode n) and unfolds the tensor into a matrix is defined as mode n-unfold (See

figure 1.9).

Figure 1.6 vector（first order
tensor）

Figure 1.7 matrix（second
order tensor）

Figure 1.8 tensor（third or
more order）

Vectors are represented as lowercase boldface a ∈ RI , matrices as uppercase A ∈ RI×J ,

and higher-order tensors are written by calligraphic letters A ∈ RI1×···×IN . A single entry

of a tensor is represented as Ai1,...,iN (Only Chapter 3 expresses Ai1,...,iN as A(i1, . . . , iN).).
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Figure 1.9 the example of mode 1-unfold of third order tensor A ∈ RI1×I2×I3

An N − 1th order tensor that fixes only one mode of the tensor is denoted as Ain :=

A:,...,in,...,:

The inner product of a tensor is defined as ⟨A,B⟩, where

⟨A,B⟩ :=
I1∑

i1=1

· · ·
IN∑

iN=1

Ai1,...,iNBi1,...,iN . (1.1)

The Frobenius norm is defined as ∥A∥F :=
√
⟨A,A⟩.

The Hadamard product of the matrices A ∈ RI×J and B ∈ RI×J is A ⊛ B ∈ RI×J ,

and the Kronecker product of the matrices A ∈ RI×J and B ∈ RK×L is A⊗B ∈ RIK×JL,

and the Khatri-Rao product of the matrices A ∈ RI×K and B ∈ RJ×K is denoted by

A ⊙B ∈ RIJ×K , respectively. In particular, the Hadamard product of a set of matrices

is denoted by

⊛
n

A(n) := A(N) ⊛A(N−1) ⊛ · · ·⊛A(1), (1.2)

and the Khatri-Rao product of a set of matrices in reverse order is denoted by⊙
n

A(n) := A(N) ⊙A(N−1) ⊙ · · · ⊙A(1). (1.3)

A mode-n unfold (matricization) of a tensor X is denoted as X(n) ∈ RIn×
∏

k ̸=nIk . A

mode-n multiplication between a tensor X ∈ RI1×···×IN and a matrix/vector A ∈ RR×In

is denoted by X ×n A ∈ RI1×···×In−1×R×In+1×···×IN , where the entries are given by

yi1,...,in−1,r,in+1,...,iN =
In∑

in=1

yi1,...,in−1,in,in+1,...,iNar,in , (1.4)

and we have Y(n) = AX(n). We consider N matrices U (n) ∈ RIn×Rn (n = 1, . . . , N) and

an N -th order tensor X ∈ RR1×···×RN . The all-mode product is denoted as

X × {U} := X ×1 U
(1) ×2 · · · ×N U (N). (1.5)

A outer product of N vectors a(1) ∈ RI1 , . . . ,a(N) ∈ RIN is denoted a(1) ◦a(2) ◦· · ·◦a(N) ∈
RI1×···×IN , where the entries are given by

{a(1) ◦ · · · ◦ a(N)}i1,...,iN := a
(1)
i1
· · · a(N)

iN
.
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1.3 Tensor decompositions and tensor ranks

The tensor increases exponentially in the number of its elements with the number of

order. In addition, since many data contain noise, it is often required to extract essential

features hidden in high-dimensional data. From the analogy of the matrix factorization

[32], [33], which is a low-rank approximation method for matrices, we consider decom-

posing tensors into tensors with small degrees of freedom (latent factors). This is defined

as a tensor decomposition [10]. There are two standard representative models of tensor

decomposition: CANDECOMP/PARAFAC (CP) decomposition1 and Tucker decompo-

sition [10]. CP decomposition is a method of approximating an N -th order tensor of the

size I1× · · ·× IN by a sum of R rank-1 tensors (the outer product of N vectors a
(n)
:,r ) [34],

[35], [36]. Taking a N -th order tensor X ∈ RI1×···×IN as an example, CP decomposition

of the tensor is defined as

X :=
R∑

r=1

a(1)
:,r ◦ · · · ◦ a(N)

:,r . (1.6)

The entries in X can be computed individually as

Xi1,i2,...,iN =
R∑

r=1

a
(1)
i1,r
a
(2)
i2,r
· · · a(N)

iN ,r. (1.7)

Figure 1.10 shows the diagram for CP decomposition of the third-order tensor. A matrix of

the size In×R with the column vector a
(n)
:,r is defined as a factor matrix and corresponds

to a latent factor in CP decomposition. Latent factor matrix A(n) (n = 1, · · · , N) is

defined as

A(n) :=
[
a
(n)
:,1 , . . . ,a

(n)
:,r , . . . ,a

(n)
:,R

]
∈ RIn×R. (1.8)

Also, considering that tensors A(n) are normalized to length 1 and their weights are

introduced by λ := [λ1, λ2, . . . , λR] ∈ RR, the CP decomposition is also defined as

X =
R∑

r=1

λrã
(1)
:,r ◦ · · · ◦ ã(N)

:,r , (1.9)

where ∥ã(n)
:,r ∥ = 1.

On the other hand, the Tucker decomposition is represented by factor matrices and a

core tensor that describes the relationships between the factors [37], [13]. Given a tensor

1 CP decomposition is also called ”canonical polyadic” in honor of Hitchcock [34], who is credited
with first thinking of the concept.
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X ∈ RI1×···×IN and U (n) ∈ RIn×Rn (n = 1, 2, . . . , N), Tucker decompostion of the tensor

is

X := G × {U}, (1.10)

where G ∈ RR1×R2×···×RN is core tensor. The entries in X can be computed individually

as

Xi1,i2,...,iN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑

rN=1

Gr1,r2,...,rNa
(1)
i1,r1

a
(2)
i2,r2
· · · a(N)

iN ,rN
. (1.11)

Figure 1.11 shows the diagram for Tucker decomposition of the third-order tensor.

Since the Tucker decomposition is equal to CP decomposition when its core tensor

is super-diagonal (Figure 1.12), we can consider that CP decomposition is a more con-

strained model than Tucker decomposition [38]. Here, the super-diagonal (In case of

G ∈ RR×R×···×R, U (n) ∈ RIn×R (n = 1, 2, . . . , N) ) is defined as

Gi1,i2,...,iN :=

{
λr i1 = i2 = · · · = iN = r

0 otherwise
. (1.12)

Figure 1.10 CP decomposition Figure 1.11 Tucker decomposition

= 𝜆!𝜆" 𝜆#・・・

Figure 1.12 Tucker decomposition when the
core tensor is super-diagonal

=
𝜎!
𝜎"

𝜎#
・・・

45

x =





1
2
3
4
5
6
7





(1)

H†
3(x) = fold(7,3)(Sx) (2)

=





1 2 3
2 3 4
3 4 5
4 5 6
5 6 7
6 7 1
7 1 2





(3)

[H†
3(X)](t) =

1

3

3∑

k=1

X((t− k mod T ) + 1, k). (4)

X = fold(u) (5)

fold(v)∗ (6)

1

x =





1
2
3
4
5
6
7





(1)

H†
3(x) = fold(7,3)(Sx) (2)

=





1 2 3
2 3 4
3 4 5
4 5 6
5 6 7
6 7 1
7 1 2





(3)

[H†
3(X)](t) =

1

3

3∑

k=1

X((t− k mod T ) + 1, k). (4)

X = fold(u) (5)

fold(v) ∗
∏

n

τn (6)

1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

E. MULTIWAT DELAY-EMBEDDING (MDT) AND
CONVOLUTION OF TENSOR
We extend the discussion on subsection IV-A, IV-B, IV-C,
IV-D in one-dimensional data (vector) to multidimensional
data.

DT can be naturally extended for an N -th order tensor
X 2 RT1⇥···⇥TN with size T = (T1, . . . , TN ). Let us
consider N duplication matrices Sn 2 {0, 1}Tn⌧n⇥Tn (n =
1, . . . , N) with window size ⌧ = (⌧1, . . . , ⌧N ) 2 RN

(See Equation (2)). Multiway Delay-embedding Transform
(MDT) is defined using all-mode product and folding as

H⌧ (X ) := fold(T ,⌧ )(X ⇥ {S}) (14)

where fold(V ,v) : RV1v1⇥···⇥VN vN ! RV1⇥v1⇥···⇥VN ⇥vN is
a folding operator from an N -th order tensor to the 2N -th
order tensor. On the other hand, the inverse MDT is defined
as

H†
⌧ (X ) := unfold(T ,⌧ )(X ⇥ {S

†}) (15)

where fold(V ,v) : RV1⇥v1⇥···⇥VN ⇥vN ! RV1v1⇥···⇥VN vN is
a folding operator from an 2N -th order tensor to the N -th
order tensor.

Next, we show that the inverse MDT of a rank-1 tensor
under "size-aligned clipping" is equivalent to cyclic convolu-
tion. Let consider

bunfold(T ,⌧ )(X ) ' vec(A)vec(B)T

= ab
T 2 R

Q
n Tn⇥

Q
n ⌧n . (16)

where A 2 RT1⇥···⇥Tn , B 2 R⌧1⇥···⇥⌧n are factor
tensors, and we define a := vec(A) 2 R

Q
n Tn , b :=

vec(B) 2 R
Q

n ⌧n . Then, using the clipped matrix Pn =
(I⌧n O)T 2 {0, 1}Tn⇥⌧n (n = 1, . . . , N), we define a tensor
B̃ = B ⇥ {P } 2 RT1⇥···⇥Tn of the same size as A. The
inverse DT of rank 1 tensor X ' bfold(⌧ ,T )(ab

T) is derived
as
h
H

†
⌧ (bfold(⌧ ,T )(ab

T))
i
(t1, . . . , tN )

=
1

Q
n ⌧n

⌧1�1X

k1=0

· · ·

⌧N�1X

kN=0

A(t1 � k1, . . . , tN � kN )B(k1, . . . , kN )

=
1

Q
n ⌧n

T1�1X

k1=0

· · ·

TN�1X

kN=0

A(t1 � k1, . . . , tN � kN )B̃(k1, . . . , kN )

=
h
A ⇤N B̃

i
(t1, . . . , tN ). (17)

Thus, under "size-aligned clipping", reverse delay embed-
ding and cyclic convolution are equivalent.

Furthermore, we show that the rank 1 tensor has sufficient
representation ability, as well as Subsection IV-C. Rank-1
tensor model of X ' uv

T 2 R
Q

n Tn⇥
Q

n ⌧n can generate
any X 2 RT1⇥···⇥Tn . Let us

u =
⇥

vec(X )
⇤
, v =

 Q
n ⌧n

0Q
n ⌧n�1

�
, (18)

where 0Q
n ⌧n�1 is a (

Q
n ⌧n � 1)-dimensional vector of

zeros, then we have
⇥
H†

⌧ (bfold(⌧ ,T )(uv
T))

⇤
(t1, . . . , tN ) = X (19)

Since this operation is equivalent to a cyclic convolution of
a tensor X with only one element, the tensor X is derived
identically (See Figure ). This fact suggests us that the
inverse DT of an unconstrained tensor even rank-1 is over-
parameterized and it does not work as the model of smooth
factor tensors.

V. PROPOSED METHOD
Here, we propose a new tensor completion model. We assume
the observed tensor Y 2 R

T1⇥···⇥TN is incomplete that some
entries have no values. The projection vector O 2 {0, 1}N

passes observed entries and make missing entries to be zero.
The entries are given by

O(t1, . . . , tN ) =

(
1 Y(t1, . . . , tN ) is observed
0 otherwise

. (20)

The problem here is to obtain a complete signal⇥
H†

⌧ (bfold(⌧ ,T )(ab
T))

⇤
. In this paper, we also impose

smoothness constraint to A and B. Then, the optimization
problem is given by

arg min
A,B

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

F

+ �AkL ⇤N Ak2
2 + �BkL ⇤N Bk2

2 (21)
+ ⌘AkAk2

2 + ⌘BkBk2
F

s.t. B(t1, . . . , tN ) = 0 (22)
8t1 = ⌧1 + 1, . . . , T1, . . . , tN = ⌧N + 1, . . . , TN

(23)
(24)

where ln = [1, �1, 0, . . . , 0] 2 RTn , L := lN ⌦ · · · ⌦
l1 2 RT1⇥···⇥TN , and A, B 2 RT1⇥···⇥TN are bases of
complete signal. Equation (24) reconstructs the signal in
the first term. The second and third terms smooth a, b,
and the forth and fifth terms adjust the scale of a, b. The
equality constraint is for clipping based on Equation (12).
Note that when ⌧ = 1, Equation (24) is equivalent to QV
regularization. Converting constrained optimization problem
(24) to an unconstrained optimization problem, including a
penalty term, obtains equation

arg min
A,B

L(A, B) :=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

2

(25)

+ �kI⌧ ~ Bk2
2

+ �AkL ⇤N Ak2
2 + �BkL ⇤N Bk2

2

(26)
+ ⌘AkAk2

2 + ⌘BkBk2
2, (27)

where I⌧ = foldT (i⌧1 ⌦ . . . ⌦ i⌧N ),
i⌧ := [0, · · · , 0| {z }

⌧n

, 1, · · · , 1| {z }
Tn�⌧n

] 2 RN .

A. ALGORITHM FOR SOLVING OPTIMIZATION
In this study, we solve the optimization problem (27) using
the Majorization-Minimization (MM) [?], [?]. The MM al-
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Hence, from Equation (7), (9), the t-th element of the inverse
DT for a single basis urv

T
r is

[H†
⌧ (urv

T
r )](t) =

1

⌧

⌧X

k=1

ur((t � k mod T ) + 1)vr(k)

=
1

⌧
[ur ⇤ vr](t), (10)

where ⇤ is linear convolution operation. From Equation (10),
the inverse DT of the rank-1 basis can be formulated in terms
of linear convolution.

C. SUFFICIENT REPRESENTATION ABILITY EVEN WITH
A RANK-1 MATRIX
Here, we discuss the low rank representation of X . From
Equation (10), rank of X is the number of convolutional
bases. Degree of freedom of each convolutional basis decides
the representation ability of the model. In this paper, we con-
sider X as a rank-1, and show it has sufficient representation
ability for vector reconstruction. Rank-1 matrix model of
X = uv

T 2 RT⇥⌧ can generate any x 2 RT . Let us

u =
⇥

x
⇤
, v =


⌧

0⌧�1

�
, (11)

where 0⌧�1 is a (⌧ �1)-dimensional vector of zeros, then we
have

H†
⌧ (uv

T) = H†
⌧

�⇥
⌧x 0T,⌧�1

⇤�
= x. (12)

This fact suggests us that the inverse DT of an unconstrained
matrix even rank-1 is over-parameterized and it does not
work as the model of smooth vector. In this study, we con-
sider to impose additional constraints to u and v (see Section
??).

D. CONSTRUCTION OF CYCLIC CONVOLUTION
(SIZE-ALIGNED CLIPPING)
Here we describe that the inverse DT corresponds to a cyclic
convolution under certain constraints.

First, consider a rank-1 approximate model X ' uv
T 2

RN⇥⌧ based on the ideas in Subsection IV-C. Let consider
clipped matrix P = (I⌧ O)T 2 RT⇥⌧ . Now, we set v 2 R⌧

to be the same vector as the dimension of u 2 RT , i.e., we
define

ṽ := Pv = [v(1), v(2), · · · v(⌧), 0, · · · , 0| {z }
T�⌧

]T 2 RT
. (13)

We call equation (13) as “size-aligned clipping,” where the
sizes of the two bases are equal and the elements of one basis
are zero after the size of the delay window. Then, the t-th
element of inverse DT of the rank-1 basis is defined to be

[H†
⌧ (uṽ

T)](t) =
1

⌧

TX

t=1

u((n � t mod T ) + 1)ṽ(t)

=
1

⌧
[u ⇤N ṽ](t), (14)

where ⇤T is the cyclic convolution of period T . From the
above discussion, assuming constraint “size-aligned clip-
ping,” the inverse DT corresponds to a cyclic convolution.

E. MULTIWAT DELAY-EMBEDDING (MDT) AND
CONVOLUTION OF TENSOR
We extend the discussion on subsection IV-A, IV-B, IV-C,
IV-D in one-dimensional data (vector) to multidimensional
data.

DT can be naturally extended for an N -th order tensor
X 2 RT1⇥···⇥TN with size T = (T1, . . . , TN ). Let us
consider N duplication matrices Sn 2 {0, 1}Tn⌧n⇥Tn (n =
1, . . . , N) with window size ⌧ = (⌧1, . . . , ⌧N ) 2 RN

(See Equation (3)). Multiway Delay-embedding Transform
(MDT) is defined using all-mode product and folding as

H⌧ (X ) := fold(T ,⌧ )(X ⇥ {S}) (15)

where fold(V ,v) : RV1v1⇥···⇥VN vN ! RV1⇥v1⇥···⇥VN ⇥vN is
a folding operator from an N -th order tensor to the 2N -th
order tensor. On the other hand, the inverse MDT is defined
as

H†
⌧ (X ) := unfold(T ,⌧ )(X ⇥ {S

†}) (16)

where unfold(V ,v) : RV1⇥v1⇥···⇥VN ⇥vN ! RV1v1⇥···⇥VN vN

is a unfolding operator from an 2N -th order tensor to the N -
th order tensor.

Next, we show that the inverse MDT of a rank-1 tensor
under "size-aligned clipping" is equivalent to cyclic con-
volution. Let consider factor tensors A 2 RT1⇥···⇥Tn ,
B 2 R⌧1⇥···⇥⌧n , and we define a := vec(A) 2 R

Q
n Tn ,

b := vec(B) 2 R
Q

n ⌧n . Then, rank 1 tensor X is derived as

bunfold(T ,⌧ )(X ) ' vec(A)vec(B)T

= ab
T 2 R

Q
n Tn⇥

Q
n ⌧n , (17)

where bunfold(V ,v) : RV1⇥v1⇥···⇥VN ⇥vN ! R
Q

n Vn⇥
Q

n vn

is a unfolding operator from an 2N -th order ten-
sor to the block matrix. We also define bfold(V ,v) :
R

Q
n Vn⇥

Q
n vn ! RV1⇥v1⇥···⇥VN ⇥vN as the inverse trans-

formation of bunfold(V ,v). While, using the clipped matrix
Pn = (I⌧n O)T 2 {0, 1}Tn⇥⌧n (n = 1, . . . , N), we define
a tensor B̃ = B ⇥ {P } 2 RT1⇥···⇥Tn of the same size as
A. The inverse DT of rank 1 tensor X ' bfold(⌧ ,T )(ab

T) is
derived as

h
H

†
⌧ (bfold(⌧ ,T )(abT))

i
(t1, . . . , tN )

=
1

Q
n ⌧n

⌧1�1X

k1=0

· · ·

⌧N �1X

kN =0

A(t1 � k1, . . . , tN � kN )B(k1, . . . , kN )

=
1

Q
n ⌧n

T1�1X

k1=0

· · ·

TN �1X

kN =0

A(t1 � k1, . . . , tN � kN )B̃(k1, . . . , kN )

=
h
A ⇤N B̃

i
(t1, . . . , tN ). (18)

Thus, under "size-aligned clipping", reverse delay embed-
ding and cyclic convolution are equivalent.

Furthermore, we show that the rank 1 tensor has sufficient
representation ability, as well as Subsection IV-C. Rank-1
tensor model of X ' uv

T 2 R
Q

n Tn⇥
Q

n ⌧n can generate
any X 2 RT1⇥···⇥Tn . Let us

u =
⇥

vec(X )
⇤
, v =

 Q
n ⌧n

0Q
n ⌧n�1

�
, (19)
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Figure 4.2 Cyclic convolution of a tensor X with only one element fold(v) corresponds to
the Equation (4.14). This operation is identically derived from the tensor X .

Figure 1.13 Singular value decomposition
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CP decomposition is a natural extension of Singular Value Decomposition (SVD) [39],

and we can interpret the core tensor as representing something like singular values in CP

decomposition. Figure 1.13 shows the SVD.

The concept of rank exists in tensors as well as in matrices. In general, tensor rank refers

to CP rank. CP rank is the minimum value of R in a decomposition that reconstructs

the original tensor without error (referred to as exact decomposition) [34], [40]. As an

example of CP rank, we present the third-order tensor X ∈ RI1×I2×I3 . Suppose that the

CP decomposition of X is expressed as

X =
R∑

r=1

λrã
(1)
:,r ◦ ã(2)

:,r ◦ ã(3)
:,r , (1.13)

then the minimum possible R is the CP rank. Here, we describe some peculiar properties

of CP rank. First, CP rank is that there is no straightforward algorithm for determining

the rank of a specific given tensor. In fact, it is NP-hard to find the CP rank of a given

tensor [41]. Second, the uniqueness of the tensor decomposition is conditioned by CP

rank R. When the CP decomposition of a tensor X is expressed in Equation (1.6), the

tensor X satisfies uniqueness if the following conditions are satisfied.

N∑
n=1

kA(n) ≥ 2R + (N − 1), (1.14)

where kA(n) is named k-rank and is defined as the maximum value k such that any k

columns of A(n) are linearly independent [40]. Finally, it is possible that the best rank-k

approximation may not even exist. [42], [43] explain it with the following example. We

consider the rank-3 tensor

X = a
(1)
:,1 ◦ a

(2)
:,1 ◦ a

(3)
:,2 + a

(1)
:,1 ◦ a

(2)
:,2 ◦ a

(3)
:,1 + a

(1)
:,2 ◦ a

(2)
:,1 ◦ a

(3)
:,1 , (1.15)

where A(1) ∈ RI1×2, A(2) ∈ RI2×2, and A(3) ∈ RI3×2, and each has linearly independent

columns. This tensor can be approximated arbitrarily closely by a rank-2 tensor

Y = α

(
a
(1)
:,1 +

1

α
a
(1)
:,2

)
◦
(
a
(2)
:,1 +

1

α
a
(2)
:,2

)
◦
(
a
(3)
:,1 +

1

α
a
(3)
:,2

)
− αa(1)

:,1 ◦ a
(2)
:,1 ◦ a

(3)
:,1 . (1.16)

In fact, from Equation

∥X −Y∥ = 1

α
∥a(1)

:,2 ◦ a
(2)
:,2 ◦ a

(3)
:,1 + a

(1)
:,2 ◦ a

(2)
:,1 ◦ a

(3)
:,2 + a

(1)
:,1 ◦ a

(2)
:,2 ◦ a

(3)
:,2 +

1

α
a
(1)
:,2 ◦ a

(2)
:,2 ◦ a

(3)
:,2 ∥,

(1.17)

the distance between two tensors can be described as X and Y can be arbitrarily close

at α → ∞. This example shows that the rank-2 tensor converges to a rank other than

rank 2, indicating the difficulty of the best rank-k approximation.
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On the other hand, there is also the concept of n-rank for tensor rank [44], [45]. N-

rank is also known as Tucker rank. Tucker rank of a tensor X ∈ RI1×···×IN is the ranks

of matrices X(n). That is, if the rank of the n-unfold is Rn, N matrices are generated

for n-unfold, so Tucker rank are obtained in tuple (R1, . . . , RN). We can easily find an

exact Tucker decomposition of rank (R1, . . . , RN) [10]. In general, the rank of a tensor

refers to CP rank, but Tucker rank is also often considered when considering low-rank

approximations of the tensor. Here, we define fRank(X ) as the function that returns the

rank of a tensor X . However, whether fRank(X ) refers to the CP rank or the Tucker rank

depends on the problem (we will specify the details in each case).

1.4 General observation model for tensor completion

The tensor completion discussed in Section 1.1 is again defined mathematically. Equa-

tion (1.18) shows the commonly used general observation model of the tensor data for

tensor completion.

Y = O ⊛ (X + E). (1.18)

X represents the true tensor, O is the mask, E is the noise, and Y is the observed tensor.

The mask O is defined as

Oi1,i2,...,iN =

{
1 Yi1,i2,...,iN is observed

0 otherwise
. (1.19)

The unknown variable in Equation (1.18) are X and E . X has a choice of prior structure,

and E has a choice such as Gaussian, Laplacian, Poisson, and so on. We consider the

inverse problem of estimating an unknown true tensor X from an observed tensor Y .

Here, we assume Gaussian in the noise tensor E . Therefore, an important discussion in

our study is about the mathematical model that represents the prior of the true tensor

X . As described in Section 1.1, we focus on low-rank prior.

1.5 Low-rank tensor completion (LRTC)

Low-rank tensor completion (LRTC) is the most major tensor completion technique.

LRTC has two approaches: rank minimization and tensor decomposition. Rank mini-

mization can be defined as

min
X

frank(X )

s.t. ∥O ⊛ (Y −X )∥F < δ, (1.20)
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where δ is a value dependent on noise, and the tensor decomposition can be defined as

min
A(1),A(2),...,A(N)

∥O ⊛ (Y − f(A(1),A(2), . . . ,A(N)))∥2F , (1.21)

where f(A(1),A(2), . . . ,A(N)) is an arbitrary tensor decomposition.

First, we will discuss the rank minimization. Therefore, we consider rank minimization

of the matrix X ∈ Rn×n before the tensor. Since rank minimization is NP-hard, we use

the fact that nuclear norm minimization is a convex relaxation of the rank minimization

problem [46]. The nuclear norm of the matrix X is defined

∥X∥∗ =
r∑

i=1

σi(X), (1.22)

where σi(X) is the i-th singular value of the matrix X. Subsequently, [47] introduced

nuclear norm minimization was introduced for low-rank matrix completion. This work

also theoretically guaranteed that solving the completion problem

min
X

∥X∥∗
s.t. O ⊛ Y = O ⊛X, (1.23)

for a matrix X of true rank r is fully completable when the number of observations m

satisfies

m ≥ Cn1.2r log n, (1.24)

where C is a positive constant. Note that Equation (1.23), unlike Equation (1.20), de-

scribes the exact completion. A new method of LRTC based on nuclear norm minimization

is proposed by [48]. In this study, the LRTC is defined as

min
X ,X̃

1

2
∥X − X̃∥2F

s.t. O ⊛Y = O ⊛ X̃
1

N

N∑
i=1

∥X(i)∥∗ ≤ c, (1.25)

which describes low-rankness by considering the nuclear norm of all modes of the tensor.

This method is for applications to tensor completion and claims the superiority of methods

that use the global information of low-rankness over methods that use neighborhood

information, such as Markov Random Field [49] and anisotropic diffusion [50]. As a

parallel study, [3] achieves LRTC in a form similar to Equation (1.25). However, [3]

uses the extended lagrangian method and Alternating Direction Method of Multipliers
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(ADMM) [51] to provide theoretical guarantees regarding convergence. Also, this work

defines the observation model of the tensor as an inverse problem

y = A(X ) + ϵ, (1.26)

where A is a linear map A : RI1×···×IN → Rp with p ≤
∏N

n=1 In and given y ∈ Rp, find the

tensor X that minimizes a function of the n-rank of the tensor. Our observation model

Equation (1.18) of the tensor is based on Equation (1.26), but Equation (1.18) changes A
in Equation (1.26) to the mask O. [52] imposes a smoothness constraint on the nuclear

norm minimization for LRTC. The optimization Equation is defined as

min
X

αfTV(X ) + β
1

N

N∑
i=1

∥X(i)∥∗

s.t. vmin ≤ X ≤ vmax

∥O ⊛ (Y −X )∥F < δ, (1.27)

where fTV is Total Variation (TV) regularization operator. The introduction of TV is

based on the assumption that much real-world data, such as natural images/videos, spec-

tral signals, and biomedical data, are smooth. There are several studies of TV+LR tensor

completion [20], [53]. For example, [53] has set up weighted nuclear norm minimization

problems. Furthermore, various other nuclear norm minimization methods exist, includ-

ing the introduction of latent variables [54], setting convex relaxation stricter than the

nuclear norm [55], and Robust-PCA based [56], [57].

Another LRTC is a tensor decomposition approach, such as CP decomposition or Tucker

decomposition [13], [35], [58]. CP Weighted OPTimization (CP-WOPT) [11] proposed a

weighted CP decomposition for tensor completion as

min
A(1),A(2),...,A(N)

∥O ⊛ (Y −
R∑

r=1

a(1)
:,r ◦ a(2)

:,r ◦ · · · ◦ a(N)
:,r )∥2F . (1.28)

Here, the weight O represents the mask. [59] defines

min
A(1),A(2),...,A(N)

∥O ⊛ (Y −X ×1 A
(1) ×2 A

(2) ×3 · · · ×N A(N))∥2F , (1.29)

as the Tucker decomposition model for CP-WOPT. Since it is difficult for both methods

to solve optimization problems (1.28) and (1.29) directly, the majorization-minimization

(MM) algorithm [60], [61] is used to solve them. Many of these approaches are nonconvex

optimization and heuristic methods with no theoretical guarantees. On the other hand,

they are superior to nuclear norm minimization approaches in that they have better

completion performance and are low computational cost (avoiding the computation of

SVD). Tensor completion by parallel Matrix factorization (TMac) proposed matricization
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(n-unfold) of the tensor [62] and then consider a low-rank matrix factorization model

defined as

min
X ,A(1),...,A(N),B(1),...,B(N)

N∑
n=1

∥X(n) −A(n)B(n)∥2F

s.t. O ⊛Y = O ⊛X
A(n) ∈ RIn×Rn ,B(n) ∈ RRn×

∏
k ̸=n Ik . (1.30)

TMac achieved a highly accurate completion and a highly efficient computation compared

to the nuclear norm minimization approach. This research also found that an approach

that greedily increases the rank Rn stepwise from 1 achieves particularly accurate comple-

tion. Furthermore, [16] introduced smoothness into each factor of the CP decomposition

as Equation

min
X ,Z,G,U (1),...,U (N)

∥X −Z∥2F +
R∑

r=1

g2r
2

N∑
n=1

ρ(n)∥L(n)u(n)
r ∥pp

s.t. O ⊛Y = O ⊛X
(1−O)⊛Z = (1−O)⊛X

Z =
R∑

r=1

gru
(1)
r ◦ · · · ◦ u(n)

r , (1.31)

where L(n) is difference transformation matrix, which the second term in the equation cor-

responds to the smooth constraint. Similar to the method in [62], this method is a stepwise

increase in rank, and although computationally expensive, it has very high completion

performance. Tensor decomposition approaches are often incorporated simultaneously

with other prior structures. For example, non-negative tensor factorization (NTF) [63],

[64] has been applied to various fields, such as sparse coding of images [65], traffic analy-
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Table 1.1 This table summarizes the advantages and disadvantages of the two approaches
to LRTC. Note that they are only trends.

Rank minimization Tensor decomposition

Theoretical guarantees on completion ✓
Automatic rank determination ✓

Scalability ✓
Performance of the completion ✓

In our study, the tensor decomposition model is employed as the LRTC. The reasons

are described as follows:
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• In the case of rank minimization (nuclear norm minimization), since the computa-
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tional cost of the SVD is high. In the case of tensor decomposition, there are other

alternatives, such as computing with the gradient method [59].

On the other hand, the tensor decomposition approach has the problem that rank deter-

mination is difficult. Rank is basically determined heuristically by the algorithm, and in

particular, overly large estimates of ranks lead to increased computation time and worse

completion performance due to noise tolerance. One of the proposed methods is a frame-

work that can automatically and more accurately estimate rank while simultaneously

achieving efficient and accurate tensor completion.

1.6 Tensor completion by convolution

We have focused on tensor decomposition as a method for LRTC. Here, we explain

tensor decomposition by convolution, a new tensor completion framework in recent years.

In particular, this thesis focuses on the t-SVD model [72]. t-SVD model is a method

for third-order tensors and was initially conceived as a tensor decomposition method

for a video whose time direction corresponds to the third mode [73]. Therefore, a new

operation, t-product, is defined in t-SVD, focusing on the third mode. T-product of

tensors A ∈ Rn1×r×n3 and B ∈ Rr×n2×n3 is defined as

A ∗3 B := permute(fold(bcric(A)BT
(2)), [1, 3, 2]) ∈ Rn1×n2×n3 , (1.32)
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where bcirc(·) of A is

bcric(A) :=


A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3

...
. . . . . . . . .

...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1

 ∈ Rn1n3×rn3 , (1.33)

fold(·) is the inverse of unfold and is an operation that folds the tensor to a higher order,

and permute(·) is an operation to reorder mode into the permutation of [·]. This operation
is equivalent to performing a convolution operation only in the third mode and a matrix

product operation in the other modes. Based on this operation, t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.34)

where U and V are orthogonal2. Figure 1.14 shows the t-SVD concept. The tensor tubal

rank of X is defined to be the number of non-zero singular tubes of D. The minimization

of the tubal rank is a convex relaxation of the minimization of the tensor nuclear norm.

Tensor nuclear norm is defined as

∥X∥TNN :=

∥∥∥∥∥∥∥∥∥


X̂:,:,1

X̂:,:,2

. . .

X̂:,:,n3


∥∥∥∥∥∥∥∥∥
∗

∈ Rn1n3×n2n3 , (1.35)

where X̂:,:,1, X̂:,:,2, . . . , X̂:,:,n3 are the Fourier transform ofX:,:,1,X:,:,2, . . . ,X:,:,n3 along the

third mode. Based on this idea, [74] reported on video completion with tensor completion

using nuclear norm minimization, defined as

min
X

∥X∥TNN

s.t. O ⊛X = O ⊛Y . (1.36)
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t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

7

where bcirc(·) of A ∈ Rn1×n2×n3 is

bcric(A) :=





A:,:,1 A:,:,n3 A:,:,n3−1 · · · A:,:,2

A:,:,2 A:,:,1 A:,:,n3 · · · A:,:,3
...

. . . . . . . . .
...

A:,:,n3 A:,:,n3−1
. . . A:,:,2 A:,:,1




. (1.16)

This operation is equivalent to performing a convolution operation only in the third mode,

and performing a matrix product operation on the other axes. Based on this operation,

t-SVD is formulated as

X = U ∗3 D ∗3 V , (1.17)

where U and V are orthogonal (U ∗3 UT = I，V ∗3 VT = I). The tensor tubal rank r of

X is defined to be the number of non-zero singular tubes of S, the minimization of the

Tubal rank is a convex relaxation of the minimization of the tensor nuclear norm defined

as

‖X‖TNN :=

∥∥∥∥∥∥∥∥∥





ˆX1,:,:

ˆX2,:,:

. . .
ˆXn1,:,:





∥∥∥∥∥∥∥∥∥
∗

, (1.18)

where ˆX1,:,:, ˆX2,:,:, . . . , ˆXn1,:,: are the Fourier transform of X1,:,:,X2,:,:, . . . ,Xn1,:,:. Based

on this idea, the research [51] reported on video completion with tensor completion using

nuclear norm minimization, defined as

min
X

‖X‖TNN

s.t. O !X = O !Y . (1.19)

Also, since this is image completion by nuclear norm minimization, a paper on theo-

retical guarantees regarding restoration performance was later reported [49]. There are

also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [52], [53], studies that introduce higher compression performance through

framelet representation [54], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [55].

However, all of these methods are third-order tensor-only methods, and their completion

capability is limited to only when the loss rate is smaller than the tensor decomposition

model. One of the proposed methods is a new framework for convolutional tensor de-

composition. This method is not limited by the number of tensor ranks and performs

convolution in all modes. This paper shows that this method is also based on the idea

of tensor completion based on delayed embedding, which has recently achieved highly

accurate completion. In addition, by imposing smooth constraints on the tensor factors,

the method achieves more accurate completion.

Figure 1.14 The t-SVD of an n1 × n2 × n3 tensor

2 See [72] for the definition of orthogonal in t-SVD.
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Since this framework is based on matrix completion by nuclear norm minimization (see

Equation 1.23), [72] shows theoretical guarantees regarding completion performance. There

are also various extension techniques, such as studies that reduce the cost of nuclear norm

minimization [75], [76], studies that introduce higher compression performance through

framelet representation [77], and studies that improve completion performance by intro-

ducing arbitrary linear transformations [78]. However, t-SVD approaches are only for

third-order tensor methods, and their completion capability is inferior to that of the

common tensor decomposition model.

One of the proposed methods is also a convolutional tensor decomposition framework.

However, the proposed method is much more accurate than the t-SVD model. This

method has no restriction on the number of tensor orders and performs convolution in

all modes. Also, our thesis shows that the proposed method is strongly related to LRTC

on delay-embedded space [79], which has recently achieved highly accurate completion.

In addition, by imposing smooth constraints on the tensor factors, the proposed method

achieves more accurate completion.

1.7 Proposed method

Here, we propose two methods for accurate and efficient tensor completion: Automatic

Rank Determination with Multiplicative Gamma Process (MGP-ARD) and Smooth Con-

volution Tensor Factorization (SCTF). Figure 1.15 shows an overview of the two proposed

methods.

MGP-ARD is kind of LRTC. This method aims to achieve tensor completion and rank

determination simultaneously. This can be achieved using Bayesian CP decomposition

with Multiplicative Gamma Process (MGP) as the prior distribution. MGP is a distribu-

tion that decays the components. Using MGP, the proposed method avoids duplication

of components and enables highly accurate rank estimation in Bayesian tensor modeling.

In addition, MGP helps to reduce noise sensitivity and estimation time, which achieves

highly accurate and highly efficient completion. Numerical experiments using artificial

data and image data demonstrate the effectiveness of this method. Details of the method

are described in Chapter 2.

On the other hand, SCTF is a kind of completion method by convolutional tensor

decomposition. The concept of SCTF is based on a delay-embedded space. Recently,

Multiway Delay-embedding Transform (MDT), which considers a low-dimensional space

in a delay-embedded space with high expressive capability, has attracted attention as

a tensor completion method. Although MDT has a high complementary performance,

its computational cost is considerably high. SCTF is small in computational complexity

because of its concise model of rank-1 decomposition in the delay-embedded space and
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MGP（Multiplicative Gamma Process）を提案．

p(λr|τr) = Ga(λr|c0, τr)

τr =
r∏

l=1

δl (0 < δl < 1)

p(δr) = Ga(δr|e0, f0)
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(b) SCTF
Figure 1.15 Concept of tensor decomposition model of the two proposed methods.

because it does not directly perform optimization in the delay-embedded space. In addi-

tion, a smooth constraint term is assigned to the factor tensors as a prior data structure

in the optimization to further improve the completion accuracy. In our experiments, we

completed clipped and randomly missing image data and confirmed that the proposed

method achieved high completion accuracy without high computational cost. Details of

the method are described in Chapter 3.

At first glance, both MGP-ARD and SCTF appear to be different frameworks, LRTC,

and convolutional tensor decomposition. However, when considered in terms of the con-

cept of low-rankness, we can think of MGP-ARD as a low-rank model in the original space

(CP decomposition), and SCTF as a low-rank model in the delay-embedded space (rank

1 decomposition), and can see two methods in a unified way. Figure 1.16 summarizes the

proposed method from the unifying perspective of low-rankness. Note that low-rankness

on delay-embedded space is a similarity prior (see Section 3.2.3), so it is not the same as

Low-Rank model in
Original space Low-Rank model in

Delay-embedded space

≒

Low-Rank 
model

tensor

Hankel 
tensor

Delay-embedded Space

tensor
Low-Rank 
model

≒
Block-unfolding 
Hankel 
tensor

Figure 1.16 Concept of the two our proposed models through the unifying perspective of
low-rankedness.
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a low-rank prior after all. The main goal of our thesis is to achieve highly accurate and

efficient tensor completion by focusing on the prior of an unknown true tensor.

Here, we describe the structure of this thesis. The remainder of this thesis is organized

as follows: Automatic Rank Determination with Multiplicative Gamma Process (MGP-

ARD) in Chapter 2, Smooth Convolution Tensor Factorization (SCTF) in Chapter 3,

and their summary in Chapter 4.
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Chapter 2

　　Tensor completion by Automatic

Rank Determination with

Multiplicative Gamma Process

(MGP-ARD)

There are many approaches for tensor completion using CP decomposition. A typical

way is minimizing the loss function such as Euclidean distance between a low-rank CP de-

composition model and the observed tensor. CP Weighted Optimization (CPWOPT) is a

method that formulates CP decomposition with missing data as an weighted least squares

method [11] and has been applied to extract traffic patterns in Intelligent Transportation

Systems (ITS) where missing data is a common problem [80]. However, tensor completion

based on the least-squares method without regularization may not uniquely determine the

solution and tends to be sensitive to noise when the rank is estimated to be larger than

true rank. In this sense, this is considered as overfitting in tensor decompositions, which

causes a severe deterioration of estimation accuracy. In addition, these methods require

the rank to be determined in advance, which incurs a high computational cost in rank

selection.

Another way to perform CP decomposition is Bayesian approaches. It is a type of

method to infer the posterior probability distribution of parameters, such as a factor ma-

trix. Unlike optimization methods, it has the advantage of being able to evaluate not

only the estimated value but also its ambiguity. Some of the reported works include net-

work structure analysis and collaborative filtering using tensor decomposition estimated

by MCMC [81], [82]. However, the convergence speed of the MCMC estimation method

is very slow.

ARD (Automatic Rank Determination) is a technique for tensor completion using CP

decomposition with variational Bayes [69]. ARD is an algorithm that can perform rank
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estimation as well as tensor completion and employs a hierarchical Bayesian model with a

prior distribution that induces group sparsity in all factor matrices to improve robustness

against noise. ARD allows us to avoid costly rank selection and achieve efficient tensor

completion and rank estimation. However, ARD often causes duplication in the column

vectors of factor matrices in replicated experiments. This leads to over-estimation of the

CP rank, which deteriorates completion accuracy, estimation time and reduces compres-

sion performance.

In this chapter, we propose a new tensor completion method based on Bayesian CP

decomposition with ARD using Multiplicative Gamma Process (MGP) shrinkage prior.

MGP shrinkage prior is a distribution so that the core tensor of ARD is shrunk as much

as possible [83], [84]. Since the core tensor and the factor matrix are linked, when the

core tensor decays, the column vectors of factor matrices is ordered, and duplicates are

removed. By applying MGP shrinkage prior to ARD, the proposed method can improve

the accuracy of rank estimation, reduce the estimation time, and enhance robustness to

noise.

Our contribution can be summarized as follows:

• We confirmed duplication in the column vectors of factor matrices in ARD by nu-

merical experiments. We also gave mathematical proof of a property concerning the

duplication of bases in particular situations. It is a significant contribution to point

out this issue because duplication of the column vectors of the factor matrix leads

to an overestimation of the rank, resulting in worse estimation accuracy, an increase

in the estimation time, and reduced compression performance.

• To reduce the redundancy of the model based on the duplication of the column

vectors of the factor matrix, which is a drawback of ARD, We proposed a new

probabilistic model by using MGP. We also derived a variational Bayesian inference

algorithm based on this probabilistic model that simultaneously performs tensor

completion, denoising, and rank estimation.

• Experiments using synthetic data showed an increase in the accuracy of rank esti-

mation and a decrease in estimation error. Experiments on real-world image and

traffic data show that the estimation time is significantly reduced.

The rest of the paper is organized as follows: related works are described in Section

2.1, the review of conventional ARD method and its problems are described in Section

2.2, the proposed MGP-ARD method is described in Section 2.3, the experiments of the

proposed method are described in Section 2.4.
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2.1 Related works

There are four approaches for the CP rank estimation: Supervised learning, optimiza-

tion, probabilistic estimation, and Bayesian inference.

First, supervised learning can be used for rank estimation. [85] proposed to use a CNN

for CP rank estimation. Note that this approach requires training data.

On the other hand, there is a method of rank estimation based on optimization. In

some studies, this has been applied to tensor completion [2], [59], [86].

There are also several methods based on probabilistic approaches. One method is to use

probabilistic CP decomposition to estimate the CP rank by MAP estimation [87], which

has been applied to channel estimation in MIMO systems [88]. Another approach is to

use the EM algorithm to perform CP rank estimation and image denoising [89]. Although

these studies are also stochastic approaches, they differ from our method in that they are

based on point estimation and therefore cannot infer uncertainty in the solution.

On the other hand, there are methods to estimate the tensor rank using Bayesian es-

timation. For example, there is a method to obtain the CP rank for binary and real

number tensors [84]. This method is different from our method in that it uses MCMC

and convergence is slow. Also, this method is challenging to incorporate constraints such

as smoothness into the Equation because the Equation is complicated due to the explicit

mathematical model of the core tensor. There is also a method that uses variational Bayes

to estimate the Tucker rank instead of the CP rank [90]. The ARD method is a vari-

ational Bayesian method that can simultaneously perform tensor completion, denoising,

and rank estimation [69], and has been applied to the spatiotemporal traffic data impu-

tation [91]. However, ARD has the disadvantage of duplication in the column vectors of

factor matrices, making the model redundant.

2.2 Review of ARD

ARD is an algorithm for tensor completion based on Bayesian CP decomposition [69].

ARD can be applied to noisy data and can also perform rank estimation simultaneously.

The modeling is constructed using hierarchical Bayes with a prior distribution that induces

sparsity, and variational Bayes is used as the inference method.

2.2.1 Modeling

The Y is an N -order tensor containing missing entries of size I1 × I2 × · · · × IN . We

define (i1, i2, . . . , iN) ∈ Ω as the index of the observation part, and the O is the mask

tensor such that the observed part is 1 and the missing part is 0. The YΩ := Y ⊛O is

defined as the element being observed. We also assume that Y is the observed data with

noise added to the latent tensor X , and formulate it as Y = X + E . Here, ϵ is assumed
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to follow the independently and identically distributed (i.i.d.) Gaussian distribution. The

latent tensor X is defined as

X :=
R∑

r=1

a(1)
:,r ◦ · · · ◦ a(N)

:,r , (2.1)

which is represented by CP decomposition model. We define {A(n)}Nn=1 as the factor

matrix such that

A(n) :=
[
a
(n)
1,: , . . . ,a

(n)
in,:
, . . . ,a

(n)
In,:

]T
=
[
a
(n)
:,1 , . . . ,a

(n)
:,r , . . . ,a

(n)
:,R

]
∈ RIn×R. (2.2)

The probabilistic models for CP decomposition is represented by

p
(
YΩ

∣∣{A(n)}Nn=1, τc
)
:=

I1∏
i1=1

· · ·
IN∏

iN=1

N
(
Yi1,i2,...,iN

∣∣∣⟨a(1)
i1,:
, . . . ,a

(N)
iN ,:⟩, τ−1

c

)Oi1,...,iN
, (2.3)

where N (x|µ, σ) = 1√
2πσ

exp{− (x−µ)2

2σ2 } is Gaussian distribution, and τc is precision,

⟨a(1)
i1,:
,a

(2)
i2,:
, . . . ,a

(N)
iN ,:⟩ :=

∑
r

∏
n a

(n)
in,r

. Oi1,...,iN is the value of mask tensor O.

Next, we will discuss rank determination in ARD. In general, it is very difficult to

estimate the dimension R of the latent space with the least redundancy, i.e., CP rank

[92]. By the definition of CP rank [10], R should be a minimum value. ARD attempts

to automatically determine CP rank in the process of Bayesian inference by setting up a

prior distribution that induces sparsity for all factor matrices. This is based on the idea

of sparse Bayesian learning [93], automatic relevance determination [94], [95], [96], and

automatic association decision [97]. We will explain the discussion so far in more detail

using formulas.

For all the factor matrices A(n), prior distribution of ARD is defined as

p(A(n)|λ) :=
In∏

in=1

N (a
(n)
in,:
|0,Λ−1), (2.4)

where λ = [λ1, . . . , λR] (Λ = diag(λ)) is precision. In addition, prior distribution of

precision is defined as

p(λ) :=
R∏

r=1

Ga(λr|cr0, dr0), (2.5)

where Ga(x|a, b) = baxa−1e−bx

Γ(a)
is Gamma distribution. The prior distribution of the factor

matrix (Equation (2.4)) has a mean 0, so its value approaches 0 as the precision increases.

Furthermore, since all factor matrices share the precision parameters, that is, the inverse
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of the precision can be interpreted as super diagonal entries of the core tensor. This prior

distribution is sparse because it sets the unimportant components of the factor matrix

to zero. The number of components of the factor matrix obtained from the inference

corresponds to CP rank. Since the model is robust to noise because of its sparsity,

denoising can also be achieved from this prior distribution. With this prior distribution,

ARD can efficiently derive CP rank.

The precision of CP decomposition model is also set as a probability distribution, and

the distribution is defined as

p(τc) := Ga(τc|a0, b0). (2.6)

In summary, we define the unobserved latent parameters as Θ = {A(1), . . . ,A(N),λ , τc},
probabilistic modeling of ARD is defined as

p(YΩ,Θ) := p(YΩ|{A(n)}Nn=1, τc)p(τc)
N∏

n=1

p(A(n)|λ)p(λ). (2.7)

2.2.2 Inference

Next, we will give an overview of inference methods. The goal of Bayesian inference is

to derive the posterior distribution of parameters. The posterior distribution is derived

as

p(Θ|YΩ) =
p(YΩ,Θ)∫
p(YΩ,Θ)dΘ

. (2.8)

The missing entries are estimated by calculating the predictive distribution, and the

predictive distribution is derived by

p(Y\Ω|YΩ) =

∫
p(Y\Ω|Θ)p(Θ|YΩ)dΘ. (2.9)

In Equations (2.8), (2.9), we need to calculate the multiple integrals with parameter Θ,

which is very difficult with complex latent variables.

In variational Bayes, in order to find a distribution q(Θ) that approximates the true

posterior distribution p(Θ|YΩ), we derive q such that the KL divergence is minimized.

This derivation is

argmin
q

KL (q(Θ)||p(Θ|YΩ)) = argmax
q

L(q), (2.10)

where L(q) :=
∫
q(Θ) ln

{
p(YΩ,Θ)
q(Θ)

}
dΘ is the variational lower bound. In this study, we

employ the mean-field approximation for q(Θ), is defined as

q(Θ) := qλ(λ)qτ (τ)
N∏

n=1

qn
(
A(n)

)
. (2.11)
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Computing Equations (2.10), (2.11) after the mean field approximation, we get

ln qj(Θj) = Eq(Θ\Θj)[ln p(YΩ,Θ)] + const, (2.12)

and the approximate distribution qj(Θj) is obtained in a closed form. Note that Eq(Θ\Θj)[·]
is the expected value for Θ of all variables except Θj.

From Equation (2.12), the parameters Θ = {A(1), . . . ,A(N),λ, τ} can be inferred alter-

nately. Since there are dependencies among the variables, it is necessary to obtain them

using an iterative method.

After obtaining the approximate posterior distribution, the approximate predictive dis-

tribution can be obtained from

p(Y\Ω|YΩ) =

∫
p(Y\Ω|Θ)q(Θ)dΘ, (2.13)

and tensor completion, including ambiguity, can be achieved.

In ARD, the rank is obtained simultaneously with tensor completion. In the process

of Bayesian inference, the result of the update of λ affects the new posterior distribution

of the entire factor matrix A(n), which in turn affects the next update of λ. Therefore,

when λr becomes very large, the prior distribution forces the r-th component of A(n)

toward zero. The tensor rank can then be obtained by counting the number of non-zero

components of the factor matrix.

2.2.3 Overestimation of the CP rank by ARD

In this section, we discuss a phenomenon that ARD sometimes generates redundancy in

CP decomposition model. In our experiments, we found that ARD can cause duplication

in the column vectors of the factor matrix, and it was difficult to improve even with more

iterations. Duplication in the experiment is shown in Figure 2.1. This is the factor matrix

obtained by the ARD inference results when using a third-order tensor with true rank 3

and size 30 × 30 × 30 as the data for completion. We can see that the ARD estimated

the CP rank as 5 with redundant bases. This phenomenon occurs quite frequently. The

results of the previous experiment after 100 trials show that in as many as 40 out of 100

trials, the estimated rank is greater than the true rank of 3.

It can also be shown mathematically that, under very specific conditions, when du-

plication in the column vectors of one factor matrix, the other factor matrices will also

overlap.

Theorem 1. Let the n-th factor matrix A(n) be from Equation (2.2). If factor matrices

A(k ̸=n)(k = 1, . . . , n− 1, n+ 1, . . . , N) are rank 1 for all k, then the mean of A(n) is less

than or equal to 1.
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・The red letters :
True column vectors
・The black letters : 

Estimated column vectors

Figure 2.1 An example of duplication of the column vectors of the factor matrices. True
rank is 3, it is shown in (a). The matrices are shown in (b). The 1st, 2nd, 4th, and 5th
bases are essentially the same.(c) shows the estimation of the column vectors in 3-D space.
The red letters represent the true column vectors, and the black trajectory represents the
estimation process. We can see that the 2nd, 5th and 4th trajectories overlap.

Proof. In the proof, we show that the approximate distribution q(A(n)) is Gaussian, and

the mean matrix A(n) with mean vector ã
(n)
in,:

of a Gaussian is of rank 1 or less. A(n) is

defined as

A(n) :=
[
ã
(n)
1,: , . . . , ã

(n)
in,:
, . . . , ã

(n)
In,:

]T
. (2.14)

By computing Equation (2.12), the approximated posterior distribution of the factor

matrix A(n) is defined as

qn(A
(n)) =

In∏
in=1

N (ain,:|ã
(n)
in,:
,V

(n)
in

), (2.15)

and its parameters can be calculated by

ã
(n)
in,:

= Eq[τc]V
(n)
in

Eq

[
A(\n)T]Oinyin ,

V
(n)
in

=
(
Eq

[
A(\n)TOinA

(\n)]Eq[τc] + Eq [Λ]
)−1

,

where A(\n),yin ,Oin denote parameters is defined as

A(\n) =
⊙
k ̸=n

A(k) ∈ RΠk ̸=nIk×R,

yin = vec(Y in) ∈ RΠk ̸=nIk ,

Oin = diag(I(Oin = 1)) ∈ RΠk ̸=nIk×Πk ̸=nIk ,
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where the Y in denotes the n-mode in-th N − 1th order tensor of the observation tensor,

and Oin denotes the n-mode in-th N − 1th order tensor of the mask tensor. I(·) is the

indicator function and vec(·) is the vectorization function of the tensor.

The mean matrix can be calculated from Equation (2.14), (2.15) to

A(n)
T
∝
(
Eq [Λ] + Eq

[(⊙k ̸=nA
(k)
)T

Oin

(⊙k ̸=nA
(k)
)])−1

Eq

[⊙k ̸=nA
(k)T
]
OinY

(n), (2.16)

where Y (n) is defined as

Y (n) = [y1, . . . ,yin , . . . ,yIn ] .

Since rank of A(k ̸=n) is 1, it is represented as

A(k ̸=n) =
[
ck,1a

(k)
:,1 , . . . , ck,ra

(k)
:,1 , . . . , ck,Ra

(k)
:,1

]
∈ RIk×R

(k = 1, . . . , n− 1, n+ 1, . . . , N).

Now, from

Eq

[⊙k ̸=nA
(k)
]
=
[
⊗k ̸=nck,1a

(k)
:,1 , . . . ,⊗k ̸=nck,ra

(k)
:,1 , . . . ,⊗k ̸=nck,Ra

(k)
:,1

]
,

rank
(
Eq

[⊙k ̸=nA
(k)
])

= 1. From rank(XY ) ≦ rank(X) and Equation (2.16),

rank
(
A(n)

)
≦ 1, so the rank of A(n) is less than or equal to 1.

Since basis duplication is equivalent to rank reduction, Theorem 1 shows mathemati-

cally that the basis duplication of the Nth factor matrix is induced by the duplication of

the basis of the non-Nth factor matrix. However, note that since this is a theorem under

the very restrictive conditions of rank 1, basis duplication is essentially an assertion based

on experimental results.

Overestimation of the CP rank causes at least three kinds of issues in applications. First,

it directly reduces the data compression performance of the CP decomposition. Second,

it reduces robustness to noise because the extra components out of the true rank may fit

to the noise parameters. Third, it increases the computational cost of the algorithm since

the computational complexity of ARD is proportional to R3.

2.3 Proposed method

In this section, we propose a new tensor completion/decomposition method that uses a

prior distribution in which the core tensor is decayed with Multiplicative Gamma Process

(MGP). We call the proposed method as MGP-ARD. Because of the effects of MGP

shrinkage prior, MGP-ARD reduces the problem of model redundancy in ARD.
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2.3.1 Modeling

MGP-ARD is a method in which the MGP [84] distribution is set as the prior distri-

bution of accuracy λ in ARD (see Equation (2.4)). The distribution of MGP used in the

proposed method is defined as

p(λr|τr) := Ga(λr|c0, τr),

τr :=
r∏

l=1

δl (0 < δl < 1), (2.17)

p(δr) := Ga(δr|e0, f0).

In this study, we employ somewhat different formulation/modeling of MGP of original

one. Equation (2.17) is a model that expresses that as the index r increases, the accuracy

λ increases, and the core tensor decays. The accuracy increases as the index r increases

because δr is a truncated gamma distribution from 0 to 1, and the scale parameter τr of the

gamma distribution is a multiplication of δr. An overview of the decay of the core tensor

is illustrated in Figure 2.2. MGP is based on the idea of nonparametric factor analysis

[83]. In nonparametric factor analysis, to resolve the indistinguishability [98] caused by

the rotational invariance of factor analysis, a gamma distribution has been introduced

such that the values decay to zero as the index increases in the column direction of the

loading matrix, achieving a significant reduction in the number of parameters. MGP-ARD

avoids duplication of bases by having the factor matrices be ordered, thus improving the

redundancy of the model, which is an issue in ARD. An overview of the improvement of

duplication is illustrated in Figure 2.3. It is also expected that the order invariance of

CP decomposition is resolved in the proposed method, which narrows down the solution

space of parameters and achieves efficient estimation.

The graphical model of MGP-ARD is shown in Figure 2.4. The parameters of the MGP-

ARD are Θ = {A(1), . . . ,A(N),λ, δ, τc}, and the probability modeling of the MGP-ARD

is defined as

p(YΩ,Θ) := p(YΩ|{A(n)}Nn=1, τc)p(τc)
N∏

n=1

p(A(n)|λ)
R∏

r=1

p(λr|τr)p(δr), (2.18)

from (2.17). The prior distribution ofA(n), τc other than MGP shrinkage prior distribution

is identical to ARD, i.e., Equations (2.4) and (2.6).

2.3.2 Inference

The distribution of the parameters to be estimated is Θ = {A(1), . . . ,A(N),λ, δ, τc},
derived from the Equation (2.12), respectively.
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・・・
Core tensor 
decay

Figure 2.2 An overview of the decay of the core tensor by MGP. The scale parameter τr
of the gamma distribution decreases as the index r increases. Thus, λr increases as the
index r increases, resulting in a decrease in core tensor 1

λr
.

elimination

occurrence of order

duplica0on
①

②

③

Figure 2.3 An overview of how duplication is improved by MGP. The core tensor 1
λr

decays
as the index r increases. This results in an ordering of the factor matrices linked to the
core tensor, which improves the duplication in the factor matrices.
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と表現する．以上，これまで出てきた未観測の潜在パラメータを Θ = {A(1), · · · ,A(N),λ, τc}とまとめて定義をすると，ARDの確率モデリング（同時分布）は
p(YΩ,Θ) = p(YΩ|{A(n)}Nn=1, τc)p(τc)

N∏

n=1

p(A(n)|λ)p(λ) (8)

となる．
3.2 推論ベイズ推論では，パラメータの事後分布を導出することが目的であるが，条件付き確率より，

p(Θ|YΩ) =
p(YΩ,Θ)∫
p(YΩ,Θ)dΘ

(9)

のように導出できる．損失要素は，予測分布である
p(Y\ΩYΩ) =

∫
p(Y\Ω|Θ)p(Θ|YΩ)dΘ (10)

を計算することで導出ができる．式 (9)において，パラメータ Θによる多重積分を計算する必要があるが，今回のような潜在変数が複雑に絡んだ確率分布において多重積分の計算は非常に困難である．そこで ARDでは変分ベイズを用いる．変分ベイズでは，真の事後分布 p(Θ|Y)を近似するような分布 q(Θ)を求めるため，KLダイバージェンスを用いる．すなわち，
KL (q(Θ)||p(Θ|YΩ)) =

∫
q(Θ) ln

{
q(Θ)

p(Θ|YΩ)

}
dΘ

= ln p(YΩ)− L(q) (11)

と表される．なお，L(q) =
∫
q(Θ) ln

{
p(YΩ,Θ)

q(Θ)

}
dΘで

変分下界を表す．このKLダイバージェンスを最小化するような qを求めるため，
arg min

q
KL (q(Θ)||p(Θ|YΩ)) = arg max

q
L(q) (12)

を計算するが，これを制約なしで解くと q(Θ) = p(Θ|YΩ)となり，近似したことにならない．そこで制約として，
q(Θ)に平均場近似を設定し，それぞれの変数 Θj ごとに因子分解することを考える．今回の場合，

q(Θ) = qλ(λ)qτ (τ)
N∏

n=1

qn
(
A(n)

)
(13)

のように因子分解できる．平均場近似を行った上で式
(12)を計算すると，

ln qj(Θj) = Eq(Θ\Θj)[ln p(YΩ,Θ)] + const (14)

となり，近似分布 qj(Θj) が閉じた形で求まる．なお，
Eq(Θ\Θj)[·]は，Θj 以外の変数全ての qに関する期待値である．

式 (14) からパラメータ Θ = {A(1), · · · ,A(N),λ, τ}が順次求まるが，変数間に依存関係があるため，反復法により求める必要がある．アルゴリズムの収束条件は，
L(q)(t) − L(q)(t−1)

L(q)(t−1)
< ε (15)

としている．近似事後分布が求まることで，近似予測分布
p(Y\Ω|YΩ) =

∫
p(Y\Ω|Θ)q(Θ)dΘ (16)

が求まり，曖昧さも含めたテンソル補完が実現可能となる．
ARDでは，補完と同時にランクが自動的に求まる．ベイズ推論の過程で λの更新の結果は，A(n) 全体の新しい事後分布に影響を与え，さらにそれは λ の次の更新に影響を与える．それゆえ，λr が非常に大きくなると，事前分布から，Aの r番目の成分は強制的にゼロに向かい，因子行列の非ゼロ要素の数からテンソルランクを獲得できる．

3.3 課題
ARDは推論結果で得られた CP分解モデルに重複を生じさせる可能性がある．具体的には，ARDで得られた因子行列の波形に重複が生じることがあり，発生した重複は改善がしにくい．実際に，λ1 = · · · = λR 一つの因子行列A(n)にランクが落ちが発生すると，残りのA(\n)

もランク落ちが発生する．図に実際に重複が発生している状況を示す．CP分解はランク１テンソルの和の最小値のことを表すため，冗長性が発生することはモデル構築の観点から非常に好ましくなく，精度悪化を引き起こす原因にもなる．また，CP分解は順序不変性を持つため，パラメータ空間が不連続化しパラメータ探索が困難になる可能性があるが，それに関する対処は ARDでは言及されていない．
4 提案法 (ARD-MGP)
ARDで発生するモデルの冗長性に対処するために，今回はコアテンソルに縮退分布を導入したベイズ CP分解を提案する．

4.1 モデリング提案法では，ARDに縮退機構を設定するため，精度 λの事前分布にMGP（Multiplicative Gamma Process）を導入したMGP-ARD（Multiplicative Gamma Process -

Automatic Rank Determination）を提案する．MGPは
p(λr|τr) = Ga(λr|cr0, τr) (17)

τr =
r∏

l=1

δl

p(δr) = Ga(δr|er0, fr
0 )

のように設定される．MGPはノンパラメトリック因子分析の考えに基づいている．ノンパラメトリック因子分析では，因子分析の回転不変性から起因する識別不能性
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Automatic Rank Determination）を提案する．MGPは
p(λr|τr) = Ga(λr|cr0, τr) (17)

τr =
r∏

l=1

δl

p(δr) = Ga(δr|er0, fr
0 )

のように設定される．MGPはノンパラメトリック因子分析の考えに基づいている．ノンパラメトリック因子分析では，因子分析の回転不変性から起因する識別不能性

ルに縮退機構を備えた事前分布を設定したMGP-ARD（Multiplicative Gamma Process - Automatic Rank De-

termination）を提案する．MGPを ARDに導入をし，
CP分解が本来持つ順序不変性を崩して序列を付けさせることで，ARD単体で発生した波形の重複由来のモデルの冗長性を回避することができる．今回は人工データによる実験を行い，波形の重複が改善されランク推定の精度が上昇していることを示す．本稿は，第２章でテンソルの記法に関して説明をし，第３章で既存法の ARDとその問題点を記述をし，第４章で提案法のMGP-ARDに関して記述をし，第５章で人工データによる実験結果と考察に関して記述をし，第６章でまとめを記述する．
2 テンソルの記法ベクトルはボールド体の小文字 a ∈ RI，行列は大文字A ∈ RI×J，高階テンソルは筆記体A ∈ RI1×···×IN と表す．テンソルの一つの要素は Ai1,...,iN のように表現する．またテンソルの一つのモードのみを固定するスライスはAin のように表す．テンソルの内積は、〈A,B〉のように定義され、〈A,B〉 =∑

i1,...,iN
Ai1,...,iNBi1,...,iN と計算できる．フロベニウスノルムは，‖A‖F =

√
〈A,A〉と定義される．アダマール積は要素ごとの積を表すものであり，A!Bと表す．行列A ∈ RI×J とB ∈ RK×L のクロネッカー積はサイズ IK × JL となり，A ⊗ B と表される．行列 A ∈ RI×K と B ∈ RJ×K のカトリラオ積はサイズ

IJ ×K となり，A'B と表す．
3 ARD（Automatic Rank Determina-

tion）
ARDはテンソル補完問題において，補完とランク推定を同時に実現するベイズ CP分解である．モデリングは，スパース性を誘導する事前分布が設定された階層ベイズであり，推論のアルゴリズムは変分ベイスを用いる．本章では，主にモデリングの部分を重点において説明をする．

3.1 モデリング
Yはサイズ I1×I2 · · ·×IN の欠落を含むN階テンソルである．観測部分のインデックスを示す (i1, i2, · · · , iN ) ∈

Ωを定義をし，要素 Yi1,i2,··· ,iN = YΩは観測されていることを示す．これらを簡潔に表現するため，観測部分のインジケーターとして Y と同じサイズの二値テンソル
Oを定義する．また，Y は潜在テンソル X にノイズが加わった観測データであるとし，Y = X + εと定式化する．ここで εは独立な同じガウス分布に従うものとする．潜在テンソル X は，

X =
R∑

r=1

a(1)
r ◦ · · · ◦ a(N)

r (1)

のように CP分解モデルにより表現されるものとする．なお，◦は外積である．CP分解はランク１テンソルの

R個の和として解釈でき，最も小さいRをCPランクと定義をする．また，
A(n) =

[
a(n)
1,: , · · · ,a

(n)
in,:

, · · · ,a(n)
In,:

]T
(2)

=
[
a(n)
:,1 , · · · ,a(n)

:,r , · · · ,a
(n)
:,R

]
(3)

となるような {A(n)}Nn=1を定義をし，これを因子行列と定義する．
CP分解の生成モデルは，
p
(
YΩ

∣∣∣{A(n)}Nn=1, τc
)
=

I1∏

i1=1

· · ·
IN∏

iN=1

N
(
Yi1,i2,··· ,iN

∣∣∣〈a(1)
i1

, · · · ,a(N)
iN

〉, τ−1
c

)Oi1,··· ,iN
(4)

として表現する．τcは精度，〈a(1)
i1

,a(2)
i2

· · · ,a(N)
iN

〉 =
∑

r∏
n a

(n)
in,r
は内積と定義する．一般に，最も冗長性のない効率的な潜在空間の次元，すなわち rankcp(X ) = Rを推定することは非常に困難である．ARDではこれを効率よく自動的に選択する．低ランク近似よりRは最小値であることが望ましく，全ての因子行列に関してスパース性を誘導する事前分布を配置することにより，ベイズ推論の過程で自動的にランクを決定することを試みている．これは，スパースベイズ学習や自動関連決定の考えに基づいている．

ARDは因子行列全てに
p(A(n)|λ) =

In∏

in=1

N (a(n)
in,:

|0,Λ) (5)

のような事前分布が設定される．A(n) は r 番目の成分の値を制御するハイパーパラメータ λrによって司られ，精度 λ = [λ1, · · · ,λR]に相当する．これを行列化した精度行列をΛ = diag(λ)と定義する．また，精度行列にも
p(λ) =

R∏

r=1

Ga(λr|cr0, dr0) (6)

のように事前分布が設定される．ただし，Ga(x|a, b) =
baxa−1e−bx

Γ(a) で，ガンマ分布のことである．
因子行列は平均が 0であるため，精度が上昇するにつれて値が 0に近づきスパース性を誘発する．すなわち，精度の逆数（分散）が上昇するにつれて，A(n)は 0ではない値を持つことになるので，精度の逆数がコアテンソルに相当すると考えられる．また，全ての因子行列における精度行列は同じであるため，それらのスパース性のパターン全て一緒になる．したがって，ランク１の最小数を導出することに繋がり，このモデルは効率的に CP分解のランクを導出することが可能であると考えられてきた．
CP分解モデルの精度も確率分布として解釈をし，その分布は，

p(τc) = Ga(τc|a0, b0) (7)
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Figure 2.4 Graphical model of MGP-ARD. The parameters to be estimated is
Θ = {A(1), . . . ,A(N),λ, δ, τc}. Observed data are represented by colored circles and
unobserved data by white circles.

The approximated posterior distribution of the factor matrix A(n) is defined as

qn(A
(n)) =

In∏
in=1

N (ain,:|ã
(n)
in,:
,V

(n)
in

), (2.19)

and its parameters can be calculated by

ã
(n)
in,:

= Eq[τc]V
(n)
in

Eq

[
A(\n)T]Oinyin ,

V
(n)
in

=
(
Eq

[
A(\n)TOinA

(\n)]Eq[τc] + Eq [Λ]
)−1

,

where A(\n),yin ,Oin denote parameters is defined as

A(\n) :=
⊙
k ̸=n

A(k) ∈ RΠk ̸=nIk×R,

yin := vec(Y in) ∈ RΠk ̸=nIk ,

Oin := diag(I(Oin = 1)) ∈ RΠk ̸=nIk×Πk ̸=nIk ,

where the Y in denotes the n-mode in-th (N-1)th order tensor of the observation tensor,

and Oin denotes the n-mode in-th (N-1)th order tensor of the mask tensor. I(·) is the

indicator function and vec(·) is the vectorization function of the tensor.

Focusing on the expression of the posterior covariance V
(n)
in

, we can see that it is con-

trolled by the noise precision parameter τc of CP decomposition model. In other words,

if τc is large, the contribution of the factor matrix A(\n), which is a model term, will be

large, and if it is small, the contribution of Λ, which is a term related to decay (MGP),

will be enormous. Focusing on the expression for the posterior mean V
(n)
in

, we can see
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that Y , which represents the observed data, and A(\n), which represents the factor matrix

of the model, are correlated.

The approximated posterior distribution of the factor matrix accuracy λr is defined as

q(λr) = Ga(λr|crM , drM), (2.20)

and its parameters can be calculated by

crM = c0 +
1

2

N∑
n=1

In,

drM = Eq[τr] +
1

2

N∑
n=1

Eq[a
(n)T
:,r a(n)

:,r ].

Focusing on the expression for drM , the first term is τr, which is related to the decay (MGP),

and the second term is Eq[a
(n)T
:,r a

(n)
:,r ], which is related to the model. In other words, in

the case of ARD, when the r-th component of the factor matrix, ∥a:,r∥22, becomes small,

the accuracy of the r-th component increases and induces sparsity, while in MGP-ARD,

also, the decay mechanism τr also affects the accuracy.

The approximated distribution of the posterior distribution of the degeneracy mecha-

nism δr is defined as

q(δr) = Ga(δr|erM , f r
M), (2.21)

and its parameters can be calculated by

erM = (R− r + 1)(c0 − 1) + e0,

f r
M =

R∑
h=r

Eq[λr]
h∏

l=1,l ̸=r

Eq[δl] + f0.

The approximated posterior distribution of the accuracy τc of the model for CP decom-

position is defined as

q(τc) = Ga(τc|aM , bM), (2.22)

and its parameters can be calculated by

aM = a0 +
1

2

∑
i1,...,iN

Oi1,...,iN ,

bM = b0 +
1

2
Eq

[
∥O ⊛ (Y −X )∥2F

]
.

Focusing on the expression for bM , the second term represents the error between the

observed data Y and the latent tensor X (factor matrix A(n)), which is the model.
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Algorithm 1 MGP-ARD

Require: Observation tensor YΩ, mask tensor OΩ

Initialize: A(n),V
(n)
in

,∀in ∈ [1, In],∀n ∈ [1, N ], a0, b0, c0, d0, e0, f0, and τc = a0
b0
, λr =

cr0
τr
, δr =

er0
fr
0
∀, r ∈ [1, R].

repeat

for n = 1, . . . , N do

Update the approximated posterior distribution q(A(n)) using Equation (2.19).

end for

Update the approximated posterior distribution q(δ) using Equation (2.21).

Update the approximated posterior distribution q(λ) using Equation (2.20).

Update the approximated posterior distribution q(τ) using Equation (2.22).

Calculate the variational lower bound L(q) using Equation (2.24).

Reduce the rank R by removing the 0 component of {A(n)}.
until L(q) converges by checking Equation (2.23).

Compute the predictive distribution from Equation (2.25).

Next, we will discuss the specific formulation for the variational lower bound. The

convergence of the algorithm is determined by∣∣∣∣L(q)(t) − L(q)(t−1)

L(q)(2)

∣∣∣∣ < ϵ, (2.23)

where ϵ is the convergence threshold. The variational lower bound L(q) can be calculated

by

L(q) = − aM
2bM

Eq

[
∥O ⊛ (Y −X )∥2F

]
− 1

2
Tr

{
Λ̃
∑
n

(
Ã(n)TÃ(n) +

∑
in

V
(n)
in

)}
+

1

2

∑
n

∑
in

ln
∣∣∣V (n)

in

∣∣∣
+

R∑
r=1

{ln Γ(crM) + ln Γ(erM) + crM (1− ln bM) (2.24)

+erM

(
1− erM ln f r

M −
1

f r
M

(
crM
drM

r∏
l=1,l ̸=r

elM
f l
M

+ f0

))}

+ lnΓ(aM) + aM

(
1− ln bM −

b0
bM

)
.

Finally, we discuss the specific formula for predictive distribution. The purpose of
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predictive distributions is tensor completion. The predictive distribution can be approxi-

mately calculated by

p(Yi1,...,iN |YΩ) =

∫
p(Yi1,...,iN |Θ)p(Θ|YΩ)dΘ

≃
∫
p
(
Yi1,...,iN

∣∣∣{a(n)
in,:

}
, τ−1

)
q
({

a
(n)
in,:

})
q(τ)da

(n)
in,:
dτ

≃ T
(
Ỹi1,...,iN ,Si1,...,iN , νy

)
, (2.25)

where T is Student’s t-distribution and

Ỹi1,...,iN = ⟨ã(1)
i1,:
, . . . , ã

(N)
iN ,:⟩,

νy = 2aM ,

Si1,...,iN =

 bM
aM

+
∑
n


(
⊛
k ̸=n

ã
(k)
ik,:

)T

V
(n)
in

(
⊛
k ̸=n

ã
(k)
ik,:

)


−1

.

The process of deriving Equation (2.25) is described in [99].

An overview of the algorithm is shown in Algorithm 1. Similar to ARD, when the value

of the r-th element of the factor matrix A(n) becomes zero (below the threshold) during

the inference process, the r-th factor is removed. The number of components in the factor

matrix is the rank, enabling rank determination.

2.3.3 Computional complexity

The computation cost of the factor matrices A(n) in Equation (2.19) is O(NR2M +

R3
∑

n In), where N is the order of the tensor, M denotes the number of observations,

i.e., the input data size. R is the number of latent components in each A(n), i.e., model

complexity or tensor rank. The computation cost of the hyperparameter λ in Equation

(2.20) is O(R2
∑

n In). The computation cost of the hyperparameter δ in Equation (2.21)

is O(R2). The computation cost of the hyperparameter τ in Equation (2.22) is O(R2M).

Therefore, the overall complexity of our algorithm is O(NR2M+R3), which scales linearly

with the data size but polynomially with the model complexity. It can be seen that the

algorithm strongly depends on the tensor rank, i.e., the complexity R of the model. The

computational complexity of ARD is O(NR2M +R3), which is the same as the proposed

method. However, unlike ARD, MGP-ARD does not evaluate R excessively high, so the

computation time is shorter, and the algorithm is faster.

2.4 Experiment

In this section, we describe the experiments to verify the effectiveness of the proposed

MGP-ARD. Since MGP-ARD is proposed to correctly estimate the CP rank, which was
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overestimated in ARD, the following points are verified from both artificial data and image

data.

1. By attempting to estimate the CP rank for artificial tensor data, we examine whether

the estimation accuracy of MGP-ARD is improved compared to ARD [69], an orig-

inal method. We also examine whether the estimation error is reduced by not

overestimating the rank in the problem of noisy tensor completion.

2. We attempt to recover incomplete images with noise. We verify that the estimation

time is reduced by suppressing the overestimation of the rank while maintaining a

high estimation system by comparing it to ARD [69] and MGP-a [84].

The experiment was conducted in the following environments: CPU: Intel(R) Xeon(R)

Silver 4214R CPU @ 2.40GHz, 12 cores, Memory: 512GByte, Software: Matlab R2019a.

2.4.1 Experiments on artificial data (Rank is known)

In tensor completion, we verify whether the duplication of column vectors is improved

and the accuracy of rank estimation is improved compared to the existing original ARD

method. In order to check the accuracy of the rank estimation, we use synthetic data.

In this experiment, the number of tensor orders is 3, and the sizes are 30 × 30 × 30 and

20 × 40 × 10. The true rank is 3 or 5, respectively. To investigate the robustness to the

missing, we experiment with different observation rates (0.2, 0.5, and 0.9). The noise

is 20 [dB], and 50 trials are performed for each experimental pattern. The convergence

threshold ϵ is 1.0×10−5, and the estimation accuracy is RSE = ∥X̂−X∥F
∥X∥F

. The initial value

of R is twice the true rank.

The experimental results are shown in Figure 2.5. In all cases, the accuracy of rank es-

timation of MGP-ARD (the proposed method) was higher than that of ARD (the original

method). In particular, when the loss rate is low, ARD tends to overestimate the rank

because the amount of noise in the data is large. At the same time, MGP-ARD estimates

the true rank, resulting in a significant difference in estimation accuracy.

Table 2.1 shows the mean and median RSE of the proposed method (MGP-ARD)

and the existing method (ARD). Both mean and median RSE were lower in MGP-ARD

under most conditions, suggesting that RSE was improved. This suggests that the MGP-

ARD does not overestimate the rank, thereby reducing the redundancy of the model and

avoiding sensitivity to noise.

Next, we also compared ARD and MGP-ARD in various noise levels: SNR is 0, 10,

and 20 [dB]. The size of the tensor is 30× 30× 30, the missing rate is 0.5, the true rank

is 3 and 5, and each combination is tried 50 times. The experimental results are shown

in Figure 2.6, Table 2.2. In all cases, the accuracy of rank estimation of MGP-ARD (the

proposed method) was higher than that of ARD (the original method). The proposed
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Figure 2.5 Rank estimation results for tensor completion using MGP (original method)
and MGP-ARD (proposed method). The top two rows show the results when the true
rank is 3, and the bottom two rows show the results when the true rank is 5. The loss rate
is 0.1, 0.5, and 0.9, and the SNR is 20 [dB]. 50 trials were performed for each pattern.
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Figure 2.6 Rank estimation results for tensor completion using MGP (original method)
and MGP-ARD (proposed method). The top row shows the results when the true rank is
3, and the bottom row shows the results when the true rank is 5. The size of the tensor
is 30 × 30 × 30, and the missing rate is 0.5, and the SNR is 0, 10, 20 [dB]. 50 trials were
performed for each setting.
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method has a minor change in the distribution in response to noise than the conventional

method.

The actual improvement in duplication is shown in Figure 2.7. This figure shows the

factor matrices finally obtained by ARD and MGP-ARD when the true rank is 5, the

observation rate is 0.5, and the SNR is 20 [dB]. In ARD, the number of components

in the obtained factor matrix is 8, so the rank estimation result is 8. On the other

hand, the number of components in the factor matrix obtained by MGP-ARD is 5, which

results in a rank estimation result of 5. Since the true rank is 5, we can see that MGP-

Table 2.1 Mean and median of the estimation error (RSE) in tensor completion. True
ranks are 3 and 5, sizes are 30× 30× 30 and 20× 10× 40, and missing rates are 0.1, 0.5,
and 0.9. Each pattern consists of 50 trials.

True Size Missing Mean Median

rank rate ARD MGP-ARD ARD MGP-ARD

3 30 × 30 × 30 0.1 0.0040 0.0033 0.0040 0.0033

0.5 0.0115 0.0108 0.0115 0.0107

0.9 0.0322 0.0322 0.0320 0.0320

20 × 10 × 40 0.1 0.0065 0.0054 0.0064 0.0054

0.5 0.0181 0.0175 0.0183 0.0172

0.9 0.0674 0.0672 0.0564 0.0563

5 30 × 30 × 30 0.1 0.0049 0.0046 0.0049 0.0047

0.5 0.0139 0.0136 0.0140 0.0134

0.9 0.0522 0.0517 0.0437 0.0435

20 × 10 × 40 0.1 0.0049 0.0046 0.0049 0.0047

0.5 0.0077 0.0073 0.0077 0.0073

0.9 0.4748 0.4674 0.5461 0.5434

Table 2.2 Mean and median of the estimation error (RSE) in tensor completion. True
ranks are 3 and 5, sizes are 30× 30× 30, and SNR are 0, 10, and 20 [dB]. Each pattern
consists of 50 trials.

True SNR Mean Median

rank [dB] ARD MGP-ARD ARD MGP-ARD

3 0 0.0991 0.0987 0.1012 0.1010

10 0.0341 0.0327 0.0337 0.0324

20 0.0115 0.0108 0.0115 0.0107

5 0 0.1317 0.1305 0.1301 0.1295

10 0.0423 0.0415 0.0419 0.0412

20 0.0139 0.0136 0.0140 0.0134
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Figure 2.7 The improvement in the duplication of the column vectors. true rank is 5,
observation rate is 0.5, SNR is 20 [dB]. In ARD, the 1st and 5th, 7th, and 8th components
overlap, but MGP-ARD improves this and correctly estimates the true rank of 5.
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Figure 2.8 The figure shows the convergence of ARD and MGP-ARD. The left figure shows
the variational lower bound and the right figure shows the process of rank estimation. The
size of the tensor is 30× 30× 30, true rank is 3, observation rate is 0.5, SNR = 20 [dB].
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Figure 2.9 The average runtime (seconds) in tensor completion. True ranks are 5, 10, 15,
and 20, size is 30× 30× 30, SNR is 20 [dB], and missing rate is 0.5. Each setting consists
of 50 trials.

ARD more accurately estimates the rank, while ARD overestimates 3. This is because

of the duplication in the column vectors of the factor matrix of ARD, and MGP-ARD

has improved this. Furthermore, the RSE of MGP-ARD is lower than that of ARD,

suggesting that sensitivity to noise is avoided by not overestimating the ranks.

Figure 2.8 shows the convergence of the ARD and MGP-ARD algorithms, i.e. the

variational lower bound and rank. The size of the tensor is 30× 30× 30, true rank is 3,

observation rate is 0.5, SNR is 20 [dB]. From Figure 2.8, the convergence of MGP-ARD

was slightly slower than ARD, but the variational lower bound of MGP-ARD was better

than that of ARD finally. In addition, the estimated rank of MGP-ARD was significantly

decreased in early stage of the iterations.

Figure 2.9 shows estimation time against the rank values in both methods for ARD and

MGP-ARD. True ranks are 5, 10, 15, and 20, size is 30 × 30 × 30, SNR is 20 [dB], and

missing rate is 0.5. It can be seen that MGP-ARD is faster than ARD in all ranks. The

gap of computation times between ARD and MGP-ARD becomes larger as the true rank

increases. This is because the computational complexity of both methods is dominated

by O(R3).
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Figure 2.10 (Best viewed magnified) Results of image inpainting using MGP-a, ARD,
and MGP-ARD. There are 8 types of experimental images with an uniform area missing.
The 1st row is the original complete image, the 2nd row is the image with noise added
(SNR = 20 [dB]) plus 90% missing. The 3rd and subsequent rows are the complementary
results of each method.

2.4.2 Experiments with image data (Rank is unknown)

We experiment with MGP-ARD using real data as well as artificial data. In this

experiment, we try to recover the missing image with noise for image inpainting. Since

the true rank is not yet known, we mainly evaluate the estimation accuracy and time.

First, we use 8 types of uniform missing images. The observation rate is 0.1 (90%

missing) and the SNR is 10 [dB]. The original image and the image with further missing

data that contains noise are shown in Figure 2.10. We experiment with image inpainting

using MGP-a [84], ARD and MGP-ARD. The convergence threshold ϵ is 1.0 × 10−4,

and the estimation accuracy is RSE = ∥X̂−X∥F
∥X∥F

. We also use PSNR and SSIM as other

assessment measures. The initial value of R is set to 100.

The completion results are shown in Figure 2.10. The recovery performance (RSE,

PSNR, SSIM) and runtime are also summarized in Table 2.3. Table 2.3, MGP-ARD

is the fastest while maintaining a high performance among the three methods. MGP-

ARD is only slightly less accurate than ARD, but not enough to be distinguished by the

naked eye, referring to the image inpainting results in Figure 2.10. In terms of estimation

time, we achieved completion in about half the estimation time of ARD. This can be

attributed to the fact that the computation time of MGP-ARD is proportional to R3, and

the improvement of redundancy reduces R, which in turn reduces the computation time.
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Figure 2.11 Results of image inpainting using MGP-a, ARD, and MGP-ARD. There are 2
types of experimental images with a specific area missing. The 1st column is the original
complete image, the 2nd column is the image with large missing upper left part. The 3rd
and subsequent rows are the complementary results of each method.

Next, we have also experimented with images in which certain areas are completely

missing. We use two types of images (baboon, sailboat) in which the upper left corner

is largely missing in a rectangular shape. The original image and the image with further

missing data are shown in Figure 2.11. The algorithm, the convergence threshold, initial

R, and the metrics are the same as for the uniform missing images experiment.

The completion results are shown in Figure 2.11. The recovery performance (RSE,

PSNR, SSIM) and runtime are also summarized in Table 2.4. Table 2.4 shows that MGP-

ARD has the highest accuracy and the fastest estimation for both images. Figure 2.11

shows that MGP-ARD performed the smoothest completion due to its low rank property,

which is considered to increase the completion accuracy.

In summary, we confirmed that MGP-ARD significantly reduces the estimation time

while maintaining the same level of estimation accuracy compared to ARD in image

inpainting.

2.4.3 Experiments with trafic data (Rank is unknown)

With Intelligent Transportation Systems (ITS) operation, the analysis of large-scale

traffic data in urban centers is becoming more and more critical. In general, traffic data

contains information about time, space, and individual attributes, and the number of data

is enormous. Such high-dimensional data with multiple characteristics can be regarded

as tensor data. The problem in analyzing such high-dimensional data is missing values

due to hardware/software or communication network failures. In this experiment, we
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Table 2.3 The recovery performance (RSE, PSNR, SSIM) and runtime (seconds) on uni-
form missing eight images. For methods that need to tune parameters, the runtime with
the best tuning parameter.

MGP-a ARD MGP-ARD

RSE 0.2031 0.1481 0.1485

PSNR 19.44 22.06 22.03

SSIM 0.4204 0.6107 0.6099

Runtime 111 177 97

Table 2.4 The averaged recovery performance (RSE, PSNR, SSIM) and runtime (seconds)
on two types of images with specific areas missing. For methods that need to tune
parameters, the runtime with the best tuning parameter.

baboon sailboat

MGP-a ARD MGP-ARD MGP-a ARD MGP-ARD

RSE 0.3995 0.3532 0.3447 0.5937 0.7349 0.5565

PSNR 28.06 29.1266 29.3396 24.2892 22.4362 24.8514

SSIM 0.9602 0.9613 0.9631 0.9545 0.9579 0.9599

Runtime 393 335 60 395 142 57

use MGP-ARD to perform tensor completion on incomplete traffic data and estimate the

missing values.

In this section, we conduct numerical experiments based on a traffic speed dataset

collected in Guangzhou, China. This experiment is based on the work of Chen et al [91].

This data set is available at https://doi.org/10.5281/zenodo.1205229. This dataset

consists of travel speeds observed at 10-minute intervals (144-time intervals per day) from

214 road segments over two months (61 days from August 1, 2016, to September 30,

2016). The speed data can be organized as a third-order tensor (road segment × day ×
time interval, 214 × 61 × 144). Of the approximately 1.88 million data, about 1.29%

are not observed or provided in raw data. To evaluate how well the method works in

cases with more missing observations, we create an artificial version of the data where

70% of the entry is assumed missing. The algorithms used in the experiments are ARD

and MGP-ARD. The convergence threshold ϵ is 1.0× 10−4, and the estimation accuracy

is RSE = ∥X̂−X∥F
∥X∥F

. The initial value of R is set to 100.

The completion results are shown in Figure 2.12. The recovery performance (RSE) and

runtime are also summarized in Table 2.5. Table 2.5 shows that better estimation can be

achieved with a faster estimation time. Figure 2.12 also shows that MGP-ARD estimates

better than ARD at the 1:00 p.m. time point on the first and third days, where the true

value drops significantly.

In summary, we confirmed that MGP-ARD significantly reduces the estimation time
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Figure 2.12 Completion results of traffic speed data [km/h]. The graph shows the ARD
of the data with 70% of the elements missing, the completion result by MGP-ARD, and
the data before the missing elements (True). The range of the data is three days.

and improves estimation accuracy compared to ARD in speed traffic data completion.

Table 2.5 The recovery performance (RSE) and runtime (seconds) on missing speed traffic
data. For methods that need to tune parameters, the runtime with the best tuning
parameter.

ARD MGP-ARD

RSE [km/h] 4.9047 4.8377

Runtime 477 219

2.4.4 Hyper-parameter sensitivities of rank estimation

In this section, we conduct numerical experiments on the dependence hyper-parameter

sensitivities of rank estimation results in MGP-ARD and discuss the experimental results.

The representative hyperparameter of MGP-ARD is e0, which is related to the degree

of degeneracy of the core tensor (see Equation (2.17)). When e0 is large, the degree of

degeneracy is small, and when e0 is small, the degree of degeneracy is large. In other words,

the results of rank estimation vary greatly depending on the value of the hyperparameters,

and MGP-ARD may not be able to automatically estimate ranks from data, unlike ARD.

Therefore, we experiment to confirm that MGP-ARD estimates rank not only based on

the hyperparameters that determine the degree of shrinkage but also on information from
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Figure 2.13 The result of rank estimation when the hyperparameters are varied (true rank
is fixed at 12)

the data. In the experiment, we show the rank estimation results of MGP-ARD when

only the hyperparameters are changed while the true rank is fixed. We use a third-order

tensor of size 30× 30× 30 and two true ranks of 12 and 15. The hyperparameters e0 are

0.79, 0.81, 0.83, 0.85, and 0.87 for both, and 50 trials are made for each. SNR is 20 [dB],

and the observation rate is 0.5. The initial value of R is twice the true rank.

Figure 2.13 and 2.14 show the estimation results when the true rank is 12 and 15. The

rank estimated is prone to be larger as hyperparameters increase for both true ranks of

12 and 15. However, the rank estimated is larger when the true rank is 15 than when the

true rank is 12, indicating that the rank is estimated at around 12 when the true rank

is 12 and around 15 when the true rank is 15. In other words, MGP-ARD is not only

influence of the hyperparameters, but is also influenced by the data.

Next, we conducted the experiment of rank estimation of MGP-ARD when the true

rank is varied under fixed hyperparameter conditions. The data is a third-order tensor of

size 30×30×30, the SNR is 20 [dB], and the observation rate is 0.5. The hyperparameter

e0 is fixed at 0.8, and we confirm how the estimation results change when the true rank

is changed from 10, 11, 12, 13, 14, to 15.

Figure 2.15 shows the experimental results. We confirm that as the true rank increases,

the rank estimation results also increase (11, 12→ 13, 14). This indicates that information

from the data also influenced the rank determination.
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Figure 2.14 The result of rank estimation when the hyperparameters are changed. The
color type indicates the true rank. (true rank is fixed at 15)

In summary, MGP-ARD is affected by hyperparameter but the information from the

data absorbs the influence. For example, if the hyperparameter e0 is set too large and

the reduction is too strongly, the information from the data can suppress the excessive

removal of rank.
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Chapter 3

　　Tensor completion by Smooth

Convolution Tensor Factorization

(SCTF)

Recently, tensor completion for considering low-rank structures in delay-embedded

spaces has attracted attention [79], [100]. A delay-embedded space is a high-dimensional

space that represents time delay. In particular, the embedding of tensor data is called

Multiway Delay-embedding Transform (MDT), which is mathematically equivalent to

multi-level Hankelization. MDT has been widely applied to the tensor completion of im-

ages and videos [101], [102], [100], [17], [5], [79]. MDT-Tucker [79], the original model of

tensor completion using MDT, consists of the following steps:

1. Hankelization of the observed tensor by MDT.

2. Completion of the Hankelized tensor using Tucker decomposition.

3. Inverse MDT of the completed tensor.

This method considers a delay-embedded space with a high expressive capability and

exhibits higher completion accuracy than existing methods [2], [21], [52], [68], [16]. How-

ever, MDT-Tucker has the disadvantages of considerable time requirement and space

computational complexity. For example, for an Nth-order tensor of average size T , if

the delay window size is τ , the space complexity is O(τNTN) and the time complexity is

O(τN+1TN); thus, the complexity increases exponentially with order.

In this chapter, we propose a novel smooth convolutional tensor factorization (SCTF)

model, which decomposes a tensor into two smooth factor tensors by convolution instead

of a product. Figure 3.1 shows a schematic of the algorithm. This model implicitly

implements tensor decomposition in the delay-embedded space, whereas optimization is

performed in the original space. The model is based on the relationship between the
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(a) Previous method (b) Proposed method

Fig. 1: Comparison between the existing method (a) and the proposed method (b). The existing method computes the optimization
indirectly on the delay-embedded space. On the other hand, the proposed method computes the optimization directly in the original
space.

x 2 RN with delay window size ⌧ is defined as

X := H⌧ (x) =

0
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2 RN⇥⌧
, (1)

where the DT operation is denoted as H⌧ . Each row of X is
identical to the local window of a vector x. Note that this study
assumes that the signal is cyclic, and such a matrix is called
as Hankel matrix. Figure 2 shows a concrete example of DT
operation. The pseudo inverse operation of delay-embedding
can be defined as the average of anti-diagonal entries. Let us
put X(i, j) as the (i, j)-th entry of X 2 RN⇥⌧ , each entry of
the inverse DT can be given by

[H†
⌧ (X)](n) :=

1

⌧

⌧X

t=1

X((n� t mod N) + 1, t), (2)

where the inverse DT operation is denoted as H†
⌧ .

B. Equivalence of DT and convolution

Any matrix X 2 RN⇥⌧ has singular value decomposition,
and it can be given as

X = U⌃V T =
⌧X

r=1

�rurv
T
r , (3)

where U = [u1, . . . ,u⌧ ] 2 RN⇥⌧ and V = [v1, . . . ,v⌧ ] 2
R⌧⇥⌧ are orthonormal matrices and ⌃ = diag(�1, . . . ,�⌧ ) 2
R⌧⇥⌧ is a diagonal matrix. Next, we consider the inverse DT
of X . Since the inverse DT is a linear operation, it can be
separated into each rank-1 basis,

H†
⌧ (X) =

⌧X

r=1

�rH†
⌧ (urv

T
r ). (4)

Fig. 2: DT operation when the size of the delay window is
3 for the observation vector x = (1, 2, 3, 4, 5). Note that the
anti-diagonal entries are equal.

Hence, from Equation (2), (4), the n-th element of the inverse
DT for a single basis urvT

r is

[H†
⌧ (urv

T
r )](n) =

1

⌧

⌧X

t=1

ur((n� t mod N) + 1)vr(t)

=
1

⌧
[ur ⇤ vr], (5)

where ⇤ is convolution operation. From Equation (5), the
inverse DT of the rank-1 basis can be formulated in terms
of convolution.

C. Sufficient representation ability even with a rank-1 matrix

Here, we discuss the low rank representation of X . From
Equation (5), rank of X is the number of convolutional bases.
Degree of freedom of each convolutional basis decides the
representation ability of the model. In this paper, we consider
X as a rank-1, and show it has sufficient representation ability
for signal reconstruction. Rank-1 matrix model of X = uvT 2

365

Incomplete 
Hankel tensor

Complete 
Hankel tensor

(a) Existing method

Cyclic convolution model Complete tensor

Rank-1 
model

Incomplete vector

≈

optimization

Delay-embedded Space

(b) Proposed method
Figure 3.1 Comparison between the existing MDT-based and proposed convolution-based
methods. (a) The existing method computes the optimization on the delay-embedded
space. (b) Whereas, the proposed method computes the optimization in the original
space, but implicitly considers the delay-emabedded space.
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inverse MDT of the rank-1 model and the cyclic convolution of the factor tensors. In

addition, because it is a rank 1 model, the SCTF is simpler than the MDT-Tucker model,

which considers the Tucker decomposition model. These properties are expected to reduce

computational complexity. In addition, a smoothness constraint was imposed on the

factor tensors to further narrow the solution set. Our contributions can be summarized

as follows:

• We have mathematically proven that tensor decomposition based on inverse MDT

has sufficient representation ability in rank-1 decomposition.

• Based on the relationship of inverse MDT of rank 1 decomposition and cyclic con-

volution of factor tensors and the introduction of smooth prior structure into factor

tensors, we proposed a new tensor completion model named smooth convolutional

tensor factorization (SCTF).

• We derived a solution method of the proposed SCTF with the Majorization-Mini

mization (MM) algorithm [60], [61], which is expected to provide a stable optimiza-

tion in which the cost function decreases monotonically. Moreover, we exploit the

equivalence of cyclic convolution in the time domain and Hadamard product in the

frequency domain to reduce computation time.

The remainder of this chapter is organized as follows: related works in Section 3.1, a

review of MDT in Section 3.2, the proposed method in Section 3.3, experiments using the

proposed method in Section 3.4.

3.1 Related works

t-SVD [72] is a convolutional tensor decomposition method as well as the proposed

method. It can achieve accurate tensor recovery based on group theory. t-SVD considers

a new SVD for tensors by using some convolution, and the rank in t-SVD (tubal rank)

is defined as the number of non-zero singular values. Since it is difficult to minimize the

tubal rank directly, its convex relaxation is usually employed. The convex relaxation of

tubal rank is given by the sum of singular values based on t-SVD, and it is called as the

tensor nuclear norm (TNN). Low-rank approximation in the t-SVD is substituted for a

problem of minimizing TNN, which has the advantage of incorporating a global structure.

TNN [72] is a typical model for tensor completion problems based on t-SVD, and PSTNN

[103] is a further developed model. PSTNN suppresses the excessively low rank of the

estimated tensor by considering partial sums of only small singular values in the tensor

nuclear norm. RTF [75] and UTF [76] have also been proposed as models that avoid the

high computational cost of these t-SVD models. RTF considers a factorization model
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of a low-rank tensor of small size and a dictionary (orthogonal) tensor. Since t-SVD is

applied only to low-rank tensors of small size, the computational cost is lower than that of

other t-SVD models. On the other hand, UTF uses the fact that the TNN is transformed

to the minimum sum of the Frobenius norms of the two low-rank tensors so that the

algorithm does not directly compute t-SVD in its calculation. UTF achieves very fast

inference despite t-SVD model. However, these methods differ from the proposed method

because it uses only the third-order tensor, and the convolution operation is performed

only in the channel direction. Also, unlike the proposed model, these models do not have

a smoothness term.

CNNM [104], [105] is a mathematical model of nuclear norm minimization of convo-

lutional tensors applied to image completion and time series prediction. This research

shows the equivalence of nuclear norm minimization of the convolution tensor and sparse

approximation in Fourier space. However, the relationship between inverse MDT and

cyclic convolution, and smoothness constraints is not discussed.

3.2 Review of MDT

This section summarizes the Multiway Delay-embedding Transform (MDT). Note that

there are two types of MDT: noncyclic MDT [79] and cyclic MDT [5]. In this study, we

consider a cyclic MDT. First, we discuss the Delay-embedding Transform (DT) for one-

dimensional data (vectors), which is then extended to multidimensional data. Next, we

introduce the overview of Multiway Delay-embedding Transform (MDT) and describe the

outstanding points and drawbacks of MDT. Finally, Fast-MDT-Tucker [5], for avoiding

drawbacks of MDT.

3.2.1 Delay-embedding Transform (DT)

Overview of DT

A delay-embedding Transform (DT) is the transformation of data into a high-dimensional

space representing a time delay. In physics, DT has been studied by reconstructing dy-

namic attractors from time-series data in a delay-embedded space [106]. Mathematically,

the DT converts a vector into a Hankel matrix (Hankelization) [107]. When embedding

an observed signal from the original space into a high-dimensional space, it is assumed

that the signal is represented by a low-rank and smooth manifold in the delay-embedded

space [108], [109], [110]. Figure 3.2 shows the results of DT of the signal generated by the

Lorenz system, indicating that the transformed signal is smooth and low-dimensional in

the delay-embedded space. Based on this assumption, a low-rank approximation of the

Hankel matrix is used in the data analysis [111], [107].
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Figure 3.2 The figure shows the delay-embedded of signals generated from the Lorenz
system. The embedded signal is smooth and low-dimensional in the delay-embedded
space.

Mathematical operation of DT

Following [5], the DT for an observation vector x = (x1, . . . , xT )
T ∈ RT with a delay

window size τ is defined as

X := Hτ (x) =


x1 x2 · · · xτ−1 xτ
x2 x3 · · · xτ xτ+1

...
...

. . .
...

...

xT−1 xT . . . xτ−3 xτ−2

xT x1 . . . xτ−2 xτ−1


∈ RT×τ , (3.1)

where the DT operation is denoted as Hτ . Because X is a Hankel matrix, DT is also

called Hankelization. Each row of X is identical to the local window of vector x. Notably,

this study assumes that the signal is cyclic. Figure 3.3a shows a concrete example of a

DT operation.

The DT can be considered a linear operation. By using the duplication matrix S ∈
RTτ×T , we obtain

S(i, j) =

{
1 j = (((i− 1) mod T ) + ⌊(i− 1)/T ⌋) mod T + 1

0 otherwise
. (3.2)

DT can be given by

Hτ (x) = fold(T,τ)(Sx), (3.3)
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where fold(V,v): RV v → RV×v is a folding operator, that is reshaping from a vector to a

matrix.

The pseudo-inverse of the DT can be expressed as the average of the anti-diagonal

entries. Considering a matrix X ∈ RT×τ , the inverse DT operation H†
τ can be given by

H†
τ (X) = S†vec(X), (3.4)

where S† := (STS)−1ST is a Moore-Penrose pseudoinverse of S, and vec(·) represents an
operation of vectorization. We note that (STS)−1 = 1

τ
I. The tth element of the inverse

DT is given by

[H†
τ (X)](t) = [S†vec(X)](t)

=
1

τ

τ∑
k=1

X((t− k mod T ) + 1, k). (3.5)

Figure 3.3 illustrates the DT and inverse DT matrix computations.

3.2.2 Multiway Delay-embedding Transform (MDT)

Overview of MDT

AMultiway Delay-embedding transform (MDT) is an Delay-embedding transform (DT)

for tensor data of two or more orders. Tensor decomposition based on the MDT has various

applications, particularly for tensor completion. A representative model is MDT-Tucker,

which considers the Tucker decomposition model of the Hankel tensor and has been ap-

plied to image completion [79] and time-series data [112]. Another model, the HT-RPCA,

was proposed in [113]. Unlike general RPCA, HT-RPCA solves the rank minimization

of the tensor Hankelized by MDT, instead of the rank minimization of the matrix. This

method enables anomaly detection by considering the time series. Furthermore, the TT

and TR decomposition models of the Hankel tensor have been proposed and applied to

image completion and time-series data [102], [100].

Mathematical operation of MDT

The DT can be naturally extended to an N -th order tensor X ∈ RT1×···×TN of size

T = (T1, . . . , TN) ∈ RN . Let us consider N duplication matrices Sn ∈ {0, 1}Tnτn×Tn (n =

1, . . . , N) with a window size τ = (τ1, . . . , τN) ∈ RN (see Equation (3.2)). The MDT is

defined using an all-mode product and folding as follows:

Hτ (X ) := fold(T ,τ )(X × {S}), (3.6)
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Figure 2. A MDT used by MDT-Tucker and a circulant MDT used by the proposed method.

Transform (MDT) is defined using all-mode product and
folding as

eH⌧ (X ) := fold(⌧ ,T�⌧+1)(X ⇥ { eS}), (11)

where fold(v,V ) : Rv1V1⇥···⇥vNVN ! Rv1⇥V1⇥···⇥vN⇥VN

is a folding operator from an N -th order tensor to the
2N -th order tensor. For a 2N -th order tensor eXH 2

R⌧1⇥(T1�⌧1+1)⇥···⇥⌧N⇥(TN�⌧N+1), the inverse MDT is de-
fined as

eH†
⌧ ( eXH) := unfold(⌧ ,T�⌧+1)( eXH)⇥ { eS†

} (12)

where unfold(v,V ) is an inverse transformation of
fold(v,V ).

2.2. Tucker-based tensor completion (Step 2)
Here, we briefly explain how to obtain Tucker-

decomposition at the Step 2 in MDT-Tucker. In this step,
the following optimization problem is considered,

minimize
G,{Un}2N

n=1

kQH � (T H � G ⇥ {U})k2
F
, (13)

s.t. G 2 RR1⇥···⇥R2N ,

Un 2 RJn⇥Rn , U>
n
Un = IJn ,

Rn  Jn (8n 2 {1, . . . , 2N}).

It can be solved by a combination of alternating
least squares (ALS) algorithm [2] and majorization-
minimization (MM) algorithm [7,15]. In addition, we solve
(13) iteratively while increasing Rn until the cost function
becomes sufficiently small. All processes are summarized
in Algorithm 1. How to increase the rank of each mode
(e.g., Rn  Rn + 1) can be set by using a vector Ln.

2.3. Hint for improvements
In MDT, an N -th order tensor X 2 RT⇥···⇥T is trans-

formed to a Hankel tensor and it can also be represented
as a multilevel Hankel matrix HX by reshaping. A fast
SVD for (multilevel) Hankel matrix is studied to exploit
the Hankel structure [13, 24], and a fast product between of
the Hankel tensor and the vector is studied in [4]. The key
idea of these studies is from a fact that any multilevel anti-
circulant matrix CX 2 RT

N⇥T
N

can be diagonalized by
N -dimensional Fourier basis W 2 CT

N⇥T
N

. Then, a ma-
trix WCXW is diagonal, and its diagonal entries can be
obtained by N -dimensional Fourier transform of the orig-
inal tensor X . In addition, the multilevel Hankel matrix
HX is completely included as a part of the multilevel anti-
circulant matrix CX .

The above results show that the Hankel tensor can be
represented by the Fourier transform of the original tensor
without explicit calculation. It also shows that the multipli-
cation of a Hankel tensor and a vector (or matrix) can be
efficiently calculated by using the Fourier transform of the
original tensor without using the Hankel tensor explicitly.

3. Proposed method
3.1. Overview of fast MDT-Tucker

MDT-Tucker [26] is computationally expensive due to
the explicit calculation of the Hankel tensor by MDT. We
propose to apply the results shown in Sec. 2.3 to the MDT-
Tucker for fast and efficient implementation. However, it
cannot be directly applied as is. Then, we propose to refor-
mulate the MDT-Tucker in this study.

The reformulation of MDT-Tucker is as follow:

• To exploit the property of a circulant matrix, we define
a circulant MDT and replace it with a normal MDT.
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least squares (ALS) algorithm [2] and majorization-
minimization (MM) algorithm [7,15]. In addition, we solve
(13) iteratively while increasing Rn until the cost function
becomes sufficiently small. All processes are summarized
in Algorithm 1. How to increase the rank of each mode
(e.g., Rn  Rn + 1) can be set by using a vector Ln.
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In MDT, an N -th order tensor X 2 RT⇥···⇥T is trans-

formed to a Hankel tensor and it can also be represented
as a multilevel Hankel matrix HX by reshaping. A fast
SVD for (multilevel) Hankel matrix is studied to exploit
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idea of these studies is from a fact that any multilevel anti-
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inal tensor X . In addition, the multilevel Hankel matrix
HX is completely included as a part of the multilevel anti-
circulant matrix CX .

The above results show that the Hankel tensor can be
represented by the Fourier transform of the original tensor
without explicit calculation. It also shows that the multipli-
cation of a Hankel tensor and a vector (or matrix) can be
efficiently calculated by using the Fourier transform of the
original tensor without using the Hankel tensor explicitly.

3. Proposed method
3.1. Overview of fast MDT-Tucker

MDT-Tucker [26] is computationally expensive due to
the explicit calculation of the Hankel tensor by MDT. We
propose to apply the results shown in Sec. 2.3 to the MDT-
Tucker for fast and efficient implementation. However, it
cannot be directly applied as is. Then, we propose to refor-
mulate the MDT-Tucker in this study.

The reformulation of MDT-Tucker is as follow:

• To exploit the property of a circulant matrix, we define
a circulant MDT and replace it with a normal MDT.
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FIGURE 3. DT operation when the size of the delay window is 3 for the observation vector x = (1, 2, 3, 4, 5). Note that the anti-diagonal entries are equal.

Degree of freedom of each convolutional basis decides the
representation ability of the model. In this paper, we consider
X as a rank-1, and show it has sufficient representation
ability for vector reconstruction. Rank-1 matrix model of
X = uv

T 2 RT⇥⌧ can generate any x 2 RT . Let us

u =
⇥
x

⇤
, v =


⌧

0⌧�1

�
, (10)

where 0⌧�1 is a (⌧�1)-dimensional vector of zeros, then we
have

H†
⌧ (uv

T) = H†
⌧

�⇥
⌧x 0T,⌧�1

⇤�
= x. (11)

This fact suggests us that the inverse DT of an unconstrained
matrix even rank-1 is over-parameterized and it does not
work as the model of smooth vector. In this study, we con-
sider to impose additional constraints to u and v (see Section
??).

D. CONSTRUCTION OF CYCLIC CONVOLUTION
(SIZE-ALIGNED CLIPPING)
Here we describe that the inverse DT corresponds to a cyclic
convolution under certain constraints.

First, consider a rank-1 approximate model X ' uv
T 2

RN⇥⌧ based on the ideas in Subsection IV-C. Let consider
clipped matrix P = (I⌧ O)T 2 RT⇥⌧ . Now, we set v 2 R⌧

to be the same vector as the dimension of u 2 RT , i.e., we
define

ṽ := Pv = [v(1), v(2), · · · v(⌧), 0, · · · , 0| {z }
T�⌧

]T 2 RT
. (12)

We call equation (12) as “size-aligned clipping,” where the
sizes of the two bases are equal and the elements of one basis

are zero after the size of the delay window. Then, the t-th
element of inverse DT of the rank-1 basis is defined to be

[H†
⌧ (uṽ

T)](t) =
1

⌧

TX

t=1

u((n� t mod T ) + 1)ṽ(t)

=
1

⌧
[u ⇤N ṽ](t), (13)

where ⇤T is the cyclic convolution of period T . From the
above discussion, assuming constraint “size-aligned clip-
ping,” the inverse DT corresponds to a cyclic convolution.

E. MULTIWAT DELAY-EMBEDDING (MDT) AND
CONVOLUTION OF TENSOR
We extend the discussion on subsection IV-A, IV-B, IV-C,
IV-D in one-dimensional data (vector) to multidimensional
data.

DT can be naturally extended for an N -th order tensor
X 2 RT1⇥···⇥TN with size T = (T1, . . . , TN ). Let us
consider N duplication matrices Sn 2 {0, 1}Tn⌧n⇥Tn (n =
1, . . . , N) with window size ⌧ = (⌧1, . . . , ⌧N ) 2 RN

(See Equation (2)). Multiway Delay-embedding Transform
(MDT) is defined using all-mode product and folding as

H⌧ (X ) := fold(T ,⌧ )(X ⇥ {S}) (14)

where fold(V ,v) : RV1v1⇥···⇥VNvN ! RV1⇥v1⇥···⇥VN⇥vN is
a folding operator from an N -th order tensor to the 2N -th
order tensor. On the other hand, the inverse MDT is defined
as

H†
⌧ (X ) := unfold(T ,⌧ )(X ⇥ {S†}) (15)

where fold(V ,v) : RV1⇥v1⇥···⇥VN⇥vN ! RV1v1⇥···⇥VNvN is
a folding operator from an 2N -th order tensor to the N -th
order tensor.
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Transform (MDT) is defined using all-mode product and
folding as

eH⌧ (X ) := fold(⌧ ,T�⌧+1)(X ⇥ { eS}), (11)

where fold(v,V ) : Rv1V1⇥···⇥vNVN ! Rv1⇥V1⇥···⇥vN⇥VN

is a folding operator from an N -th order tensor to the
2N -th order tensor. For a 2N -th order tensor eXH 2

R⌧1⇥(T1�⌧1+1)⇥···⇥⌧N⇥(TN�⌧N+1), the inverse MDT is de-
fined as

eH†
⌧ ( eXH) := unfold(⌧ ,T�⌧+1)( eXH)⇥ { eS†

} (12)

where unfold(v,V ) is an inverse transformation of
fold(v,V ).

2.2. Tucker-based tensor completion (Step 2)
Here, we briefly explain how to obtain Tucker-

decomposition at the Step 2 in MDT-Tucker. In this step,
the following optimization problem is considered,

minimize
G,{Un}2N

n=1

kQH � (T H � G ⇥ {U})k2
F
, (13)

s.t. G 2 RR1⇥···⇥R2N ,

Un 2 RJn⇥Rn , U>
n
Un = IJn ,

Rn  Jn (8n 2 {1, . . . , 2N}).

It can be solved by a combination of alternating
least squares (ALS) algorithm [2] and majorization-
minimization (MM) algorithm [7,15]. In addition, we solve
(13) iteratively while increasing Rn until the cost function
becomes sufficiently small. All processes are summarized
in Algorithm 1. How to increase the rank of each mode
(e.g., Rn  Rn + 1) can be set by using a vector Ln.

2.3. Hint for improvements
In MDT, an N -th order tensor X 2 RT⇥···⇥T is trans-

formed to a Hankel tensor and it can also be represented
as a multilevel Hankel matrix HX by reshaping. A fast
SVD for (multilevel) Hankel matrix is studied to exploit
the Hankel structure [13, 24], and a fast product between of
the Hankel tensor and the vector is studied in [4]. The key
idea of these studies is from a fact that any multilevel anti-
circulant matrix CX 2 RT

N⇥T
N

can be diagonalized by
N -dimensional Fourier basis W 2 CT

N⇥T
N

. Then, a ma-
trix WCXW is diagonal, and its diagonal entries can be
obtained by N -dimensional Fourier transform of the orig-
inal tensor X . In addition, the multilevel Hankel matrix
HX is completely included as a part of the multilevel anti-
circulant matrix CX .

The above results show that the Hankel tensor can be
represented by the Fourier transform of the original tensor
without explicit calculation. It also shows that the multipli-
cation of a Hankel tensor and a vector (or matrix) can be
efficiently calculated by using the Fourier transform of the
original tensor without using the Hankel tensor explicitly.

3. Proposed method
3.1. Overview of fast MDT-Tucker

MDT-Tucker [26] is computationally expensive due to
the explicit calculation of the Hankel tensor by MDT. We
propose to apply the results shown in Sec. 2.3 to the MDT-
Tucker for fast and efficient implementation. However, it
cannot be directly applied as is. Then, we propose to refor-
mulate the MDT-Tucker in this study.

The reformulation of MDT-Tucker is as follow:

• To exploit the property of a circulant matrix, we define
a circulant MDT and replace it with a normal MDT.
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the explicit calculation of the Hankel tensor by MDT. We
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Figure 3.3 Matrix computation of DT operation and inverse DT operation. In particular,
the computation of the pseudo-inverse matrix in the inverse DT corresponds to the average
of anti-diagonal elements of the matrix.
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where fold(V ,v) : RV1v1×···×VNvN → RV1×v1×···×VN×vN is the folding operator from an N -th

order tensor to a 2N -th order tensor. Conversely, the inverse MDT is defined as

H†
τ (X ) := unfold(T ,τ )(X )× {S†}, (3.7)

where unfold(V ,v) : RV1×v1×···×VN×vN → RV1v1×···×VNvN is an unfolding operator from the

2N -th order tensor of an N -th order tensor.

3.2.3 Relationship between MDT and similarity

We discuss the relationship between MDT and non-local-similarity/self-similarity. Fig-

ure 3.4 explains the procedure of MDT using a graysclae image (2nd-order tensor) as

an example. First, DT is performed on all columns of the image. Next, considering the

matrix of DT created for each column as a single block, we can see that a vector was

created with the block as a single element. DT again for that vector produces a block

matrix, which is the result of the MDT of the 2nd-order tensor. As can be seen in Fig-

ure 3.4, the area of one column of the block matrix created by MDT corresponds to the

area of the patch in the original image. That is, the low-rankedness prior on the delay-

embedded space becomes another prior patch similarity in the original space. In image

analysis, similarity based on patches, not neighborhoods, has been discussed in research

as nonlocal similarity. In particular, nonlocal similarity has been studied as a denoising

method, of which NL-means [114] and BM3D [115] are typical examples. These methods

perform denoising by selecting a reference patch from an image, extracting similar patches

by template matching, and averaging similar patches by weighted average. Low-rankness

in the delay-emabedded space automatically performs reference and feature extraction

simultaneously.

The proposed method is a completion problem not denoising, and this is where self-

similarity is also important. Many images are constructed entirely from similar structures

of the same patterns (lines, textures, etc.). Self-similarity is the repetition of a local

pattern that constitutes a whole, called fractal in geometric properties [116]. Fractals

occur frequently in many physical processes in nature, i.e., for example, in an image,

similar lines and textures often appear repeatedly [117]. The proposed method is based

on the belief that even if most of the structure is missing if the structure that appears

locally remains, the whole can be completed.

There is also a study of low-rank patterns on delay-embedded space, which is for basic

sine/cosine waves [118], [119]. For example, [118] is based on the fact that functions ap-

pearing in the world can be described on a Fourier basis and image data are represented by

DCT, and [119] is based on the fact that time delays can be represented by multiplication

in Z transform.
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Figure 3.4 This figure represents the process of MDT by grayscale image. It can be seen
that the low-rankness in the delay-embedded space represents a patch of the image.
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3.2.4 Fast-MDT-Tucker

The methods introduced in Section 3.2.2 have the disadvantage of considerable time

requirement and space computational complexity because of the Hankelization in each

mode of the tensor. Fast-MDT-Tucker [5] was proposed to improve the high computa-

tional complexity of MDT-Tucker. This method focuses on the redundant structure of

the Hankel matrix and improves the time complexity to O(NTN logNT ) and the space

complexity to O(TN) using two techniques:

1. Omission of duplicate computations.

2. Equivalence of cyclic convolution in the time domain and Hadamard product in the

frequency domain.

In 2), the Fast-MDT-Tucker exploits the relationship between the inverse MDT and cyclic

convolution. Fast-MDT-Tucker provides a fast and accurate completion; however, only

low-rank priors are available.

The proposed method is also an algorithm based on the relationship between the in-

verse MDT and cyclic convolution and similarly avoids the issues of MDT. Note that

the low-rank model of the proposed method is not a Tucker decomposition but a rank-1

decomposition. In addition, the proposed method imposes a smoothness constraint on

the factor tensors.

3.3 Proposed Method

The proposed method solves the optimization problem by assuming that the observation

tensor can be represented by a cyclic convolution of two smooth factors of the same size

(See Figure 3.1). We describe the key theory behind the proposed method in Section

3.3.1, the smoothness constraints in Section 3.3.2, and the formulation and algorithm in

Section 3.3.3.

3.3.1 Key theory of proposed method

Relationship between the inverse DT and cyclic convolution

Any rank-R matrixX ∈ RT×τ has a singular value decomposition that can be expressed

as

X = UΣV T =
R∑

r=1

σrurv
T
r , (3.8)
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where U = [u1, . . . ,uR] ∈ RT×R and V = [v1, . . . ,vR] ∈ Rτ×R are orthonormal matrices

and Σ = diag(σ1, . . . , σR) ∈ RR×R is a diagonal matrix. Because the inverse DT is a

linear operation, H†
τ (X) can be separated into rank-1 bases:

H†
τ (X) =

R∑
r=1

σrH†
τ (urv

T
r ). (3.9)

From Equations (3.5) and (3.9), the tth element of the inverse DT for a single basis urv
T
r

is given by

[H†
τ (urv

T
r )](t) =

1

τ

τ∑
k=1

ur((t− k mod T ) + 1)vr(k). (3.10)

Now, let us consider the matrix P = (Iτ O)T ∈ RT×τ and set v ∈ Rτ to be the same

vector as the dimension of u ∈ RT , i.e., zero padding operation is given by

ṽ := Pv = [v(1), v(2), . . . v(τ), 0, . . . , 0︸ ︷︷ ︸
T−τ

]T ∈ RT . (3.11)

Note that the sizes of u and ṽ are equal and the elements of ṽ are zero after the size

of the delay window τ . From Equations (3.10) and (3.11), the inverse DT of the rank-1

basis uvT is given by

[H†
τ (urv

T
r )](t) =

1

τ

T∑
k=1

ur((t− k mod T ) + 1)ṽr(k)

=
1

τ
[ur ∗ ṽr](t), (3.12)

where ∗ denotes a cyclic convolution operation. From Equation (3.12), the inverse DT

of the rank-1 basis can be formulated in terms of a cyclic convolution. Eventually, from

Equations (3.9) and (3.12), the inverse DT of X is

H†
τ (X) =

1

τ

R∑
r=1

σrur ∗ ṽr. (3.13)

Sufficient representation ability even with a rank-1 matrix

We now discuss the rank-1 representation of X. From Equation (3.13), the rank X

denotes the number of convolutional bases. The degrees of freedom of each convolutional

basis determine the representational ability of the model. In this study, we consider X to

be rank-1 and show that it has sufficient representation ability for vector reconstruction.

Rank-1 matrix model X = uvT ∈ RT×τ can generate any x ∈ RT . Let us put

u =
[
x
]
, v =

[
τ

0τ−1

]
, (3.14)
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where 0τ−1 is a (τ − 1)-dimensional vector of zeros and we have

H†
τ (uv

T) = H†
τ

([
τx 0T,τ−1

])
= x. (3.15)

This suggests that the inverse DT of a matrix, even rank-1, is over-parameterized and

does not work as a model. Therefore, u and v must impose constraints to narrow the

solution.

Extention to MDT

The properties of DT can be applied to the MDT. First, we show the relationship

between the inverse MDT and N -dimensional cyclic convolution. Let us consider factor

tensorsA ∈ RT1×···×Tn , B ∈ Rτ1×···×τn , and we define a := vec(A) ∈ R
∏

n Tn , b := vec(B) ∈
R

∏
n τn . We assume X ∈ RT1×τ1×···×TN×τN is given by

bunfold(T ,τ )(X ) = vec(A)vec(B)T

= abT ∈ R
∏

n Tn×
∏

n τn , (3.16)

where bunfold(V ,v) : RV1×v1×···×VN×vN → R
∏

n Vn×
∏

n vn is the unfolding operator from an

2N -th order tensor to the block matrix. We also define bfold(V ,v) : R
∏

n Vn×
∏

n vn →
RV1×v1×···×VN×vN as the inverse transform of bunfold(V ,v). Using the zero padding matrix

Pn = (Iτn O)T ∈ {0, 1}Tn×τn (n = 1, . . . , N), we define a tensor B̃ = B×{P } ∈ RT1×···×Tn

of the same size as A. The inverse MDT of X = bfold(τ ,T )(ab
T) is derived by[

H†
τ (bfold(τ ,T )(ab

T))
]
(t1, . . . , tN)

=
1∏
n τn

τ1−1∑
k1=0

· · ·
τN−1∑
kN=0

A(t1 − k1 mod T1, . . . , tN − kN mod TN)B(k1, . . . , kN)

=
1∏
n τn

T1−1∑
k1=0

· · ·
TN−1∑
kN=0

A(t1 − k1 mod T1, . . . , tN − kN mod TN)B̃(k1, . . . , kN)

=
1∏
n τn

[
A ∗ B̃

]
(t1, . . . , tN). (3.17)

Thus, the inverse MDT is represented by an N -dimensional cyclic convolution.

Furthermore, we show that the tensor which is folded from rank-1 matrix has suffi-

cient representation ability. Rank-1 tensor model of X := bunfold(T ,τ )(X ) = abT ∈
R

∏
n Tn×

∏
n τn can generate any X ∈ RT1×···×Tn . Let us

a =
[
vec(X )

]
, b =

[ ∏
n τn

0∏
n τn−1

]
, (3.18)
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E. MULTIWAT DELAY-EMBEDDING (MDT) AND
CONVOLUTION OF TENSOR
We extend the discussion on subsection IV-A, IV-B, IV-C,
IV-D in one-dimensional data (vector) to multidimensional
data.

DT can be naturally extended for an N -th order tensor
X 2 RT1⇥···⇥TN with size T = (T1, . . . , TN ). Let us
consider N duplication matrices Sn 2 {0, 1}Tn⌧n⇥Tn (n =
1, . . . , N) with window size ⌧ = (⌧1, . . . , ⌧N ) 2 RN

(See Equation (2)). Multiway Delay-embedding Transform
(MDT) is defined using all-mode product and folding as

H⌧ (X ) := fold(T ,⌧ )(X ⇥ {S}) (14)

where fold(V ,v) : RV1v1⇥···⇥VN vN ! RV1⇥v1⇥···⇥VN ⇥vN is
a folding operator from an N -th order tensor to the 2N -th
order tensor. On the other hand, the inverse MDT is defined
as

H†
⌧ (X ) := unfold(T ,⌧ )(X ⇥ {S

†}) (15)

where fold(V ,v) : RV1⇥v1⇥···⇥VN ⇥vN ! RV1v1⇥···⇥VN vN is
a folding operator from an 2N -th order tensor to the N -th
order tensor.

Next, we show that the inverse MDT of a rank-1 tensor
under "size-aligned clipping" is equivalent to cyclic convolu-
tion. Let consider

bunfold(T ,⌧ )(X ) ' vec(A)vec(B)T

= ab
T 2 R

Q
n Tn⇥

Q
n ⌧n . (16)

where A 2 RT1⇥···⇥Tn , B 2 R⌧1⇥···⇥⌧n are factor
tensors, and we define a := vec(A) 2 R

Q
n Tn , b :=

vec(B) 2 R
Q

n ⌧n . Then, using the clipped matrix Pn =
(I⌧n O)T 2 {0, 1}Tn⇥⌧n (n = 1, . . . , N), we define a tensor
B̃ = B ⇥ {P } 2 RT1⇥···⇥Tn of the same size as A. The
inverse DT of rank 1 tensor X ' bfold(⌧ ,T )(ab

T) is derived
as
h
H

†
⌧ (bfold(⌧ ,T )(ab

T))
i
(t1, . . . , tN )

=
1

Q
n ⌧n

⌧1�1X

k1=0

· · ·

⌧N�1X

kN=0

A(t1 � k1, . . . , tN � kN )B(k1, . . . , kN )

=
1

Q
n ⌧n

T1�1X

k1=0

· · ·

TN�1X

kN=0

A(t1 � k1, . . . , tN � kN )B̃(k1, . . . , kN )

=
h
A ⇤N B̃

i
(t1, . . . , tN ). (17)

Thus, under "size-aligned clipping", reverse delay embed-
ding and cyclic convolution are equivalent.

Furthermore, we show that the rank 1 tensor has sufficient
representation ability, as well as Subsection IV-C. Rank-1
tensor model of X ' uv

T 2 R
Q

n Tn⇥
Q

n ⌧n can generate
any X 2 RT1⇥···⇥Tn . Let us

u =
⇥

vec(X )
⇤
, v =

 Q
n ⌧n

0Q
n ⌧n�1

�
, (18)

where 0Q
n ⌧n�1 is a (

Q
n ⌧n � 1)-dimensional vector of

zeros, then we have
⇥
H†

⌧ (bfold(⌧ ,T )(uv
T))

⇤
(t1, . . . , tN ) = X (19)

Since this operation is equivalent to a cyclic convolution of
a tensor X with only one element, the tensor X is derived
identically (See Figure ). This fact suggests us that the
inverse DT of an unconstrained tensor even rank-1 is over-
parameterized and it does not work as the model of smooth
factor tensors.

V. PROPOSED METHOD
Here, we propose a new tensor completion model. We assume
the observed tensor Y 2 R

T1⇥···⇥TN is incomplete that some
entries have no values. The projection vector O 2 {0, 1}N

passes observed entries and make missing entries to be zero.
The entries are given by

O(t1, . . . , tN ) =

(
1 Y(t1, . . . , tN ) is observed
0 otherwise

. (20)

The problem here is to obtain a complete signal⇥
H†

⌧ (bfold(⌧ ,T )(ab
T))

⇤
. In this paper, we also impose

smoothness constraint to A and B. Then, the optimization
problem is given by

arg min
A,B

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

F

+ �AkL ⇤N Ak2
2 + �BkL ⇤N Bk2

2 (21)
+ ⌘AkAk2

2 + ⌘BkBk2
F

s.t. B(t1, . . . , tN ) = 0 (22)
8t1 = ⌧1 + 1, . . . , T1, . . . , tN = ⌧N + 1, . . . , TN

(23)
(24)

where ln = [1, �1, 0, . . . , 0] 2 RTn , L := lN ⌦ · · · ⌦
l1 2 RT1⇥···⇥TN , and A, B 2 RT1⇥···⇥TN are bases of
complete signal. Equation (24) reconstructs the signal in
the first term. The second and third terms smooth a, b,
and the forth and fifth terms adjust the scale of a, b. The
equality constraint is for clipping based on Equation (12).
Note that when ⌧ = 1, Equation (24) is equivalent to QV
regularization. Converting constrained optimization problem
(24) to an unconstrained optimization problem, including a
penalty term, obtains equation

arg min
A,B

L(A, B) :=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

2

(25)

+ �kI⌧ ~ Bk2
2

+ �AkL ⇤N Ak2
2 + �BkL ⇤N Bk2

2

(26)
+ ⌘AkAk2

2 + ⌘BkBk2
2, (27)

where I⌧ = foldT (i⌧1 ⌦ . . . ⌦ i⌧N ),
i⌧ := [0, · · · , 0| {z }

⌧n

, 1, · · · , 1| {z }
Tn�⌧n

] 2 RN .

A. ALGORITHM FOR SOLVING OPTIMIZATION
In this study, we solve the optimization problem (27) using
the Majorization-Minimization (MM) [?], [?]. The MM al-
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Hence, from Equation (7), (9), the t-th element of the inverse
DT for a single basis urv

T
r is

[H†
⌧ (urv

T
r )](t) =

1

⌧

⌧X

k=1

ur((t � k mod T ) + 1)vr(k)

=
1

⌧
[ur ⇤ vr](t), (10)

where ⇤ is linear convolution operation. From Equation (10),
the inverse DT of the rank-1 basis can be formulated in terms
of linear convolution.

C. SUFFICIENT REPRESENTATION ABILITY EVEN WITH
A RANK-1 MATRIX
Here, we discuss the low rank representation of X . From
Equation (10), rank of X is the number of convolutional
bases. Degree of freedom of each convolutional basis decides
the representation ability of the model. In this paper, we con-
sider X as a rank-1, and show it has sufficient representation
ability for vector reconstruction. Rank-1 matrix model of
X = uv

T 2 RT⇥⌧ can generate any x 2 RT . Let us

u =
⇥

x
⇤
, v =


⌧

0⌧�1

�
, (11)

where 0⌧�1 is a (⌧ �1)-dimensional vector of zeros, then we
have

H†
⌧ (uv

T) = H†
⌧

�⇥
⌧x 0T,⌧�1

⇤�
= x. (12)

This fact suggests us that the inverse DT of an unconstrained
matrix even rank-1 is over-parameterized and it does not
work as the model of smooth vector. In this study, we con-
sider to impose additional constraints to u and v (see Section
??).

D. CONSTRUCTION OF CYCLIC CONVOLUTION
(SIZE-ALIGNED CLIPPING)
Here we describe that the inverse DT corresponds to a cyclic
convolution under certain constraints.

First, consider a rank-1 approximate model X ' uv
T 2

RN⇥⌧ based on the ideas in Subsection IV-C. Let consider
clipped matrix P = (I⌧ O)T 2 RT⇥⌧ . Now, we set v 2 R⌧

to be the same vector as the dimension of u 2 RT , i.e., we
define

ṽ := Pv = [v(1), v(2), · · · v(⌧), 0, · · · , 0| {z }
T�⌧

]T 2 RT
. (13)

We call equation (13) as “size-aligned clipping,” where the
sizes of the two bases are equal and the elements of one basis
are zero after the size of the delay window. Then, the t-th
element of inverse DT of the rank-1 basis is defined to be

[H†
⌧ (uṽ

T)](t) =
1

⌧

TX

t=1

u((n � t mod T ) + 1)ṽ(t)

=
1

⌧
[u ⇤N ṽ](t), (14)

where ⇤T is the cyclic convolution of period T . From the
above discussion, assuming constraint “size-aligned clip-
ping,” the inverse DT corresponds to a cyclic convolution.

E. MULTIWAT DELAY-EMBEDDING (MDT) AND
CONVOLUTION OF TENSOR
We extend the discussion on subsection IV-A, IV-B, IV-C,
IV-D in one-dimensional data (vector) to multidimensional
data.

DT can be naturally extended for an N -th order tensor
X 2 RT1⇥···⇥TN with size T = (T1, . . . , TN ). Let us
consider N duplication matrices Sn 2 {0, 1}Tn⌧n⇥Tn (n =
1, . . . , N) with window size ⌧ = (⌧1, . . . , ⌧N ) 2 RN

(See Equation (3)). Multiway Delay-embedding Transform
(MDT) is defined using all-mode product and folding as

H⌧ (X ) := fold(T ,⌧ )(X ⇥ {S}) (15)

where fold(V ,v) : RV1v1⇥···⇥VN vN ! RV1⇥v1⇥···⇥VN ⇥vN is
a folding operator from an N -th order tensor to the 2N -th
order tensor. On the other hand, the inverse MDT is defined
as

H†
⌧ (X ) := unfold(T ,⌧ )(X ⇥ {S

†}) (16)

where unfold(V ,v) : RV1⇥v1⇥···⇥VN ⇥vN ! RV1v1⇥···⇥VN vN

is a unfolding operator from an 2N -th order tensor to the N -
th order tensor.

Next, we show that the inverse MDT of a rank-1 tensor
under "size-aligned clipping" is equivalent to cyclic con-
volution. Let consider factor tensors A 2 RT1⇥···⇥Tn ,
B 2 R⌧1⇥···⇥⌧n , and we define a := vec(A) 2 R

Q
n Tn ,

b := vec(B) 2 R
Q

n ⌧n . Then, rank 1 tensor X is derived as

bunfold(T ,⌧ )(X ) ' vec(A)vec(B)T

= ab
T 2 R

Q
n Tn⇥

Q
n ⌧n , (17)

where bunfold(V ,v) : RV1⇥v1⇥···⇥VN ⇥vN ! R
Q

n Vn⇥
Q

n vn

is a unfolding operator from an 2N -th order ten-
sor to the block matrix. We also define bfold(V ,v) :
R

Q
n Vn⇥

Q
n vn ! RV1⇥v1⇥···⇥VN ⇥vN as the inverse trans-

formation of bunfold(V ,v). While, using the clipped matrix
Pn = (I⌧n O)T 2 {0, 1}Tn⇥⌧n (n = 1, . . . , N), we define
a tensor B̃ = B ⇥ {P } 2 RT1⇥···⇥Tn of the same size as
A. The inverse DT of rank 1 tensor X ' bfold(⌧ ,T )(ab

T) is
derived as

h
H

†
⌧ (bfold(⌧ ,T )(abT))

i
(t1, . . . , tN )

=
1

Q
n ⌧n

⌧1�1X

k1=0

· · ·

⌧N �1X

kN =0

A(t1 � k1, . . . , tN � kN )B(k1, . . . , kN )

=
1

Q
n ⌧n

T1�1X

k1=0

· · ·

TN �1X

kN =0

A(t1 � k1, . . . , tN � kN )B̃(k1, . . . , kN )

=
h
A ⇤N B̃

i
(t1, . . . , tN ). (18)

Thus, under "size-aligned clipping", reverse delay embed-
ding and cyclic convolution are equivalent.

Furthermore, we show that the rank 1 tensor has sufficient
representation ability, as well as Subsection IV-C. Rank-1
tensor model of X ' uv

T 2 R
Q

n Tn⇥
Q

n ⌧n can generate
any X 2 RT1⇥···⇥Tn . Let us

u =
⇥

vec(X )
⇤
, v =

 Q
n ⌧n

0Q
n ⌧n�1

�
, (19)
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Figure 3.5 Cyclic convolution of a tensor X with only one element fold(v) corresponds to
the Equation (3.19). This operation is identically derived from the tensor X .

where 0∏
n τn−1 is an (

∏
n τn − 1)-dimensional vector of zeros, and then we have[
H†

τ (bfold(τ ,T )(ab
T))
]
(t1, . . . , tN) = X . (3.19)

Because this operation is equivalent to the cyclic convolution of a tensor X with only

one element, the tensor X is derived identically (See Figure 3.5).

The inverse MDT of an unconstrained tensor, even rank-1, is over-parameterized and

does not work as a model. In this study, additional constraints were imposed on A and

B (see Section 3.3.2).

3.3.2 Smoothness constraints

Because the convolution of factor tensors can represent any tensor (even rank 1 models),

it is necessary to impose constraints to narrow down the candidate solutions. In this study,

smoothness is used as a constraint. The reasons for introducing smoothness as a constraint

are as follows.

• As shown in Figure 3.2, the embedded data is represented by a smooth manifold on

the delay embedded space.

• The data mainly targeted in our study are images, and there are many reports that

smooth constraints are effective in image completion [20], [21], [16], [52].

Note that we do not introduce smoothness for the reconstructed tensor but the factor

tensors. Unlike the model which smoothens the reconstructed tensor, the proposed model

enables completion without excessive smoothing. We also set the scale adjustment terms

for both A and B in the optimization equation to avoid smoothing by increasing only

one factor of the tensors.
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3.3.3 Optimization formulas and algorithm

Optimization formulas

In this thesis, we propose a new tensor completion model. We assume that the observed

tensor Y ∈ RT1×···×TN is incomplete and that some entries have no values. The projection

tensor O ∈ {0, 1}T1×···×TN passes the observed entries and makes the missing entries equal

to zero. The entries are given by

O(t1, . . . , tN) =

{
1 Y(t1, . . . , tN) is observed

0 otherwise
. (3.20)

The problem involves obtaining the complete tensor A ∗ B. In this study, we impose a

smoothness constraint on A and B. The optimization problem is then given by

min
A,B

∥∥∥O ⊛ (Y −A ∗ B̃)
∥∥∥2
F

+
∑
n

λA,n∥Ln ∗A∥2F +
∑
n

λB,n∥Ln ∗ B̃∥2F

+ ηA∥A∥2F + ηB∥B̃∥2F
s.t. B̃ = B × {P }, (3.21)

where

Ln := foldT (lN ⊗ · · · ⊗ l1) ∈ RT1×···×TN

i = 1, . . . , N

li :=

{
[1,−1, 0, . . . , 0] (i = n)

[1, 0, . . . , 0] (i ̸= n)
∈ RTi

is a differential filter, and A ∈ RT1×···×TN ,B ∈ Rτ1×···×τN are factor tensors and foldV :

RV1V2···VN → RV1×V2×···×VN is a folding operator from a vector to the N -th order tensor.

Equation (3.21) evaluates the reconstruction loss in the first term. The second and third

terms are smooth penalties for A and B, and the fourth and fifth terms adjust the scales

of A and B. The equality constraint is for zero padding, based on Equation (3.11). Note

that when τ = 1, Equation (3.21) is equivalent to QV regularization. The relaxation

of optimization problem (3.21) for an unconstrained optimization problem including a

penalty term yields the following equation:
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min
A,B

L(A,B) := ∥O ⊛ (Y −A ∗B)∥2F

+ γ∥Iτ ⊛B∥2F
+
∑
n

λA,n∥Ln ∗A∥2F +
∑
n

λB,n∥Ln ∗B∥2F

+ ηA∥A∥2F + ηB∥B∥2F , (3.22)

where Iτ := foldT (iτ1 ⊗ . . .⊗ iτN ) ∈ RT1×···×TN ,

iτn := [0, . . . , 0︸ ︷︷ ︸
τn

, 1, . . . , 1︸ ︷︷ ︸
Tn−τn

] ∈ RTn . iτn serves as a penalty for B and simulates zero padding

{P }. Note that we also redefine the size of B as T1 × · · · × TN .

Algorithm for solving optimization

In this study, we solved the optimization problem (3.22) using MM [60], [61]. The MM

algorithm is an iterative method involving two steps.

1. Constructs a auxiliary function h(A,B|A(k),B(k)) for L(A,B) at A(k),B(k). Note,

∀A,B L(A,B) ≤ h(A,B|A(k),B(k))

L(A(k),B(k)) = h(A(k),B(k)|A(k),B(k)).

2. Update as in

A(k+1) ← argmin
A

h(A,B(k)|A(k),B(k)). (3.23)

3. Update as in

B(k+1) ← argmin
B

h(A(k+1),B|A(k+1),B(k)). (3.24)

A conceptual diagram of the algorithm is shown in Figure 3.6. The MM algorithm was

used because of convergence due to its monotonic convergence and ease of analytical

computation.
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penalty term, obtains equation

arg min
A,B

L(A, B) :=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

2

(22)

+ �kI⌧ ~ Bk22
+ �AkL ⇤N Ak22 + �BkL ⇤N Bk22

(23)
+ ⌘AkAk22 + ⌘BkBk22, (24)

where I⌧ = foldT (i⌧1 ⌦ . . .⌦ i⌧N ) 2 RT1⇥···⇥TN ,
i⌧n

:= [0, · · · , 0| {z }
⌧n

, 1, · · · , 1| {z }
Tn�⌧n

] 2 RN .

A. ALGORITHM FOR SOLVING OPTIMIZATION

In this study, we solve the optimization problem (24) using
the Majorization-Minimization (MM) [6], [14]. The MM
algorithm is an iterative method that takes the following two
steps.

1) Constructs a auxiliary function h(A, B|A(k)
, B

(k))
for L(A, B) at A

(k)
, B

(k). Note,

8A, B L(A, B)  h(A, B|A(k)
, B

(k))

L(A(k)
, B

(k)) = h(A(k)
, B

(k)|A(k)
, B

(k)).

2) Update as in

A
(k+1)

, B
(k+1)  arg min

A,B
h(A, B|A(k)

, B
(k)).

(25)

The MM algorithm is used because of the stability of conver-
gence due to its monotonic convergence and ease of analyti-
cal computation. Now, the auxiliary function h is defined as

Algorithm 1 MM algorithm in the proposed method
Require: Y , O, I⌧ , �, �A, �B , ⌘A, ⌘B , maxiter

1: Ã FFT(A)
2: B̃  FFT(b)
3: for i = 1 to maxiter do
4: Update Z by (29)
5: Z̃  FFT(Z)
6: Update W by (30)
7: W̃  FFT(W)
8: Update Ã by (33)
9: Update B̃ by (34)

10: a IFFT(Ã)
11: b IFFT(B̃)
12: Calculate L(A, B).
13: if convergence of L then break
14: end if
15: end for

follows:

L(A, B)  h(A, B|A(k)
, B

(k))

:=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

F

+ �kI⌧ ~ Bk2F

+

����O ~ (
1

⌧
A

(k) ⇤N B
(k) � 1

⌧
A ⇤N B)

����
2

F

+ �kI⌧ ~ (B �B
(k))k2F

+ �AkL ⇤N Ak2F + �BkL ⇤N Bk2F (26)
+ ⌘AkAk2F + ⌘BkBk2F

=

����Z � 1

⌧
A ⇤N B

����
2

F

+ �kW �Bk2F

+ �AkL ⇤N Ak2F + �BkL ⇤N Bk2F (27)
+ ⌘AkAk2F + ⌘BkBk2F , (28)

where

Z = O ~ Y + O ~ 1

⌧

⇣
A

(k) ⇤N B
(k)

⌘
, (29)

and

W = I⌧ ~ B
(k)

. (30)

Furthermore, we exploit the property that the cyclic convolu-
tion of a time signal is an Hadamard product in the frequency
domain to reduce the time complexity of the optimization
problem.

Since the norm is invariant to the Fourier transform, the
auxiliary function h is redefined as

h(A, B|A(k)
, B

(k)) = h̃(Ã, B̃|Ã(k)
, B̃

(k)
)

:=

����Z̃ � 1

⌧
Ã ~ B̃

����
2

2

+ �kW̃ � B̃k2F

+ �AkL̃ ~ Ãk2F + �BkL̃ ~ B̃k2F
+ ⌘AkÃk22 + ⌘BkB̃k2F , (31)

where Ã, B̃, Z̃, W̃ are the Fourier transform of A, B, Z, W .
The final auxiliary function is h̃, and it is minimized

according to equation (25). Now, to minimize h̃, we derive
Ã and B̃ such that

@h̃

@Ã
= 0,

@h̃

@B̃
= 0. (32)

After solving equation (32), we obtain

Ã =

⇢
1

⌧
Z̃

⇤ ~ B̃

�
↵

⇢
1

⌧2
B̃

2
+ �AL̃

2
+ ⌘A

�
, (33)

B̃ =

⇢
1

⌧
Z̃

⇤ ~ Ã + �W̃

�
↵

⇢
1

⌧2
Ã

2
+ �BL̃

2
+ ⌘B + �

�
,

(34)

where Z̃
⇤

is the complex conjugate of Z̃ . In summary, equa-
tions (29), (30) correspond to step 1 of the MM algorithm,
and equations (33), (34) correspond to step 2. The algorithm
of the proposed method is summarized in Algorithm 1.
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penalty term, obtains equation

arg min
A,B

L(A, B) :=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

2

(22)

+ �kI⌧ ~ Bk22
+ �AkL ⇤N Ak22 + �BkL ⇤N Bk22

(23)
+ ⌘AkAk22 + ⌘BkBk22, (24)

where I⌧ = foldT (i⌧1 ⌦ . . .⌦ i⌧N ) 2 RT1⇥···⇥TN ,
i⌧n

:= [0, · · · , 0| {z }
⌧n

, 1, · · · , 1| {z }
Tn�⌧n

] 2 RN .

A. ALGORITHM FOR SOLVING OPTIMIZATION

In this study, we solve the optimization problem (24) using
the Majorization-Minimization (MM) [6], [14]. The MM
algorithm is an iterative method that takes the following two
steps.

1) Constructs a auxiliary function h(A, B|A(k)
, B

(k))
for L(A, B) at A

(k)
, B

(k). Note,

8A, B L(A, B)  h(A, B|A(k)
, B

(k))

L(A(k)
, B

(k)) = h(A(k)
, B

(k)|A(k)
, B

(k)).

2) Update as in

A
(k+1)

, B
(k+1)  arg min

A,B
h(A, B|A(k)

, B
(k)).

(25)

The MM algorithm is used because of the stability of conver-
gence due to its monotonic convergence and ease of analyti-
cal computation. Now, the auxiliary function h is defined as

Algorithm 1 MM algorithm in the proposed method
Require: Y , O, I⌧ , �, �A, �B , ⌘A, ⌘B , maxiter

1: Ã FFT(A)
2: B̃  FFT(b)
3: for i = 1 to maxiter do
4: Update Z by (29)
5: Z̃  FFT(Z)
6: Update W by (30)
7: W̃  FFT(W)
8: Update Ã by (33)
9: Update B̃ by (34)

10: a IFFT(Ã)
11: b IFFT(B̃)
12: Calculate L(A, B).
13: if convergence of L then break
14: end if
15: end for

follows:

L(A, B)  h(A, B|A(k)
, B

(k))

:=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

F

+ �kI⌧ ~ Bk2F

+

����O ~ (
1

⌧
A

(k) ⇤N B
(k) � 1

⌧
A ⇤N B)

����
2

F

+ �kI⌧ ~ (B �B
(k))k2F

+ �AkL ⇤N Ak2F + �BkL ⇤N Bk2F (26)
+ ⌘AkAk2F + ⌘BkBk2F

=

����Z � 1

⌧
A ⇤N B

����
2

F

+ �kW �Bk2F

+ �AkL ⇤N Ak2F + �BkL ⇤N Bk2F (27)
+ ⌘AkAk2F + ⌘BkBk2F , (28)

where

Z = O ~ Y + O ~ 1

⌧

⇣
A

(k) ⇤N B
(k)

⌘
, (29)

and

W = I⌧ ~ B
(k)

. (30)

Furthermore, we exploit the property that the cyclic convolu-
tion of a time signal is an Hadamard product in the frequency
domain to reduce the time complexity of the optimization
problem.

Since the norm is invariant to the Fourier transform, the
auxiliary function h is redefined as

h(A, B|A(k)
, B

(k)) = h̃(Ã, B̃|Ã(k)
, B̃

(k)
)

:=

����Z̃ � 1

⌧
Ã ~ B̃

����
2

2

+ �kW̃ � B̃k2F

+ �AkL̃ ~ Ãk2F + �BkL̃ ~ B̃k2F
+ ⌘AkÃk22 + ⌘BkB̃k2F , (31)

where Ã, B̃, Z̃, W̃ are the Fourier transform of A, B, Z, W .
The final auxiliary function is h̃, and it is minimized

according to equation (25). Now, to minimize h̃, we derive
Ã and B̃ such that

@h̃

@Ã
= 0,

@h̃

@B̃
= 0. (32)

After solving equation (32), we obtain

Ã =

⇢
1

⌧
Z̃

⇤ ~ B̃

�
↵

⇢
1

⌧2
B̃

2
+ �AL̃

2
+ ⌘A

�
, (33)

B̃ =

⇢
1

⌧
Z̃

⇤ ~ Ã + �W̃

�
↵

⇢
1

⌧2
Ã

2
+ �BL̃

2
+ ⌘B + �

�
,

(34)

where Z̃
⇤

is the complex conjugate of Z̃ . In summary, equa-
tions (29), (30) correspond to step 1 of the MM algorithm,
and equations (33), (34) correspond to step 2. The algorithm
of the proposed method is summarized in Algorithm 1.
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penalty term, obtains equation

arg min
A,B

L(A, B) :=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

2

(22)

+ �kI⌧ ~ Bk22
+ �AkL ⇤N Ak22 + �BkL ⇤N Bk22

(23)
+ ⌘AkAk22 + ⌘BkBk22, (24)

where I⌧ = foldT (i⌧1 ⌦ . . .⌦ i⌧N ) 2 RT1⇥···⇥TN ,
i⌧n

:= [0, · · · , 0| {z }
⌧n

, 1, · · · , 1| {z }
Tn�⌧n

] 2 RN .

A. ALGORITHM FOR SOLVING OPTIMIZATION

In this study, we solve the optimization problem (24) using
the Majorization-Minimization (MM) [6], [14]. The MM
algorithm is an iterative method that takes the following two
steps.

1) Constructs a auxiliary function h(A, B|A(k)
, B

(k))
for L(A, B) at A

(k)
, B

(k). Note,

8A, B L(A, B)  h(A, B|A(k)
, B

(k))

L(A(k)
, B

(k)) = h(A(k)
, B

(k)|A(k)
, B

(k)).

2) Update as in

A
(k+1)

, B
(k+1)  arg min

A,B
h(A, B|A(k)

, B
(k)).

(25)

The MM algorithm is used because of the stability of conver-
gence due to its monotonic convergence and ease of analyti-
cal computation. Now, the auxiliary function h is defined as

Algorithm 1 MM algorithm in the proposed method
Require: Y , O, I⌧ , �, �A, �B , ⌘A, ⌘B , maxiter

1: Ã FFT(A)
2: B̃  FFT(b)
3: for i = 1 to maxiter do
4: Update Z by (29)
5: Z̃  FFT(Z)
6: Update W by (30)
7: W̃  FFT(W)
8: Update Ã by (33)
9: Update B̃ by (34)

10: a IFFT(Ã)
11: b IFFT(B̃)
12: Calculate L(A, B).
13: if convergence of L then break
14: end if
15: end for

follows:

L(A, B)  h(A, B|A(k)
, B

(k))

:=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

F

+ �kI⌧ ~ Bk2F

+

����O ~ (
1

⌧
A

(k) ⇤N B
(k) � 1

⌧
A ⇤N B)

����
2

F

+ �kI⌧ ~ (B �B
(k))k2F

+ �AkL ⇤N Ak2F + �BkL ⇤N Bk2F (26)
+ ⌘AkAk2F + ⌘BkBk2F

=

����Z � 1

⌧
A ⇤N B

����
2

F

+ �kW �Bk2F

+ �AkL ⇤N Ak2F + �BkL ⇤N Bk2F (27)
+ ⌘AkAk2F + ⌘BkBk2F , (28)

where

Z = O ~ Y + O ~ 1

⌧

⇣
A

(k) ⇤N B
(k)

⌘
, (29)

and

W = I⌧ ~ B
(k)

. (30)

Furthermore, we exploit the property that the cyclic convolu-
tion of a time signal is an Hadamard product in the frequency
domain to reduce the time complexity of the optimization
problem.

Since the norm is invariant to the Fourier transform, the
auxiliary function h is redefined as

h(A, B|A(k)
, B

(k)) = h̃(Ã, B̃|Ã(k)
, B̃

(k)
)

:=

����Z̃ � 1

⌧
Ã ~ B̃

����
2

2

+ �kW̃ � B̃k2F

+ �AkL̃ ~ Ãk2F + �BkL̃ ~ B̃k2F
+ ⌘AkÃk22 + ⌘BkB̃k2F , (31)

where Ã, B̃, Z̃, W̃ are the Fourier transform of A, B, Z, W .
The final auxiliary function is h̃, and it is minimized

according to equation (25). Now, to minimize h̃, we derive
Ã and B̃ such that

@h̃

@Ã
= 0,

@h̃

@B̃
= 0. (32)

After solving equation (32), we obtain

Ã =

⇢
1

⌧
Z̃

⇤ ~ B̃

�
↵

⇢
1

⌧2
B̃

2
+ �AL̃

2
+ ⌘A

�
, (33)

B̃ =

⇢
1

⌧
Z̃

⇤ ~ Ã + �W̃

�
↵

⇢
1

⌧2
Ã

2
+ �BL̃

2
+ ⌘B + �

�
,

(34)

where Z̃
⇤

is the complex conjugate of Z̃ . In summary, equa-
tions (29), (30) correspond to step 1 of the MM algorithm,
and equations (33), (34) correspond to step 2. The algorithm
of the proposed method is summarized in Algorithm 1.
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penalty term, obtains equation
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A. ALGORITHM FOR SOLVING OPTIMIZATION

In this study, we solve the optimization problem (24) using
the Majorization-Minimization (MM) [6], [14]. The MM
algorithm is an iterative method that takes the following two
steps.

1) Constructs a auxiliary function h(A, B|A(k)
, B

(k))
for L(A, B) at A

(k)
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(k). Note,
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, B

(k))
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(k)) = h(A(k)
, B
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, B

(k)).

2) Update as in

A
(k+1)

, B
(k+1)  arg min

A,B
h(A, B|A(k)

, B
(k)).

(25)

The MM algorithm is used because of the stability of conver-
gence due to its monotonic convergence and ease of analyti-
cal computation. Now, the auxiliary function h is defined as

Algorithm 1 MM algorithm in the proposed method
Require: Y , O, I⌧ , �, �A, �B , ⌘A, ⌘B , maxiter

1: Ã FFT(A)
2: B̃  FFT(b)
3: for i = 1 to maxiter do
4: Update Z by (29)
5: Z̃  FFT(Z)
6: Update W by (30)
7: W̃  FFT(W)
8: Update Ã by (33)
9: Update B̃ by (34)

10: a IFFT(Ã)
11: b IFFT(B̃)
12: Calculate L(A, B).
13: if convergence of L then break
14: end if
15: end for

follows:

L(A, B)  h(A, B|A(k)
, B

(k))

:=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

F

+ �kI⌧ ~ Bk2F
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⌧

⇣
A

(k) ⇤N B
(k)
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, (29)

and
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(k)

. (30)

Furthermore, we exploit the property that the cyclic convolu-
tion of a time signal is an Hadamard product in the frequency
domain to reduce the time complexity of the optimization
problem.

Since the norm is invariant to the Fourier transform, the
auxiliary function h is redefined as
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, B

(k)) = h̃(Ã, B̃|Ã(k)
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:=
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where Ã, B̃, Z̃, W̃ are the Fourier transform of A, B, Z, W .
The final auxiliary function is h̃, and it is minimized

according to equation (25). Now, to minimize h̃, we derive
Ã and B̃ such that

@h̃

@Ã
= 0,

@h̃

@B̃
= 0. (32)

After solving equation (32), we obtain

Ã =

⇢
1
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�
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1
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�
, (33)
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�
,

(34)

where Z̃
⇤

is the complex conjugate of Z̃ . In summary, equa-
tions (29), (30) correspond to step 1 of the MM algorithm,
and equations (33), (34) correspond to step 2. The algorithm
of the proposed method is summarized in Algorithm 1.
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arg min
A,B

L(A, B) :=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

2

(22)

+ �kI⌧ ~ Bk22
+ �AkL ⇤N Ak22 + �BkL ⇤N Bk22

(23)
+ ⌘AkAk22 + ⌘BkBk22, (24)

where I⌧ = foldT (i⌧1 ⌦ . . .⌦ i⌧N ) 2 RT1⇥···⇥TN ,
i⌧n

:= [0, · · · , 0| {z }
⌧n

, 1, · · · , 1| {z }
Tn�⌧n

] 2 RN .

A. ALGORITHM FOR SOLVING OPTIMIZATION

In this study, we solve the optimization problem (24) using
the Majorization-Minimization (MM) [6], [14]. The MM
algorithm is an iterative method that takes the following two
steps.

1) Constructs a auxiliary function h(A, B|A(k)
, B

(k))
for L(A, B) at A

(k)
, B

(k). Note,

8A, B L(A, B)  h(A, B|A(k+1)
, B

(k+1))

L(A(k)
, B

(k)) = h(A(k)
, B

(k)|A(k)
, B

(k)).

2) Update as in

A
(k+1)

, B
(k+1)  arg min

A,B
h(A, B|A(k)

, B
(k)).

(25)

The MM algorithm is used because of the stability of conver-
gence due to its monotonic convergence and ease of analyti-
cal computation. Now, the auxiliary function h is defined as

Algorithm 1 MM algorithm in the proposed method
Require: Y , O, I⌧ , �, �A, �B , ⌘A, ⌘B , maxiter

1: Ã FFT(A)
2: B̃  FFT(b)
3: for i = 1 to maxiter do
4: Update Z by (29)
5: Z̃  FFT(Z)
6: Update W by (30)
7: W̃  FFT(W)
8: Update Ã by (33)
9: Update B̃ by (34)

10: a IFFT(Ã)
11: b IFFT(B̃)
12: Calculate L(A, B).
13: if convergence of L then break
14: end if
15: end for

follows:

L(A, B)  h(A, B|A(k)
, B

(k))

:=

����O ~ (Y � 1

⌧
A ⇤N B)

����
2

F

+ �kI⌧ ~ Bk2F

+

����O ~ (
1

⌧
A

(k) ⇤N B
(k) � 1

⌧
A ⇤N B)

����
2

F

+ �kI⌧ ~ (B �B
(k))k2F

+ �AkL ⇤N Ak2F + �BkL ⇤N Bk2F (26)
+ ⌘AkAk2F + ⌘BkBk2F

=

����Z � 1

⌧
A ⇤N B

����
2

F

+ �kW �Bk2F

+ �AkL ⇤N Ak2F + �BkL ⇤N Bk2F (27)
+ ⌘AkAk2F + ⌘BkBk2F , (28)

where

Z = O ~ Y + O ~ 1

⌧

⇣
A

(k) ⇤N B
(k)

⌘
, (29)

and

W = I⌧ ~ B
(k)

. (30)

Furthermore, we exploit the property that the cyclic convolu-
tion of a time signal is an Hadamard product in the frequency
domain to reduce the time complexity of the optimization
problem.

Since the norm is invariant to the Fourier transform, the
auxiliary function h is redefined as

h(A, B|A(k)
, B

(k)) = h̃(Ã, B̃|Ã(k)
, B̃

(k)
)

:=

����Z̃ � 1

⌧
Ã ~ B̃

����
2

2

+ �kW̃ � B̃k2F

+ �AkL̃ ~ Ãk2F + �BkL̃ ~ B̃k2F
+ ⌘AkÃk22 + ⌘BkB̃k2F , (31)

where Ã, B̃, Z̃, W̃ are the Fourier transform of A, B, Z, W .
The final auxiliary function is h̃, and it is minimized

according to equation (25). Now, to minimize h̃, we derive
Ã and B̃ such that

@h̃

@Ã
= 0,

@h̃

@B̃
= 0. (32)

After solving equation (32), we obtain

Ã =

⇢
1

⌧
Z̃

⇤ ~ B̃

�
↵

⇢
1

⌧2
B̃

2
+ �AL̃

2
+ ⌘A

�
, (33)

B̃ =

⇢
1

⌧
Z̃

⇤ ~ Ã + �W̃

�
↵

⇢
1

⌧2
Ã

2
+ �BL̃

2
+ ⌘B + �

�
,

(34)

where Z̃
⇤

is the complex conjugate of Z̃ . In summary, equa-
tions (29), (30) correspond to step 1 of the MM algorithm,
and equations (33), (34) correspond to step 2. The algorithm
of the proposed method is summarized in Algorithm 1.
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Figure 3.6 Concept of the two proposed models in our research.
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The auxiliary function h is defined as follows:

L(A,B) ≤ h(A,B|A(k),B(k))

:= ∥O ⊛ (Y −A ∗B)∥2F + γ∥Iτ ⊛B∥2F

+
∥∥∥O ⊛ (A(k) ∗B(k) −A ∗B)

∥∥∥2
F

+ γ∥Iτ ⊛ (B −B(k))∥2F
+
∑
n

λA,n∥Ln ∗A∥2F +
∑
n

λB,n∥Ln ∗B∥2F

+ ηA∥A∥2F + ηB∥B∥2F
= ∥Z −A ∗B∥2F + γ∥W −B∥2F
+
∑
n

λA,n∥Ln ∗A∥2F +
∑
n

λB,n∥Ln ∗B∥2F

+ ηA∥A∥2F + ηB∥B∥2F , (3.25)

where

Z = O ⊛Y +O ⊛
(
A(k) ∗B(k)

)
, (3.26)

and

W = Iτ ⊛B(k). (3.27)

Furthermore, we exploit the property that the cyclic convolution of the time domain

is a Hadamard product in the frequency domain to reduce the time complexity of the

optimization problem. Because the Frobenius norm is invariant to the Fourier transform,

the auxiliary function h is redefined as

h(A,B|A(k),B(k)) = ĥ(Â, B̂|Â
(k)
, B̂

(k)
)

:=
∥∥∥Ẑ − Â⊛ B̂

∥∥∥2
F
+ γ∥Ŵ − B̂∥2F

+
∑
n

λA,n∥L̂n ⊛ Â∥2F

+
∑
n

λB,n∥L̂n ⊛ B̂∥2F

+ ηA∥Â∥2F + ηB∥B̂∥2F , (3.28)

where L̂n, Â, B̂, Ẑ,Ŵ are the Fourier transform of Ln,A,B,Z,W .

The final auxiliary function is ĥ, which is minimized using Equations (3.23) and (3.24).

To minimize ĥ, we derive Â and B̂ such that

∂ĥ

∂Â
= 0,

∂ĥ

∂B̂
= 0. (3.29)



63

Algorithm 2 MM algorithm in the proposed method

Require: Y , O, Iτ , γ, λA, λB, ηA, ηB, maxiter

1: Â← FFT(A)

2: B̂ ← FFT(B)

3: for i = 1 to maxiter do

4: Update Z by (3.26)

5: Ẑ ← FFT(Z)

6: Update W by (3.27)

7: Ŵ ← FFT(W)

8: Update Â by (3.30)

9: Update B̂ by (3.31)

10: A← IFFT(Â)

11: B ← IFFT(B̂)

12: Calculate L(A,B).

13: if convergence of L then break

14: end if

15: end for

Note that (3.29) is substituted by alternating the optimization with (3.23) and (3.24)

because they are not satisfied simultaneously. Thus, at every optimization step, although

the cost function L decreases monotonically, the auxiliary function h is not always optimal.

After solving Equation (3.29), we obtain

Â =
{
Ẑ

∗ ⊛ B̂
}
⊘

{
B̂

2
+
∑
n

λA,nL̂
2

n + ηA

}
, (3.30)

B̂ =
{
Ẑ

∗ ⊛ Â+ γŴ
}
⊘

{
Â

2
+
∑
n

λB,nL̂
2

n + ηB + γ

}
, (3.31)

where Ẑ
∗
is the complex conjugate of Ẑ. In summary, Equations (3.26) and (3.27)

correspond to Step 1 of the MM algorithm, and Equations (3.30) and (3.31) correspond

to Step 2. Algorithm 1 summarizes the proposed method.

3.3.4 Computational complexity

The algorithm consists of updated Equations (3.26), (3.27), (3.30), and (3.31). The

time complexity of (3.27), (3.30), and (3.31) is O(TN), and that of (3.26) is O(NTN logT ).

Since (3.26) is derived from the cyclic convolution by A∗B = IFFT(FFT(A)⊛FFT(B)),

the time complexity O(NTN logT ) of the FFT is dominant. Consequently, the overall

time complexity of the update equation is O(NTN logT ).
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3.3.5 Extension to non-periodic signals

Since the proposed method uses FFT, we assume periodicity in the signalY ∈ RT1×···×TN .

Therefore, only when the first-order tensor (vector y ∈ RT ), the resulting observation sig-

nal may force the leading and trailing values to be equal, which may worsen the complete

accuracy. We address this problem by concatenating zero vectors 0T ∈ RT of the same

size in y, as in

ydouble := [y,0T ] ∈ R2T . (3.32)

The projection vector oΩ ∈ RT (OΩ ∈ RT1×···×TN in tensor) is also extended as in

oΩ,double := [oΩ,0T ] ∈ R2T . (3.33)

That is, we extend any signal y to a periodic signal and set the extended portion as

unobserved. Equations (3.32) and (3.33) are then reset as inputs to Algorithm 2 (y ←
ydouble, oΩ ← oΩ,double). The algorithm’s estimation result a ∗ b ∈ R2T then uses only the

values of the first half.

3.4 Experiment

The experiment was conducted in the following environments: CPU: Intel(R) Xeon(R)

Silver 4214R CPU @ 2.40GHz, 12 cores, Memory: 512GByte, Software: Matlab R2021b.

3.4.1 Completion of clipped data

This section presents the evaluation of the proposed method (SCTF) for reconstructing

clipped data (declipping) as a type of completion. Clipping is an operation that uses a

certain clipping level c > 0 to replace entries above c and below −c with c and −c. The

clipping operation on the entry of a tensor is given by

X (t1, t2, . . . , tN) = min(c,max(−c,X0(t1, . . . , tN))). (3.34)

The value range of the clipped data was [−c, c].
The indices of the clipped entries were recorded and treated as missing values for

reconstruction. Thus, the set of observed entries can be expressed as

O(t1, . . . , tN) =

{
1 −c < X (t1, . . . , tN) < c

0 otherwise
. (3.35)
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(a) Original signal (b) Clipped signal (c) De-clipped signals

Figure 3.7 Example of declipping experiment: (a) original signal of the sine function, (b)
clipped signal with clipping level = 0.2, and (c) these reconstructed signals by using QV
regularization, cubic spline interpolation, and SCTF

(a) Original signal (b) Clipped signal (c) De-clipped signals

Figure 3.8 Example of declipping experiment: (a) original signal of wavelet function, (b)
clipped signal with clipping level = 0.2, and (c) these reconstructed signals by using QV
regularization, cubic spline interpolation, and SCTF.

QV

SCTF

(a) sine

QV

SCTF

(b) wavelet
Figure 3.9 Values of SNR in declipping experiments with various clipping levels.
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Clipped signal completion (1st order tensor)

In this experiment, we evaluated SCTF using signal completion. The signals to be

completed were the sine and wavelet functions with a clip level of 0.2, and both had a

maximum amplitude of 1. Examples of clipping are presented in Figures 3.7 and 3.8.

The original signals are shown in Figures 3.7a and 3.8a, and the signals after clipping are

shown in Figures 3.7b and 3.8b. We compared SCTF with QV regularization and spline

interpolation. In SCTF, we set τ1 = 32, γ = 1.0× 108 , and λA,1 = λB,1 = ηA = ηB = 0.1.

Figures 3.7c and 3.8c show the signals reconstructed using QV regularization, spline

interpolation, and SCTF. The signal completed by SCTF had a maximum amplitude

of approximately 1, which was the best among the three methods. The spline method

reconstructs the waveform signals; however, its amplitude is smaller than that of the

original signal. However, the QV method failed to restore the signal.

Figure 3.9 shows the signal-to-noise ratio (SNR) values of the declipping experiment for

various clipping levels. The clipping levels were 0.8, 0.6, 0.4, and 0.2, and the parameters

(λ, τ) were adjusted for all levels. SCTF achieved significantly higher values of SNR than

QV regularization and spline interpolation.

Completion of clipped data (2nd order tensor)

In this experiment, we evaluated SCTF by completing a clipped image of 2D-sin. The

maximum value of the image (amplitude of 2D-sin) was 255, and the clip threshold c =

230. The original image is shown in Figure 3.10a, and the image after clipping is shown

in Figure 3.10b. We compared SCTF with the QV model and Fast-MDT-Tucker [5]. The

QV model is the model without convolution in Equation (3.21), and is formulated as

Ẑ ← argmin
Z

∥O ⊛ (Y −Z)∥2F +
∑
n

λn∥Ln ∗Z∥2F ,

and Ẑ denotes the estimated completion tensor; In SCTF, we set τ1 = τ2 = 151, γ =

1.0× 108, λA,1 = λA,2 = λB,1 = λB,1 = 200, and ηA = ηB = 400.

Figures 3.10 and 3.11 show the images reconstructed using the QV model, Fast-MDT-

Tucker, and the proposed SCTF. In addition, Table 3.1 shows the numerical evaluation

of the completion accuracy. The completion image by SCTF has a maximum amplitude

close to 255 and shows an improvement in the oscillations that occurred in Fast-MDT-

Tucker, indicating the effect of the smoothing term. In fact, SCTF had the best value in

PSNR. However, SCTF had a flat shape that differed from that of sine at a maximum

amplitude of 255. This affects the numerical evaluation of the completion accuracy, and

SCTF is worse in SSIM than in Fast-MDT-Tucker. On the other hand, the QV model

fails to recover 2D-sin because it flatly completes the missing parts.
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(c) QV(a) original (b) clipped (d) FastMDT (e) Proposed
(a) Original image

(c) QV(a) original (b) clipped (d) FastMDT (e) Proposed
(b) Clipped image

(c) QV(a) original (b) clipped (d) FastMDT (e) Proposed
(c) QV

(c) QV(a) original (b) clipped (d) FastMDT (e) Proposed
(d) Fast-MDT

(c) QV(a) original (b) clipped (d) FastMDT (e) Proposed
(e) SCTF

Figure 3.10 Results of recoverd cliped image using QV (c), Fast-MDT-Tucker (d) and
SCTF (e).

Table 3.1 Comparison of the peak signal-to-noise ratio (PSNR), the structural similarity
(SSIM), and the computing time (sec) of recovery clipped images using TV, Fast-MDT–
Tucker, and proposed method.

QV Fast-MDT-Tucker Proposed

PSNR 34.9 50.8 55.1

SSIM 0.910 0.987 0.974

computing time 3.29 8.74 72.46

Figure 3.11 Cross-sectional view of the recoverd cliped image at height 157.
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3.4.2 Completion of random missing data

This section presents the results of the completion of random missing data.

Completion of RGB images (3rd order tensor)

In this experiment, we evaluated SCTF using RGB images. Six images were tested,

with a missing rate of 85%. Figures 3.12a and 3.12b show the original image and the

image with missing data, respectively. We compared SCTF with TVLR [52], SPCQV

[16], Fast-MDT-Tucker [5], BCPF [69], UTF [76], TNN [72], and PSTNN [103]. In SCTF,

we set τ1 = τ2 = τ3 = 9, γ = 1.0× 107, λA,1 = λA,2 = λB,1 = λB,2 = 50, λA,3 = λB,3 = 0,

and ηA = ηB = 50.

Figure 3.12 shows the experimental results. SCTF improves the image blur in TVLR,

SPCQV, and BCPF and the jaggies in Fast-MDT-Tucker, UTF, TNN, and PSTNN. This

may be because SCTF is based on the idea of both smoothness and MDT. Table 3.2

summarizes the recovery performance (PSNR and SSIM) and runtime. SCTF had the

highest PSNR for five images and SSIM for four images. It is also slower than Fast-MDT-

Tucker and UTF but has a faster computation time than SPCQV, which is the second

most accurate method. In other words, SCTF is completed with high accuracy and at a

modest computational cost.

Completion of MRI images (3rd order tensor)

In this experiment, we evaluated SCTF using MRI images. We prepared MRI images

with sizes of (100 × 91 × 91) with 70% and 95% of the random voxel missing. Figures

3.13a and 3.13b show the original image and the image with missing data, respectively.

We compare SCTF with TVLR [52], SPCQV [16], Fast-MDT-Tucker [5], BCPF [69], UTF

[76], TNN [72], and PSTNN [103]. In SCTF, we set τ1 = τ2 = τ3 = 4, γ = 1.0 × 107,

λA,1 = λA,2 = λB,1 = λB,2 = 50, λA,3 = λB,3 = 0, and ηA = ηB = 1000.

Figure 3.13 shows the experimental results. SCTF showed successful completion in both

the 70% and 95% missing cases. In the 95% case, TVLR, Fast-MDT-Tucker, BCPF, and

UTF fail to recover, and SPCQV smoothes the image excessively. In addition, TNN and

PSTNN do not restore smoothly compared to SCTF. Table 3.3 summarizes the recovery

performance (PSNR and SSIM) and runtime. We can confirm that SCTF has the best

completion accuracy compared to the other methods; it takes longer to execute than

Fast-MDT-Tucker and UTF but more than half the time of SPCQV.
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TVLR SPCQVoriginal missing FastMDT Proposed

peppers

house

airplane

parrots

mandrill

lena

(a)
Original

TVLR SPCQVoriginal missing FastMDT Proposed

peppers

house

airplane

parrots

mandrill

lena

(b)
Missing

TVLR SPCQVoriginal missing FastMDT Proposed

peppers

house

airplane

parrots

mandrill

lena

(c)
TVLR

TVLR SPCQVoriginal missing FastMDT Proposed

peppers

house

airplane

parrots

mandrill

lena

(d)
SPCQV

TVLR SPCQVoriginal missing FastMDT Proposed

peppers

house

airplane

parrots

mandrill

lena

(e) Fast-
MDT

TVLR SPCQVoriginal missing FastMDT Proposed

peppers

house

airplane

parrots

mandrill

lena

BCPF RTF TNN PSTNN

(f)
BCPF

TVLR SPCQVoriginal missing FastMDT Proposed

peppers

house

airplane

parrots

mandrill

lena

BCPF RTF TNN PSTNN

(g)
UTF

TVLR SPCQVoriginal missing FastMDT Proposed

peppers

house

airplane

parrots

mandrill

lena

BCPF RTF TNN PSTNN

(h)
TNN

TVLR SPCQVoriginal missing FastMDT Proposed

peppers

house

airplane

parrots

mandrill

lena

BCPF RTF TNN PSTNN

(i)
PSTNN

TVLR SPCQVoriginal missing FastMDT Proposed

peppers

house

airplane

parrots

mandrill

lena

(j)
SCTF

Figure 3.12 Results of recoverd RGB images completion using TVLR (c), SPCQV (d),
Fast-MDT-Tucker (e), BCPF (f), UTF (g), TNN (h), PSTNN (i), and SCTF (j). The im-
age types are listed in order from the top row: pappers, house, airplane, parrots, mandrill,
and lena.
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Table 3.2 Comparison of the peak signal-to-noise ratio (PSNR), the mean absolute error
(MAE), the structural similarity (SSIM) and the computing time (sec) of recovery RGB
images. Missing ratio is 85%.

Image name evaluation TVLR SPCQV Fast-MDT BCPF UTF TNN PSTNN SCTF

peppers PSNR 23.5 25.5 25.3 23.5 14.8 18.3 19.2 26.5

MAE 1.80× 106 1.52× 106 1.36× 106 1.87× 106 6.92× 106 4.21× 106 3.62× 106 1.32× 106

SSIM 0.931 0.950 0.951 0.770 0.547 0.786 0.825 0.961

rumtime 37.07 54.19 3.02 88.59 0.61 19.52 21.2 38.20

house PSNR 24.3 26.8 25.4 25.5 17.3 22.4 22.5 27.3

MAE 1.42× 106 1.27× 106 1.35× 106 1.34× 106 5.04× 106 2.44× 106 2.36× 106 1.24× 106

SSIM 0.892 0.913 0.897 0.797 0.463 0.766 0.771 0.923

runtime 35.20 35.62 2.66 105.94 0.45 18.37 20.93 25.07

airplane PSNR 22.2 24.3 22.8 23.2 17.6 20.6 20.8 24.3

MAE 1.92× 106 1.62× 106 1.67× 106 1.73× 106 3.91× 106 2.896 2.71× 106 1.73× 106

SSIM 0.655 0.669 0.706 0.797 0.225 0.364 0.378 0.685

runtime 42.95 38.99 2.85 59.28 0.40 18.37 20.77 14.69

parrots PSNR 24.6 25.4 24.5 24.5 15.6 20.4 21.2 25.9

MAE 1.48× 106 1.33× 106 1.21× 106 1.50× 106 5.72× 106 2.99× 106 2.63× 106 1.52× 106

SSIM 0.899 0.902 0.906 0.820 0.375 0.721 0.748 0.913

runtime 40.63 51.44 2.73 55.44 0.39 17.80 20.48 49.53

mandrill PSNR 21.1 21.8 19.4 21.3 16.1 18.6 19.0 21.5

MAE 3.04× 106 2.72× 106 3.40× 106 2.93× 106 5.81× 106 4.24× 106 4.02× 106 2.92× 106

SSIM 0.667 0.720 0.648 0.583 0.375 0.545 0.567 0.706

runtime 31.75 63.97 4.87 99.38 0.42 17.51 20.35 18.97

lena PSNR 24.3 26.0 25.0 25.8 16.2 20.9 19.9 26.2

MAE 1.70× 106 1.43× 106 1.44× 106 1.52× 106 5.81× 106 3.01× 106 2.77× 106 1.52× 106

SSIM 0.938 0.950 0.939 0.783 0.566 0.856 0.876 0.952

runtimes 36.94 45.99 4.61 72.94 0.41 17.44 19.95 23.93

TVLR SPCQVoriginal missing FastMDT Proposed

70%

95%

(a)
Original

TVLR SPCQVoriginal missing FastMDT Proposed

70%

95%

(b)
Missing

TVLR SPCQVoriginal missing FastMDT Proposed

70%

95%

(c)
TVLR

TVLR SPCQVoriginal missing FastMDT Proposed

70%

95%

(d)
SPCQV

TVLR SPCQVoriginal missing FastMDT Proposed

70%

95%

(e) F-
MDT

TVLR SPCQVoriginal missing FastMDT Proposed

70%

95%

BCPF RTF PTNN PSTNN

(f)
BCPF

TVLR SPCQVoriginal missing FastMDT Proposed

70%

95%

BCPF RTF PTNN PSTNN

(g)
UTF

TVLR SPCQVoriginal missing FastMDT Proposed

70%

95%

BCPF RTF PTNN PSTNN

(h)
TNN

TVLR SPCQVoriginal missing FastMDT Proposed

70%

95%

BCPF RTF PTNN PSTNN

(i)
PSTNN

TVLR SPCQVoriginal missing FastMDT Proposed

70%

95%

(j)
SCTF

Figure 3.13 Results of recoverd MRI image completion using TVLR (c), SPCQV (d),
Fast-MDT-Tucker (F-MDT) (e), BCPF (f), UTF (g), TNN (h), PSTNN (i), and SCTF
(j). The time slice t is 50. The 1st column is the image with 70% missing, the 2nd row is
the image with 95% missing.
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Table 3.3 Comparison of the peak signal-to-noise ratio (PSNR), the mean absolute error
(MAE), the structural similarity (SSIM) and the computing time (sec) of recovery MRI
images. Missing ratio are 70% and 95%. Note that SSIM is averaged over time.
missingrate evaluation TVLR SPCQV Fast-MDT BCPF UTF TNN PSTNN SCTF

70% PSNR 23.8 26.5 23.8 20.1 14.4 22.7 23.4 27.0

MAE 6.76× 106 5.70× 106 6.52× 106 1.26× 107 2.86× 106 9.84× 106 8.76× 106 5.21× 106

SSIM 0.619 0.633 0.638 0.330 0.360 0.521 0.528 0.700

rumtime 39.24 230.91 7.67 176.43 7.30 77.64 90.86 48.12

95% PSNR 16.3 20.6 18.0 10.5 12.3 17.1 17.8 21.1

MAE 1.94× 107 1.29× 107 1.58× 107 3.24× 107 4.40× 106 2.17× 106 1.90× 107 1.13× 107

SSIM 0.139 0.391 0.312 0.207 0.071 0.203 0.220 0.459

runtime 99.94 187.58 11.68 130.48 6.54 77.03 87.95 70.42
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3.4.3 Applications to audio inpainting

In this section, we compare SCTF with existing methods for audio inpainting [120],

[121]. Audio inpainting is a method to estimate missing entries of a single audio signal. In

this study, we addressed two types of missing: clipping and random missing. Four levels of

clipping c ∈ {0.8, 0.6, 0.4, 0.2} and four rates of missing {10%, 30%, 50%, 70%} are tested.
Noise was not assumed. We apply the proposed method to the audio inpainting problem

and compare it with QV regularization, spline interpolation, and orthogonal matching

pursuit (OMP) [120], [121]. OMP is one method of sparse modeling.
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Figure 3.14 Box-plot of SNR values in declipping experiments with clip levels 0.8, 0.6,
0.4, and 0.2. Segments of music and speech audio signals were recovered by quadratic
variation regularization (QV), cubic spline interpolation (Spline), orthogonal matching
pursuit (OMP), and SCTF (Proposed).
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(b) Speech
Figure 3.15 Box-plot of SNR values in completion experiments with random missing rates
10%, 30%, 50%, and 70%. Segments of music and speech audio signals were recovered by
quadratic variation regularization (QV), cubic spline interpolation (Spline), orthogonal
matching pursuit (OMP), and SCTF (Proposed)

Figures 3.14 and 3.15 and Tables 3.4 and 3.5 show the completion accuracy SNR [dB]

for the proposed and existing methods, respectively. Table 3.4 shows that the proposed
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Table 3.4 Average and standard deviation of SNR [dB] in declipping

clip level QV Spline OMP SCTF

Music(0.8) 23.3± 8.5 27.9± 15.0 27.4± 9.0 28.9± 7.0

Music(0.6) 13.0± 7.0 16.3± 12.1 21.9± 7.4 17.9± 6.1

Music(0.4) 6.4± 2.9 9.6± 4.9 11.8± 5.7 10.6± 5.3

Music(0.2) 2.0± 1.4 3.4± 3.7 1.6± 1.9 3.5± 3.1

Speech(0.8) 25.6± 10.0 33.6± 20.2 33.6± 7.5 32.8± 6.6

Speech(0.6) 13.3± 2.8 21.7± 5.0 23.2± 7.1 21.5± 6.2

Speech(0.4) 7.2± 1.8 14.5± 4.4 13.4± 6.2 13.7± 5.3

Speech(0.2) 2.7± 0.8 7.5± 3.8 2.8± 3.2 6.6± 4.0

Table 3.5 Average and standard deviation of SNR [dB] in completion

missing rate QV Spline OMP SCTF

Music(10%) 27.4± 10.5 28.8± 13.7 27.2± 11.6 29.1± 10.9

Music(30%) 20.8± 9.9 21.9± 13.1 20.8± 11.7 23.0± 11.1

Music(50%) 16.4± 8.7 16.8± 12.0 16.3± 10.8 16.1± 7.9

Music(70%) 12.2± 7.6 11.1± 9.1 11.5± 8.6 12.9± 8.1

Speech(10%) 31.2± 7.6 37.8± 9.9 35.2± 7.8 35.8± 6.7

Speech(30%) 22.7± 7.3 27.3± 8.7 24.4± 8.2 28.2± 7.4

Speech(50%) 16.7± 7.0 19.6± 9.2 17.3± 8.4 17.1± 7.0

Speech(70%) 10.7± 6.1 12.2± 8.3 11.1± 7.4 13.3± 7.9
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missingoriginal completion

Figure 3.16 Extrapolation of a typical wave signal. The completion data is the image of
size 256 × 256 with 32 pixels missing from the periphery.

method performed the best in the clip levels 0.8 and 0.2 for Music and 0.4 for Speech in

terms of completion of clipped signals, while OMP was more accurate in the other cases.

For signals with large missing parts, such as clipped signals, a sparse modeling such as

OMP is considered more effective than the proposed method. In contrast, the proposed

method has high completion accuracy for random missing signals as shown in Table 3.5.

From the above experiments, the proposed method is highly accurate for Audio inpaint-

ing for some data. Still, other methods often shows better completion accuracy, which is

a challenge for audio inpainting problems.

3.4.4 Signal extrapolation

Experiments are conducted to apply the tensor completion technique using the proposed

method to the extrapolation of tensors. Here, experiments were conducted on artificially

created periodic signals. The experimental results are shown in Figure 3.16. This signal

is a sin function oscillating in the oblique direction. The size of the signal is 256 × 256,

and it is missing 32 pixels on the top, bottom, left, and right sides. The experimental

results show a very natural complement of the periodic function. This is considered to be

because the signal is typical and compatible with the proposed method that focuses on

similarity.

3.4.5 Analysis of algorithm

Convergence of algorithm

Monotonic convergence is expected because the proposed algorithm uses the MM algo-

rithm. Figure 3.17 shows that the objective function converges monotonically and that

the algorithm works correctly.
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Figure 3.17 Optimization behavior: This figure shows 50 curves for 50 different initial
values. The completion problem deals with the completion of clipped 2D-sin.

Hyper-parameter sensitivities

We investigated the effects of hyper-parameters of SCTF in the completion. SCTF has

three hyperparameters: the delay window size τ1, . . . , τN , smoothing level λA,1, . . . , λA,N ,

λB,1, . . . , λB,N and scale adjustment ηA, ηB (see Equations (3.22)). We redefine each of the

three parameter types as τ := τ1 = . . . = τN , λ := λA,1 = . . . = λA,N = λB,1 = . . . = λB,N ,

and η := ηA = ηB.

The experimental setup was the same as that in Section 3.4.1; we recovered the clipped

2D-sin image. Three hyper-parameters were varied in the range τ ∈ {1, 9, 25, 81, 151, 315}
and λ ∈ {0, 200, 400, 600, 800, 1000} and η ∈ {0, 200, 400, 600 , 800, 1000}. A declipping

experiment was performed for all the combinations to calculate the recovery accuracy.

Figure 3.18 shows the experiment’s five-time average of the PSNR. Increasing τ im-

proves the accuracy, whereas making it too large worsens the accuracy. For example,

when τ = 1, the algorithm matches the QV regularization and recovers smoothly; how-

ever, when the delay window is smaller than the clip range, such as when τ = 9 or τ = 25,

it cannot recover at all. Therefore, it is important to set τ appropriately.
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FIGURE 5: Matrix operation of DT operation and Inverse DT operation. In particular, note that the computation of the pseudo-
inverse matrix in the inverse DT corresponds to average of anti-diagonal of the Hankel matrix.

E. MULTIWAT DELAY-EMBEDDING (MDT) AND
CONVOLUTION OF TENSOR
We extend the discussion on subsection III-A, III-B, III-C,
III-D in one-dimensional data (vector) to multidimensional
data.

DT can be naturally extended for an N -th order tensor
X 2 RT1⇥···⇥TN with size T = (T1, . . . , TN ). Let us
consider N duplication matrices Sn 2 {0, 1}Tn⌧n⇥Tn (n =
1, . . . , N) with window size ⌧ = (⌧1, . . . , ⌧N ) 2 RN

(See Equation (3)). Multiway Delay-embedding Transform
(MDT) is defined using all-mode product and folding as

H⌧ (X ) := fold(T ,⌧ )(X ⇥ {S}) (14)

where fold(V ,v) : RV1v1⇥···⇥VN vN ! RV1⇥v1⇥···⇥VN ⇥vN is
a folding operator from an N -th order tensor to the 2N -th
order tensor. On the other hand, the inverse MDT is defined
as

H†
⌧ (X ) := unfold(T ,⌧ )(X ) ⇥ {S

†} (15)

where unfold(V ,v) : RV1⇥v1⇥···⇥VN ⇥vN ! RV1v1⇥···⇥VN vN

is a unfolding operator from an 2N -th order tensor to the N -
th order tensor.

Next, we show that the inverse MDT of a rank-1 tensor
X under "size-aligned clipping" is equivalent to cyclic con-
volution. Let us consider factor tensors A 2 RT1⇥···⇥Tn ,
B 2 R⌧1⇥···⇥⌧n , and we define a := vec(A) 2 R

Q
n Tn ,

b := vec(B) 2 R
Q

n ⌧n . Then, X is derived as

bunfold(T ,⌧ )(X ) ' vec(A)vec(B)T

= ab
T 2 R

Q
n Tn⇥

Q
n ⌧n , (16)

where bunfold(V ,v) : RV1⇥v1⇥···⇥VN ⇥vN ! R
Q

n Vn⇥
Q

n vn

is an unfolding operator from an 2N -th order ten-
sor to the block matrix. We also define bfold(V ,v) :
R

Q
n Vn⇥

Q
n vn ! RV1⇥v1⇥···⇥VN ⇥vN as the inverse trans-

formation of bunfold(V ,v). On the other hand, using the
clipped matrix Pn = (I⌧n O)T 2 {0, 1}Tn⇥⌧n (n =
1, . . . , N), we define a tensor B̃ = B ⇥ {P } 2 RT1⇥···⇥Tn

of the same size as A. The inverse DT of rank 1 tensor
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FIGURE 7. Examples of declipping experiments: a original signals of sine functions, b clipped signals with clipping level = 0.2, and c these reconstructed signals by
using QV regularization, cubic spline interpolation, and the proposed method.
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FIGURE 8. Examples of declipping experiments: a original signals of wavelet functions, b clipped signals with clipping level = 0.2, and c these reconstructed signals
by using QV regularization, cubic spline interpolation, and the proposed method.

(a) sine (b) wavelet

FIGURE 9. Values of SNR in declipping experiments with various clipping
levels.

Figure 10. The original image is shown in (10a) and the
image after clipping is shown in (10b). We compare proposed
method with QV model and Fast-MDT [37]. The QV model
is the model without convolution in Equation (21) and is
formulated as

Ẑ  arg min
Z

kO ~ (Y �Z)k2F +
X

n

�ikLn ⇤Zk22,

and Ẑ becomes the estimated completion tensor. In contrast,
FastMDT is based on the idea of inverse DT as in the
proposed method, but without the smoothness constraint. In

TABLE 1. Comparison of the peak signal-to-noise ratio (PSNR) ,the structural
similarity (SSIM) and the computing time (sec) of recovery cliped images using
TV, FastMDT and Proposed method.

QV FastMDT Proposed
PSNR 34.9 50.8 55.1
SSIM 0.910 0.987 0.974

computing time 3.29 8.74 72.46

the proposed method, we set ⌧ = 151, � = 1.0 ⇥ 108,
�A,1 = �A,2 = �B,1 = �B,1 = 200, and ⌘A = ⌘B = 400.

Figures 10, 11 show reconstructed images by QV regular-
ization, FastMDT, and SCTD. Also, table 1 shows the nu-
merical evaluation of completion accuracy. The completion
image by SCTD has a maximum amplitude close to 255, and
shows an improvement in the oscillations that occurred in
the FastMDT, indicating the effect of the smoothing term. In
fact, SCTD is the best value in PSNR. However, SCTD has a
flat shape that differs from sin at the maximum amplitude of
255. This affects the numerical evaluation of the completion
accuracy, and the SCTD is worse in SSIM than in FastMDT.
On the other hand, the QV regularization method fails to
recover sin because it flatly completes the missing parts.
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Ẑ  arg min
Z

kO ~ (Y �Z)k2F +
X

n

�ikLn ⇤Zk22,
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ization, FastMDT, and SCTD. Also, table 1 shows the nu-
merical evaluation of completion accuracy. The completion
image by SCTD has a maximum amplitude close to 255, and
shows an improvement in the oscillations that occurred in
the FastMDT, indicating the effect of the smoothing term. In
fact, SCTD is the best value in PSNR. However, SCTD has a
flat shape that differs from sin at the maximum amplitude of
255. This affects the numerical evaluation of the completion
accuracy, and the SCTD is worse in SSIM than in FastMDT.
On the other hand, the QV regularization method fails to
recover sin because it flatly completes the missing parts.
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Figure 10. The original image is shown in (10a) and the
image after clipping is shown in (10b). We compare proposed
method with QV model and Fast-MDT [37]. The QV model
is the model without convolution in Equation (21) and is
formulated as

Ẑ  arg min
Z

kO ~ (Y �Z)k2F +
X

n

�ikLn ⇤Zk22,

and Ẑ becomes the estimated completion tensor. In contrast,
FastMDT is based on the idea of inverse DT as in the
proposed method, but without the smoothness constraint. In
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FIGURE 5: Matrix operation of DT operation and Inverse DT operation. In particular, note that the computation of the pseudo-
inverse matrix in the inverse DT corresponds to average of anti-diagonal of the Hankel matrix.

E. MULTIWAT DELAY-EMBEDDING (MDT) AND
CONVOLUTION OF TENSOR
We extend the discussion on subsection III-A, III-B, III-C,
III-D in one-dimensional data (vector) to multidimensional
data.

DT can be naturally extended for an N -th order tensor
X 2 RT1⇥···⇥TN with size T = (T1, . . . , TN ). Let us
consider N duplication matrices Sn 2 {0, 1}Tn⌧n⇥Tn (n =
1, . . . , N) with window size ⌧ = (⌧1, . . . , ⌧N ) 2 RN

(See Equation (3)). Multiway Delay-embedding Transform
(MDT) is defined using all-mode product and folding as

H⌧ (X ) := fold(T ,⌧ )(X ⇥ {S}) (14)

where fold(V ,v) : RV1v1⇥···⇥VN vN ! RV1⇥v1⇥···⇥VN ⇥vN is
a folding operator from an N -th order tensor to the 2N -th
order tensor. On the other hand, the inverse MDT is defined
as

H†
⌧ (X ) := unfold(T ,⌧ )(X ) ⇥ {S

†} (15)

where unfold(V ,v) : RV1⇥v1⇥···⇥VN ⇥vN ! RV1v1⇥···⇥VN vN

is a unfolding operator from an 2N -th order tensor to the N -
th order tensor.

Next, we show that the inverse MDT of a rank-1 tensor
X under "size-aligned clipping" is equivalent to cyclic con-
volution. Let us consider factor tensors A 2 RT1⇥···⇥Tn ,
B 2 R⌧1⇥···⇥⌧n , and we define a := vec(A) 2 R

Q
n Tn ,

b := vec(B) 2 R
Q

n ⌧n . Then, X is derived as

bunfold(T ,⌧ )(X ) ' vec(A)vec(B)T

= ab
T 2 R

Q
n Tn⇥

Q
n ⌧n , (16)

where bunfold(V ,v) : RV1⇥v1⇥···⇥VN ⇥vN ! R
Q

n Vn⇥
Q

n vn

is an unfolding operator from an 2N -th order ten-
sor to the block matrix. We also define bfold(V ,v) :
R

Q
n Vn⇥

Q
n vn ! RV1⇥v1⇥···⇥VN ⇥vN as the inverse trans-

formation of bunfold(V ,v). On the other hand, using the
clipped matrix Pn = (I⌧n O)T 2 {0, 1}Tn⇥⌧n (n =
1, . . . , N), we define a tensor B̃ = B ⇥ {P } 2 RT1⇥···⇥Tn

of the same size as A. The inverse DT of rank 1 tensor
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formation of bunfold(V ,v). On the other hand, using the
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consider N duplication matrices Sn 2 {0, 1}Tn⌧n⇥Tn (n =
1, . . . , N) with window size ⌧ = (⌧1, . . . , ⌧N ) 2 RN

(See Equation (3)). Multiway Delay-embedding Transform
(MDT) is defined using all-mode product and folding as

H⌧ (X ) := fold(T ,⌧ )(X ⇥ {S}) (14)

where fold(V ,v) : RV1v1⇥···⇥VN vN ! RV1⇥v1⇥···⇥VN ⇥vN is
a folding operator from an N -th order tensor to the 2N -th
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FIGURE 7. Examples of declipping experiments: a original signals of sine functions, b clipped signals with clipping level = 0.2, and c these reconstructed signals by
using QV regularization, cubic spline interpolation, and the proposed method.
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FIGURE 8. Examples of declipping experiments: a original signals of wavelet functions, b clipped signals with clipping level = 0.2, and c these reconstructed signals
by using QV regularization, cubic spline interpolation, and the proposed method.

(a) sine (b) wavelet

FIGURE 9. Values of SNR in declipping experiments with various clipping
levels.

Figure 10. The original image is shown in (10a) and the
image after clipping is shown in (10b). We compare proposed
method with QV model and Fast-MDT [37]. The QV model
is the model without convolution in Equation (21) and is
formulated as

Ẑ  arg min
Z

kO ~ (Y �Z)k2F +
X

n

�ikLn ⇤Zk22,

and Ẑ becomes the estimated completion tensor. In contrast,
FastMDT is based on the idea of inverse DT as in the
proposed method, but without the smoothness constraint. In

TABLE 1. Comparison of the peak signal-to-noise ratio (PSNR) ,the structural
similarity (SSIM) and the computing time (sec) of recovery cliped images using
TV, FastMDT and Proposed method.

QV FastMDT Proposed
PSNR 34.9 50.8 55.1
SSIM 0.910 0.987 0.974

computing time 3.29 8.74 72.46

the proposed method, we set ⌧ = 151, � = 1.0 ⇥ 108,
�A,1 = �A,2 = �B,1 = �B,1 = 200, and ⌘A = ⌘B = 400.

Figures 10, 11 show reconstructed images by QV regular-
ization, FastMDT, and SCTD. Also, table 1 shows the nu-
merical evaluation of completion accuracy. The completion
image by SCTD has a maximum amplitude close to 255, and
shows an improvement in the oscillations that occurred in
the FastMDT, indicating the effect of the smoothing term. In
fact, SCTD is the best value in PSNR. However, SCTD has a
flat shape that differs from sin at the maximum amplitude of
255. This affects the numerical evaluation of the completion
accuracy, and the SCTD is worse in SSIM than in FastMDT.
On the other hand, the QV regularization method fails to
recover sin because it flatly completes the missing parts.
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similarity (SSIM) and the computing time (sec) of recovery cliped images using
TV, FastMDT and Proposed method.

QV FastMDT Proposed
PSNR 34.9 50.8 55.1
SSIM 0.910 0.987 0.974

computing time 3.29 8.74 72.46

the proposed method, we set ⌧ = 151, � = 1.0 ⇥ 108,
�A,1 = �A,2 = �B,1 = �B,1 = 200, and ⌘A = ⌘B = 400.

Figures 10, 11 show reconstructed images by QV regular-
ization, FastMDT, and SCTD. Also, table 1 shows the nu-
merical evaluation of completion accuracy. The completion
image by SCTD has a maximum amplitude close to 255, and
shows an improvement in the oscillations that occurred in
the FastMDT, indicating the effect of the smoothing term. In
fact, SCTD is the best value in PSNR. However, SCTD has a
flat shape that differs from sin at the maximum amplitude of
255. This affects the numerical evaluation of the completion
accuracy, and the SCTD is worse in SSIM than in FastMDT.
On the other hand, the QV regularization method fails to
recover sin because it flatly completes the missing parts.
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and Ẑ becomes the estimated completion tensor. In contrast,
FastMDT is based on the idea of inverse DT as in the
proposed method, but without the smoothness constraint. In

TABLE 1. Comparison of the peak signal-to-noise ratio (PSNR) ,the structural
similarity (SSIM) and the computing time (sec) of recovery cliped images using
TV, FastMDT and Proposed method.

QV FastMDT Proposed
PSNR 34.9 50.8 55.1
SSIM 0.910 0.987 0.974

computing time 3.29 8.74 72.46

the proposed method, we set ⌧ = 151, � = 1.0 ⇥ 108,
�A,1 = �A,2 = �B,1 = �B,1 = 200, and ⌘A = ⌘B = 400.

Figures 10, 11 show reconstructed images by QV regular-
ization, FastMDT, and SCTD. Also, table 1 shows the nu-
merical evaluation of completion accuracy. The completion
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Ẑ  arg min
Z

kO ~ (Y �Z)k2F +
X

n

�ikLn ⇤Zk22,
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the FastMDT, indicating the effect of the smoothing term. In
fact, SCTD is the best value in PSNR. However, SCTD has a
flat shape that differs from sin at the maximum amplitude of
255. This affects the numerical evaluation of the completion
accuracy, and the SCTD is worse in SSIM than in FastMDT.
On the other hand, the QV regularization method fails to
recover sin because it flatly completes the missing parts.
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Figure 3.18 Results of extrapolation using the proposed method for periodic and simple
signals.
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Chapter 4

　　Conclusions

Tensor completion by Automatic Rank Determination with Multiplicative

Gamma Process (ARD-MGP)

We proposed a method to avoid the model redundancy in ARD, an original Bayesian

CP decomposition, and achieved more accurate and efficient tensor completion and rank

estimation. A proposed method is called MGP-ARD, in which the MGP prior distribution

is set such that the core tensor is decayed. The redundancy of the model described here

refers to the overlap of the column vector of the factor matrices, which causes the original

ARD method to overestimate the rank. In the proposed method, MGP-ARD sets an

ordinal order to the factor matrix, eliminating the duplication of the column vectors

of the factor matrix. The avoidance of model redundancy leads to an improvement in

sensitivity to noise and estimation time.

The effectiveness of the proposed method is confirmed by experiments on synthetic data

and real data. In the experiment of tensor completion on synthetic data, we confirmed that

the rank estimation accuracy is improved compared to the original method by removing

the duplication of the column vectors of the factor matrices. This also ensured that

sensitivity to noise was avoided. In the experiments of tensor completion on real data, we

mainly investigated the accuracy and estimation time of completion estimation for image

inpainting. We confirmed that the estimation time was reduced while maintaining high

estimation accuracy. In addition, because of its robustness to noise, MGP-ARD is a very

good technique that provides not only rank estimation and tensor completion but also

tensor decomposition.

Tensor completion by Smooth Convolution Tensor Factorization (SCTF)

We proposed a new model and algorithm for tensor completion using a convolution of

smooth-factor tensors. Because the proposed method corresponds to a rank-1 decompo-

sition in the delay-embedded space, it can achieve high completion accuracy in a short
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computation time. In the optimization formulation, we extended the existing mathemat-

ical model based on the inverse MDT by adding a penalty term for the factor tensor

corresponding to the delay-embedding width. In addition, we set smoothing constraints

for the factor to narrow down the candidate solutions. As for the algorithm for solving

the optimization, we employed the MM algorithm with the expectation of monotonic

convergence. Our experiments mainly completed clipped and random missing image data

and confirmed that the proposed method achieves high completion accuracy with low

computational cost. In the experiment, we also confirmed the effect of the completion

accuracy on the variation in the delay-embedding width and monotone convergence of the

algorithm.

Overall summary and future outlook on research

In this study, we proposed two methods: Automatic Rank Determination with Mul-

tiplicative Gamma Process (ARD-MGP) and Smooth Convolution Tensor Factorization

(SCTF) for the purpose of accurate and efficient tensor completion.

Concerning ARD-MGP, we will attempt to expand on the aspects related to a rank

determination conducted concurrently with the tensor completion. The proposed method

works well for rank estimation when the true rank is small, such as 3 or 5. In the future, we

aim to develop a method that can accurately estimate ranks, even for larger ranks. Also,

future works include the extension of this study to other tensor decomposition models,

such as tensor train and ring decompositions [122], [123], [122], [124].

As for SCTF, we would like to extend a discussion on the convolution. In recent years,

Deep Image prior (DIP) [125] has attracted attention as an image completion technique

related to convolution. DIP uses Convolutional Neural Network (CNN) as its architecture.

While image completion using CNN often requires a large amount of training data [126],

[127], DIP is an optimization method that minimizes the difference between the completed

image obtained from the untrained CNN and the known image to be completed. In other

words, DIP does not need training data. In considering the completion performance of

DIP, it is necessary to evaluate whether the convolution architecture itself has completion

capability. Based on that, we would like to attempt to theoretically and experimentally

prove the validity of the completion capability of CNN by considering multi-stage tensor

convolution operations.
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Appendices

Derivation of approximate posterior distribution

This section describes the derivation of the approximate posterior distribution q of

parameter Θ = {A(1), . . . ,A(N),λ, δ, τc} in Chapter 2.

Derivation of q(A(n))

ln qn(A
(n)) = Eq(Θ\A(n))[ln p(YΩ,Θ)] + const

= Eq(Θ\A(n))
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Derivation of q(λ)
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Derivation of q(δr)
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Derivation of q(τc)
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Derivation of approximate posterior distribution

L is calculated as follows

L(q) =
∫
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Ã(n)TÃ(n) +

∑
in

V
(n)
in

)}
.



87

Eq[ln p(λ)] =
R∑

r=1

{
− ln Γ(c0) + c0

r∑
l=1

Eq[ln δl] + (c0 − 1)Eq[lnλr]−
r∏

l=1

Eq[τl]Eq[λr]

}

=
R∑

r=1

{
− ln Γ(c0) + c0

r∑
l=1

(
ψ(elM)− ln f l

M

)
+ (c0 − 1)(ψ(crM)− ln drM)

− crM
drM

r∏
l=1

elM
f l
M

}
.

Eq[ln p(δ)] =
R∑

r=1

{− ln Γ(f0) + e0 ln f0 + (e0 − 1)Eq[ln δr]− f0Eq[δr]}

=
R∑

r=1

{
− ln Γ(f0) + e0 ln f0 + (e0 − 1) (ψ(erM)− ln f r

M)− f0
erM
f r
M

}
.

Eq[ln p(τc)] = − ln Γ(a0) + a0 ln b0 + (a0 − 1)Eq[ln τc]− b0Eq[τc]

= − ln Γ(a0) + a0 ln b0 + (a0 − 1)(ψ(aM)− ln bM)− b0
aM
bM

.

−Eq

[
N∑

n=1

ln q(A(n))

]
= −

∑
n

∑
in

Eq

[
ln q(a

(n)
in,:

)
]
=
∑
n

∑
in

{
1

2
ln
∣∣∣V (n)

in

∣∣∣}
+
R
∑

n In
2

[1 + ln(2π)].

−Eq [ln q(λ)] =
∑
r

{ln Γ(crM)− crM ln drM − (crM − 1)Eq [lnλr] + drMEq [λr]}

=
∑
r

{
ln Γ(crM)− crM ln drM − (crM − 1)(ψ(crM)− ln drM) + drM

crM
drM

}
=
∑
r

{ln Γ(crM)− ln drM − (crM − 1)ψ(crM) + crM} .

−Eq [ln q(δ)] =

{
ln Γ(erM)− erM ln f r

M − (erM − 1)(ψ(erM)− ln f r
M) + f r

M

erM
f r
M

}
=
∑
r

{ln Γ(erM)− ln f r
M − (erM − 1)ψ(erM) + erM} .

−Eq [ln q(τc)] = ln Γ(aM)− ln bM − (aM − 1)ψ(aM) + aM .

The above is the calculation of the expected value of each term, E. Substitute these

equations into the expression for the variational lower bound L(q).
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Ã(n)TÃ(n) +

∑
in

V
(n)
in

)}

+
R∑

r=1

{
c0

r∑
l=1

(
ψ(elM)− ln f l

M

)
+ (c0 − 1)(ψ(crM)− ln drM)− crM

drM

r∏
l=1

elM
f l
M

}

+
R∑

r=1

{
(e0 − 1) (ψ(erM)− ln f r

M)− f0
erM
f r
M

}
+ (a0 − 1)(ψ(aM)− ln bM)− b0

aM
bM

+
∑
n

∑
in

{
1

2
ln
∣∣∣V (n)

in

∣∣∣}+
∑
r

{ln Γ(crM)− ln drM − (crM − 1)ψ(crM) + crM}

+
∑
r

{ln Γ(erM)− ln f r
M − (erM − 1)ψ(erM) + erM}

+ lnΓ(aM)− ln bM − (aM − 1)ψ(aM) + aM + const

=

(
M

2
+ a0 − aM

)
ψ(aM)−

(
M

2
+ a0

)
ln bM

− aM
2bM

Eq

∥∥∥∥∥O ⊛
(
Y −

R∑
r=1

a(1)
:,r ◦ · · · ◦ a(N)

:,r

)∥∥∥∥∥
2

F


− 1

2
Tr

{
Λ̃
∑
n

(
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Derivation of approximate posterior distribution
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ã
(n)
in,:

)T

V
(1)
i1

(
⊛
n ̸=1

ã
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The following formula for the marginal Gaussian distribution is used in the transformation

of the formula in the fourth line. The process of deriving the formula is described in [99].
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Formula for Gaussian Peripheral Distribution� �
Suppose that the Gaussian distribution around x and the conditional Gaussian dis-

tribution of y given x are given by

p(x) = N (x|µ,Λ−1)

p(y|x) = N (y|Ax+ b,L−1).

The marginal distribution of y at this time is

p(y) = N (y|Aµ+ b,L−1 +AΛ−1AT).� �
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[59] M. Filipović and A. Jukić, “Tucker factorization with missing data with application

to low-n-rank tensor completion,” Multidimensional Systems and Signal Processing,

vol. 26, no. 3, pp. 677–692, 2015.

[60] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The American Statis-

tician, vol. 58, no. 1, pp. 30–37, 2004.

[61] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in

Several Variables. SIAM, 2000.

[62] Y. Xu, R. Hao, W. Yin, and Z. Su, “Parallel matrix factorization for low-rank tensor

completion,” Inverse Problems and Imaging, vol. 9, no. 2, pp. 601–624, 2015.

[63] A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S.-I. Amari, “Non-negative

tensor factorization using alpha and beta divergences,” in Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. III–

1393–III–1396, 2007.

[64] A. Cichocki and A.-H. Phan, “Fast local algorithms for large scale nonnegative ma-

trix and tensor factorizations,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. 92, no. 3, pp. 708–721, 2009.

[65] A. Shashua and T. Hazan, “Non-negative tensor factorization with applications to

statistics and computer vision,” in Proceedings of the 22nd International Conference

on Machine Learning, pp. 792–799, 2005.

[66] Z. Fan, X. Song, and R. Shibasaki, “CitySpectrum: A non-negative tensor factor-

ization approach,” in Proceedings of the ACM International Joint Conference on

Pervasive and Ubiquitous Computing, pp. 213–223, 2014.



101

[67] K. Zhang, M. Wang, S. Yang, and L. Jiao, “Spatial–spectral-graph-regularized low-

rank tensor decomposition for multispectral and hyperspectral image fusion,” IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

vol. 11, no. 4, pp. 1030–1040, 2018.

[68] Y.-L. Chen, C.-T. Hsu, and H.-Y. M. Liao, “Simultaneous tensor decomposition

and completion using factor priors,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 36, no. 3, pp. 577–591, 2013.

[69] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of incomplete ten-

sors with automatic rank determination,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 37, no. 9, pp. 1751–1763, 2015.

[70] W.-J. Li and D. Y. Yeung, “Relation regularized matrix factorization,” in Proceed-

ings of the 21st International Joint Conference on Artificial Inteligence, pp. 1126–

1131, 2009.

[71] A. L. Multipliers, “Bilinear modeling via augmented lagrange multipliers (BALM),”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 8,

2012.

[72] Z. Zhang and S. Aeron, “Exact tensor completion using t-SVD,” IEEE Transactions

on Signal Processing, vol. 65, no. 6, pp. 1511–1526, 2016.

[73] M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order tensors,”

Linear Algebra and its Applications, vol. 435, no. 3, pp. 641–658, 2011.

[74] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel methods for multilinear

data completion and de-noising based on tensor-svd,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 3842–3849, 2014.

[75] S. Du, Y. Shi, W. Hu, W. Wang, and J. Lian, “Robust tensor factorization for color

image and grayscale video recovery,” IEEE Access, vol. 8, pp. 174410–174423, 2020.

[76] S. Du, Q. Xiao, Y. Shi, R. Cucchiara, and Y. Ma, “Unifying tensor factorization and

tensor nuclear norm approaches for low-rank tensor completion,” Neurocomputing,

vol. 458, pp. 204–218, 2021.

[77] T.-X. Jiang, M. K. P. Ng, X. Zhao, and T. Huang, “Framelet representation of ten-

sor nuclear norm for third-order tensor completion,” IEEE Transactions on Image

Processing, vol. 29, pp. 7233–7244, 2019.



102

[78] C. Lu, X. Peng, and Y. Wei, “Low-rank tensor completion with a new tensor nu-

clear norm induced by invertible linear transforms,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 5996–6004, 2019.

[79] T. Yokota, B. Erem, S. Guler, S. K. Warfield, and H. Hontani, “Missing slice re-

covery for tensors using a low-rank model in embedded space,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8251–8259,

2018.

[80] A. Muhammad, M. Nikola, D. Justin, and J. Patrick, “Matrix and tensor based

methods for missing data estimation in large traffic networks,” IEEE Transactions

on Intelligent Transportation Systems, vol. 17, pp. 1816–1825, 2016.

[81] G. Sheng, L. Denoyer, P. Gallinari, and G. Jun, “Probabilistic latent tensor factor-

ization model for link pattern prediction in multi-relational networks,” The Journal

of China Universities of Posts and Telecommunications, vol. 19, pp. 172–181, 2012.

[82] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell, “Temporal col-

laborative filtering with Bayesian probabilistic tensor factorization,” in Proceedings

of the 2010 SIAM International Conference on Data Mining, pp. 211–222, SIAM,

2010.

[83] A. Bhattacharya and D. B. Dunson, “Sparse Bayesian infinite factor models,”

Biometrika, vol. 98, pp. 291–306, 2011.

[84] P. Rai, Y. Wang, S. Guo, G. Chen, D. Dunson, and L. Carin, “Scalable Bayesian low-

rank decomposition of incomplete multiway tensors,” in Proceedings of International

Conference on Machine Learning, pp. 1800–1808, 2014.

[85] M. Zhou, Y. Liu, Z. Long, L. Chen, and C. Zhu, “Tensor rank learning in CP

decomposition via convolutional neural network,” Signal Processing: Image Com-

munication, vol. 73, pp. 12–21, 2019.

[86] K. Hosono, S. Ono, and T. Miyata, “Weighted tensor nuclear norm minimization for

color image denoising,” in Proceedings of IEEE International Conference on Image

Processing, pp. 3081–3085, IEEE, 2016.

[87] J. A. Bazerque, G. Mateos, and G. B. Giannakis, “Rank regularization and Bayesian

inference for tensor completion and extrapolation,” IEEE Transactions on Signal

Processing, vol. 61, no. 22, pp. 5689–5703, 2013.



103

[88] Z. Zhou, J. Fang, L. Yang, H. Li, Z. Chen, and R. S. Blum, “Low-rank tensor

decomposition-aided channel estimation for millimeter wave MIMO-OFDM sys-

tems,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1524–

1538, 2017.

[89] K. Wei and Y. Fu, “Low-rank Bayesian tensor factorization for hyperspectral image

denoising,” Neurocomputing, vol. 331, pp. 412–423, 2019.

[90] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian sparse Tucker models for dimension

reduction and tensor completion,” arXiv preprint arXiv:1505.02343, 2015.

[91] X. Chen, Z. He, and L. Sun, “A Bayesian tensor decomposition approach for spa-

tiotemporal traffic data imputation,” Transportation Research Part C: Emerging

Technologies, vol. 98, pp. 73–84, 2019.

[92] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” Journal of the

ACM, vol. 60, no. 6, pp. 1–39, 2013.

[93] M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” Jour-

nal of Machine Learning Research, vol. 1, no. Jun, pp. 211–244, 2001.

[94] D. P. Wipf, S. S. Nagarajan, J. Platt, D. Koller, and Y. Singer, “A new view of auto-

matic relevance determination.,” in Proceedings of Advanced in Neural Information

Processing Systems, pp. 1625–1632, Citeseer, 2007.

[95] D. J. MacKay, “A practical bayesian framework for backpropagation networks,”

Neural Computation, vol. 4, no. 3, pp. 448–472, 1992.

[96] R. M. Neal, Bayesian Learning for Neural Networks, vol. 118. Springer-Verlag, 1996.

[97] D. J. MacKay, “Bayesian methods for backpropagation networks,” in Models of

Neural Networks III, pp. 211–254, Springer, 1996.

[98] A. Shapiro, “Identifiability of factor analysis: Some results and open problems,”

Linear Algebra and its Applications, vol. 70, pp. 1–7, 1985.

[99] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[100] F. Sedighin, A. Cichocki, T. Yokota, and Q. Shi, “Matrix and tensor completion

in multiway delay embedded space using tensor train, with application to signal

reconstruction,” IEEE Signal Processing Letters, vol. 27, pp. 810–814, 2020.

[101] Z. Long, Y. Liu, L. Chen, and C. Zhu, “Low rank tensor completion for multiway

visual data,” Signal Processing, vol. 155, pp. 301–316, 2019.



104

[102] F. Sedighin and A. Cichocki, “Image completion in embedded space using multistage

tensor ring decomposition,” Frontiers in Artificial Intelligence, vol. 4, p. 687176,

2021.

[103] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, and L.-J. Deng, “Multi-dimensional imaging

data recovery via minimizing the partial sum of tubal nuclear norm,” Journal of

Computational and Applied Mathematics, vol. 372, p. 112680, 2020.

[104] G. Liu and W. Zhang, “Recovery of future data via convolution nuclear norm min-

imization,” IEEE Transactions on Information Theory, vol. 69, no. 1, pp. 650–665,

2022.

[105] G. Liu, “Time series forecasting via learning convolutionally low-rank models,”

IEEE Transactions on Information Theory, vol. 68, no. 5, pp. 3362–3380, 2022.
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