NAGOYA INSTITUTE OF TECHNOLOGY

DOCTORAL THESIS

A Study on Taint Analysis with Runtime Data for
Tracking Information Flows in Android Apps

(Android 7 7V RIBHR 7 O—Z BT E3RITRT—RZBAWcT 1 > MERICEET 207D

Author: Supervisor:
Hiroki INAYOSHI Prof. Shoichi SAITO

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Engineering

in the

Department of Computer Science

January 16, 2024






iii

NAGOYA INSTITUTE OF TECHNOLOGY

Abstract

Department of Computer Science
Doctor of Engineering

A Study on Taint Analysis with Runtime Data for Tracking Information Flows in
Android Apps

by Hiroki INAYOSHI

Toward a reliable analysis of real-world Android apps, this thesis proposes two novel
taint analysis tools named VTDroid and T-Recs based on the idea of utilizing the app’s run-
time data.

Chapter 1 This chapter introduces Android OS, which occupies 70% of the total mobile
OS market share in 2023. Then, it discusses the increasing need to protect user privacy. It
also explains a need to uncover how well app developers and third-party SDK providers fol-
low the privacy protection rules. Researchers have investigated real-world apps and found
many non-compliant, policy-violating, and protection-circumventing behaviors. Taint anal-
ysis techniques have been actively developed and utilized to detect such suspicious behav-
iors. Finally, this chapter briefly summarizes two taint-analysis-related issues addressed by
this thesis and the approaches.

Chapter 2 Chapter 2 describes the fundamentals for understanding taint analysis for An-
droid apps. First, it explains information flow types, such as direct assignment and control
dependence. Then, it discusses Android- and Java-specific features that are keys in the An-
droid app analysis. Finally, it introduces taint analysis of Android apps.

Chapter 3 Taint analysis can be circumvented by anti-taint-analysis (ATA) techniques. A
series of ATA techniques has been demonstrated on the Android platform. They are only
a few lines of code each and could be introduced into apps with obfuscator tools by app
developers to defend their apps against a taint analysis. However, there are only a few
counter approaches against ATA techniques, which are only partially effective against ATA
techniques.

Chapter 3 proposes VIDroid, which is designed to make it difficult for apps to evade
taint tracking by neutralizing uncomplicated techniques not specific to a particular ATA
technique. This chapter characterizes the ATA techniques by four types of information flow.
It proposes value logging and matching that propagate taint among registers based on their
data values, in addition to the traditional bytecode-level tracking. VTDroid is evaluated
with newly created test suites and real-world apps compared with TaintDroid, CTT, and
FlowDroid. The results demonstrate that VTDroid tracks more information flows resulting
from the ATA techniques and generates fewer FPs than CTT.



iv

Chapter 4 The community needs a reliable taint tracker for analyzing real-world apps.
Researchers recently tested popular static taint analyzers and concluded that the tools are
inaccurate and cannot be used for analyzing real-world apps dependably. On the other
hand, researchers examined a famous dynamic taint tracker, TaintDroid, and pointed out
that TaintDroid is the most difficult to set up compared to the static analysis tools they au-
dited. Also, TaintDroid depends on specific devices and versions of Android OS released
in 2013, narrowing down the scope of analyzable apps. Other dynamic analyzers are not
effortlessly usable.

Chapter 4 proposes T-Recs, a runtime-data-utilized taint tracker that solves the current
situation of no tracker that can analyze apps reliably. It records and reconstructs the app
execution and performs taint analysis on an ordinary computer (e.g., a computer running
Linux), not depending on Android OS. T-Recs” accuracy, analysis time, and success rate are
evaluated in privacy leak detection compared to currently available taint analyzers, which
are FlowDroid (w/ and w/o IC3), Amandroid, DroidSafe, DroidRA, IccTA, and TaintDroid
(w/ and w/o IntelliDroid). The evaluation involves 158 test cases in DroidBench, 254 pop-
ular apps from the Google Play Store in 2016 and 2021, and 39,480 SDK-version-varied
apps from the Google Play Store and Anzhi. The results show that T-Recs outperforms the
compared tools in detection accuracy. T-Recs also achieves reasonable analysis time, app-
runtime overhead, and success rate. VTDroid and T-Recs have been made available to the

community.

Chapter 5 Chapter 5 concludes this thesis by summarizing each chapter. The regulations,
market policies, and Android’s data protection mechanisms should continue to be reformed
in the future, and researchers should keep examining apps and libraries. VIDroid and T-
Recs should be promising tools that enhance researchers’ ability to analyze apps in the fu-
ture.



Acknowledgements

I would first like to thank my supervisor, Professor Shoichi Saito, for all of his support
throughout my undergraduate and graduate school career. I would also like to thank my
supporting supervisor, Assistant Professor Shohei Kakei, for his valuable suggestions and
discussions. Thanks are also due to Professor Koichi Mouri from Ritsumeikan University
and Associate Professor Eiji Takimoto from Nara Women’s University, who gave me much
valuable advice. I would like to thank my parents, Yoshinobu Inayoshi and Kasumi In-
ayoshi, and all my family members for their support throughout the decade. They have
always encouraged me and also provided the financial support I needed.

I gratefully acknowledge my Ph.D. supervisory committee, Professor Hiroshi Matsuo
and Associate Professor Takahiro Uchiya from Nagoya Institute of Technology and Profes-
sor Atsushi Yoshida from Nanzan University, for their insightful feedback. I would further
like to thank Professor Tomoaki Tsumura, Associate Professor Ryota Kawashima, Assistant
Professor Shinsuke Kajioka, and all other faculty members of the Department of Computer
Science at Nagoya Institute of Technology for their very helpful feedback and suggestions.

I am grateful to other students in the Saito and Kakei laboratory, the Matsuo and Kawashima
laboratory, and the Tsumura laboratory for their valuable discussions. I thank Ryota Saku-
rai, Tatsuya Joho, Michinori Ohnishi, Kazuya Aoki, Yuka Hayashi, Kenta Nishimura, and
Moeka Yamamoto for all of their support and encouragement. I would also like to thank
Helton A. Yawovi, who will graduate in the same year, for his kind support. In addition, I
thank the anonymous reviewers for their comments, which contributed to largely improv-
ing my papers. Finally, I would like to thank the Rinnai Scholarship Foundation for their
financial support.






Contents

Abstract
Acknowledgements

1 Introduction

1.1 Uncovering Privacy Protection Failures in Reality . .. ... ... .. ... ..
1.2 Existing Approaches to Mobile App Analysis . . . ... .. ...........
121 ATAProblem ... ... ... .. ... .. ... ...
122 Accuracy and Usability Problems . . . .. ... .............
1.3 Taint Analysis with Runtime Data . . ... ... ... ..............
14 Contributions . . ... ... ...

2 Background

21 InformationFlow . . ... ... .. .. .. .. o
211 Direct Assignment . . . ... ... ... ... . oo

212 MemoryOperation . . . . . ... ... .

213 ControlDependence . . .. .. ... ... ........ .. .. .. ...

214 TmingChannel . . .. ... ... ... ... ... ... ... ... ...,

2.2 Android App Analysis Key Features . . . . ... ... ..............
22.1 Android-Specific Features . . . . ... ... ... ... o o oL
Inter Component Communication . . . ... ... ............

Lifecycle . . . . . . . o

Callbacks . . . ... ... . ...

222 Java-Specific Features . .. ... ... ... ... .. .. .. L.
Reflection . . .. .. ... .. .. .. .

Exception . .. ... ... . ... ...

223 OtherFeatures . ... .. .. ... ... ... .. .. .. .. .. .. ...

2.3 Taint Analysisof Android Apps . . . . . . .. ... L Lo L
2.3.1 Taint Analysis Fundamentals . . . ... ... ...............
Taint Introduction . . . ... ... Lo Lo

Taint Propagation . . . . . ... ... ... ... ... .. ... ...

Taint Checking . . ... ... ... ... .. .. .. .. .

2.3.2 Current Taint Trackers for Android App Analysis . . ... ... ....

3 VTDroid: Value-utilized Tracking of Information Flows

31 Background .. ... ... ...
3.1.1 Taint Tracking for App Analysis . . ... ... ..............
3.1.2 ATA Techniques and Countermeasures . . .. ... ...........
32 FourFlowTypes. . ... ... .. ... ... ... ... . ... ...

321 DATFIOWS . . . o o e e e e e

vii

iii

N U == NN =

O O O ©

10
10
11
11
11
12
13
15
15
16
16
17
17
17
17
17
18



viii

3.3

34

3.5

Non-data-transforming flows . . . . ... ... ... ... ....... 24
Data-transforming flows . . . . .. .. ... ... . o o oL 24
322 MOFows . . . ..o 25
Array-based MOFlows . . ... .. ....... ... ... ...... 25
Class-based MO Flows . . . ... ... ... .. .. .. ... ..... 25
Length-based MO Flows . . . . . ... ... ... ... ... .. ..... 26
323 CDFlows . ... . 26
Visible CDFlows . . . .. ... ... ... ... .. . . 27
Invisible CDFlows . . . .. ... .. .. .. .. .. . 27
Information Preservability . . . . . .. .. ... ... o oL 27
324 TCEFlows. . . .. oo 28
Visible TCFlows . . . ... ... .. .. ... . . 28
Invisible TC Flows . . . . ... ... .. .. .. .. .. .. .. ... ... 28
Approach. . . . . . . . 28
331 DA-FlowTracking . ... ... ....................... 30
Value Logging . . . . . . . .. .. .. .. ... 30
Value Matching . . . . .. ... ... .. .. .. .. 31
332 MO-Flow Tracking . . .. ... ... .. .. ... ... ... .. .. ... 32
Array Tracking . . ... ... ... .. .. L L 32
Class Tracking . . . . . ... ... .. .. . . . 32
Length Tracking . . . . . ... ... ... .. .. .. .. ... .. .. ... 33
333 CD-Flow Tracking . ... .......................... 33
Visible-CD-Flow Tracking . . . . ... ................... 34
Invisible-CD-Flow Tracking . . . . . ... ................. 35
334 TC-FlowTracking . . . ... ... ... ... .. .. ... ... ..... 36
Implementation . . . . ... ... .. L 37
341 Overview . . .. ... 37
3.4.2 Static Bytecode Instrumentation . . ... ... ... .. .. 0. 0L 38
343 TaintAnalysis . . . ... ... .. .. L 39
Data-Flow Tracking . . ... ........................ 39
ATA-Technique Detection . . . ... ... ................. 40
344 Control-Flow Analysis . . . ... .. ... ... .. .. .. ..... 40
Evaluation . . . ... ... . 41
35.1 ExperimentSetup. . ... ....... ... ... ... 0 L. 41
3.5.2 TaintSourcesand Sinks . . .. ... .. ... ... . oL 42
TaintSources . . ... ... ... 42
TaintSinks . . . .. ... L 42
353 Datasets . . ... ... 42
3.5.4 Privacy Leak Detection. . . . .. .. ... ... ... .. .. .. ... 44
TestSuite. . . . . .. ... 44
Popular Apps . . . . . ... 44
3.5.5 Suspicious Validation Detection . . ... ... .............. 45
TestSuite. . . . ... ... . 45
Popular Apps . . . . . . ... 46
3.5.6 Performance Evaluation . . .. ..... ... ... .. ... ..... 47
3.5.7 Ethical Considerations . . . . ... ... ... ... .. ... ... .. 49



ix

3.6 Discussion . . . ... ... e 49
3.6.1 Robustness of Taint Propagation . . . .. ... .. ... ......... 49

3.6.2 Limitations . . ... ... .. ... ... ... . o 51

37 RelatedWork . ... ... .. .. 51
371 DAFowTracking . ... .. .. ... .. .. .. .. .. .. .. ..... 51

372 MOFlow Tracking . . . ... .. ... ... .. .. .. .. .. ... .. 52

373 CDFlow Tracking . ... ... ............. ... ....... 52

374 TCFlowTracking . . . . ... ... ... ... .. .. . . ... 52

38 Summary . . ... 53
T-Recs: Tracking Information Flows by Recording and Reconstruction 55
41 Background . ... ... .. 57
41.1 Information-Leaking App’sCode ... .................. 57
412 Information Flow Tracking . ... ... ... ... ... ........ 58

41.3 StaticTaint Analysis . . ... ...... .. .. .. .. ... .. .. ... 58

414 DynamicTaint Analysis . . . ... .. .. ... .. ... .. .. ..... 58

42 Approach. . ... ... .. 59
421 OVeIVIEW . . . . . e 59
422 Parser . ... .. 60

423 Instrumentator . ... ............ . ... ... 0 L. 60
LoggingPoints . . . ... ..... ... ... ... ... ... .. ... 61
Logging-Method Construction . . ... ... ... ............ 62
Type-Conflict Problem . . . . ... ... ... ... ... .. ... ... 63
DEX-Related Problems . . . . .. ......... ... ... ... ... 64

424 Logger . .. ... ... 64

425 Reconstructor . . . ... ... ... o 64
Register Values . . . ... ... ... ... ... ... ... . . ... 66
ControlFlows . . . . . .. ... . . . 66

CallFlows . . . . .. . 67

Taint Propagation . . . . ... ... ... ... ... ... . . .. 68

426 EXerciser . . .. ... ... ... e 69

43 Implementation . . . ... ... ... .. .. 71
44 Evaluation . .. ... ... .. .. ... 73
441 Datasets . . . ... ... e 73
DroidBench3.0 . . ... ...... .. ... ... ... . 73

Popular apps from the Google Play Storein2016. . . . . ... ... .. 73

Varied dataset from the Google Play Store and Anzhi . . . .. ... .. 73

Popular apps from the Google Play Storein2021. . . . ... ... ... 74

4.4.2 Privacy Leak Detection in DroidBench3.0 . . . . ... ... ... ... .. 74
Compared Toolsand Setup . . . ... ........ ... ... .. ..... 74

Detection Accuracy . . . . . .. .. ... 75
AnalysisTime . . . . . ... .. . L 76

4.4.3 Privacy Leak Detection in Popular Apps2016 . . .. ... ... .. .. 77
Compared Toolsand Setup . . . .. ........ ... ... ...... 77

Detection Accuracy . . . . . .. .. ... 77

Tracking Ability for ICC- and Reflection-Related Flows . . . . . .. .. 79

AnalysisTime . . . . .. ... ... . 81



4.5
4.6
4.7

T-Recs’ and FlowDroid’s Parallel App Analysis Time. . . . . ... ...
T-Recs’ and TaintDroid’s App-Runtime Overheads . . ... ... ...
AnalysisSuccessRate . . .. ... ... .. .. o L
444 Success Rate of Essential Phases in Varied Dataset . . . . . ... .. ..
Compared Toolsand Setup . . . ... ...................
Results . . ... ... .
445 ID Leak Detection in Popular Apps 2021 . . . .. .. ..........
Compared Toolsand Setup . . ... ....... ... ... .......
Results . . ... ... .
Tracking Ability for ICC- and Reflection-Related Flows . . . . .. . ..
4.4.6 Ethical Considerations . . . ... ...... ... .. .. ... .....
Discussion . . . . . ... ...
Related Work . . . .. ... .. .

Summary . . . ...

5 Conclusion

A Hashes of the Analyzed Apps

Al

A2

Apps Used in the VIDroid Evaluation . . . . ... ... .. .. ........
A.1.1 Popular Apps Collected from Google Play Store in 2016 . . .. .. ..
A.1.2 Popular Apps Collected from Google Play Store in 2021 . . . ... ..
A.1.3 Popular Apps Collected from Baidu Store in 2021 . . . ... ... ...
Apps Used in the T-Recs Evaluation . . . ... .. ... ... ... .. .....
A.2.1 Popular Apps Collected from Google Play Store in 2016 . . .. .. ..
A.2.2 Popular Apps Collected from Google Play Store in 2021 . . .. .. ..

B Details of DroidBench 3.0 Analysis Results

Bibliography

Publications

93

95
95
95
95
97
99
99
100

103

107

117



List of Figures

2.1
2.2
2.3
24
25
2.6
2.7
2.8
29
2.10
211

3.1
3.2
3.3
34
3.5
3.6

3.7

3.8

3.9

3.10

Information flow x = y by direct assignment. . . . . ... ... ... .. ... .
Information flow x = y by pointer indirection. . . . ... ... .. ... .. ..
Information flow x = y by control dependency. . . . . ... ... ... . ....
Information flow x = y by timing channel. . . . .. ... ... .. ... ....
Example code snippet of ICC. . . . .. ... ... ... ... o
Example code snippet of lifecycle. . . ... ... ... .. .. .. .. .. ...
Example code snippet of Ul callbacks. . . . ... ... .. ............
XML file content corresponding to the example code snippet of UI callbacks.

Example code snippet of reflection. . . . . .. ... ... ... 0 0L
XML file content corresponding to the example code snippet of reflection. . .
Example code snippet of exception. . . . . .. ... ... L o oL

DA flow x = y w/ the TextView class, which extends the View class. . . . . .
DA flowx =yw/echocommand. . .. ......................
MO flows x = yl w/ arrayand x =y2w/class. . . ... ............
MO flow x = y occurring via the string’s length, and CD flow x = exception,
which a system should avoid tracking. . . . .. ... ... ... ... ... ..
CD flow x = y occurring through unmonitored memory that is used in the
Text Scaling technique. . . . . ... ... ... .. .. .. . o oL
TC flow x = y with the sleep command that takes an argument from the file-
name, whichequalstox’svalue. . .. ... ... ... ... .. .. .. .. ...
Two DA flows: x = y1 and x = y2. The value logging (VL) and matching
(VM) detect flows and propagate the taints between x and y1, x and Input,
and Result and y2. In contrast, Input’s taint is transparently propagated to
Result. . . . . . e
Two invisible CD flows of the first type, x1 = y1 and x1 = y2, which are
direct-control-dependence-based and caused by the if statement. T,, and R,
are transmitters and receptors of the DA flows respectively (n = 1, 2). API
method loadN() returns values transferred by storeN() (N = 1, 2). Tables list the
transitions of the logged values in each iteration of the outer loop. . . . . . . .
Three invisible CD flows, x2 = y3, x2 = y4, and x2 = y5, which are implicit
flows and resulting from the if statements. T, and R, are transmitters and
receptors of the DA flows respectively (n =3, 4, 5). API method loadN() returns
values transferred by storeN() (N = 3, 4, 5). Tables list the transitions of the
logged values in each iteration of the outerloop. . . . . ... ..... .. ...
Overview of InputScope in the experiment. Validations are detected by VT-
Droid or FlowDroid and are passed to the rest of the InputScope’s compo-
nents, and secrets are uncovered. . . . . . .. ... .o

el

10
10
11
11
12
13
14
14
15
15

24
24
25

35

41



xii

3.11

3.12
3.13

3.14

41
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10

4.11

412

413

4.14

Ratio of false alarms to the number of executed sinks in apps that leak no
sensitive information. FlowDroid is excluded because FlowDroid performs
static analysis and cannot count the sink execution number. . ... ... ...
An example of HTTP request containing transformed sensitive information. .
Relation between app-exercise and server-side analysis times per app. For
each app, the upper and lower whiskers and dot denote the maximum, min-
imum, and average of seven analysis times taken to track each of the seven
private information. . . ... ... o L o o

Combination of invisible CD and hidden implicit flows x = y w/ class.

Smali code leaking the sensitive information. . . . ... ... ... ... ....
Overview of theapproach. . . . ... ... ... ... .. ... .. .. .. ...
Example of the instrumentation applied to the code in Figure 4.1. The red-
colored lines are logging points injected into thecode. . . . . . .. .. ... ..
Instrumented code of exception handling. The modified part and injected
codearered-colored. . ... ... ... ... ..
An example of an error message indicating that the verifier detected a type
conflictinregister 0. . . . . ... ... ... ... ... ..
Example of app-execution reconstruction. . . . ... ... .. ... ... ... .
Instrumented code with monitor-enter and monitor-exit instructions. . . . . . .
Simplified example of source code causing an implicit control flow transition.
Source code of computePi() in case PI1 from category Emulator Detection. . . .
Taint source called in onLowMemory() appeared in case RegisterGlobal2 from
category Callbacks. . . . . .. .. ... ...
Analysis time of T-Recs and FlowDroid with different number of apps ana-
lyzed in parallel. The blue bars represent T-Recs’ results, and the green bars
represent FlowDroid’s results. The labels on the bars show the number of
successfully-analyzed apps. . . . . . ... ... . L L
Time for apps to launch and cause leaks on Pixel 3 with and without T-Recs
and Nexus 4 with and without TaintDroid, which are represented by the dark
blue bar, the light blue bar, the dark brown bar, and the light brown bar from
left to right, respectively. . . . . ... ... ... o o o
Success rates for the varied dataset. T-Recs is left blue bars, FlowDroid is
center green bars, and TaintDroid is right brownbars. . . . .. ... ... ...
Two Nexus 4 devices used to run TaintDroid and IntelliDroid. Their batteries

have been swollen in approximately one yearofuse. . . . . ... ... .....

57

71

82

83



List of Tables

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

4.1
4.2
4.3
44

4.5

Characterization of the techniques in ScrubDroid based on newly defined
types. They are also classified according to whether it is visible (o) or invis-
ible (e). The marks + and dt denote flows created with altering the original
techniques and flows having data-transformation capability respectively.

Taint-propagation rules for MO flows caused by the array-op and the invoke-
op (API). Function t(v) returns taint of register variable v or assigns taint to
it. Vg, and Vp, are a set of reference-data-type and primitive-data-type argu-
ments respectively, and t(V) returns the union of all registers’ taint in V or
assigns taint to all of them. Rules marked * are conditionally applied depend-
ingontheoperand’svalue. . ... ........ .. .. .. .. .. ... ...,
VTDroid injects code into positions before and/or after instructions and la-
bels. Argument, index, source, and destination indicate target operand regis-
ters for recording values, and * indicates points at which the code is injected
to record the code execution without recording values. . . ... ... ... ..
Number of techniques detected by the four privacy-leak detectors in the test
Suite. . .. ..
Number of apps alerted in the popular apps. The column “Any” gives the
number of apps leaking at least one source. Note that “Any” for FlowDroid
excludes contacts and photos. . . . . .. ... ... L L L L Lo
Number of techniques detected by the two suspicious-validation detectors in
thetestsuite. . . . . . . . ... L
Results of suspicious validation detection by InputScopes with VTDroid and
FlowDroid. The values in parentheses show the number of apps. Validations
and secrets detected by VTDroid (shown in the columns Total) contain all
the validations and secrets detected by FlowDroid within the same coverage.
Validations and secrets detected only by VIDroid are shown in the columns
Only. C. stands for coverage, and the numbers within the VTDroid’s and full
coverages are shown for FlowDroid. . . .. ....... ... ... ... ...,
Number of taint propagation by the taint propagation rules and legacy rules
in suspicious validation detection, and coverage of the apps’ code. The values
in parentheses indicate the ratiotothetotal. . . . . ... ... ..........

App exercise operations necessary to trigger leaks in the DroidBench apps.

Tools compared to T-Recs in the evaluation with DroidBench 3.0. . ... ...
Taint sinks and corresponding modified files” paths. . . . . ... ... ... ..
Results of DroidBench. The second column shows the expected #leaks. Gray
cells highlight accurateresults. . . . .. ... ... ... .. ...........
Analysis time for the DroidBenchapps. . . . ... ................

xiii

23

46



xiv

4.6 Leak detection result. E indicates expected #leaks. X indicates that the tool

failed, and Xjc3 indicates that IC3 failed. . . . . . ... ... ... .. ...... 78
4.7 ICC- and reflection-related flows selected based on the DroidBench apps with

that FlowDroid generates FNs. . . . . . ... ... ... .......... 80
4.8 #apps and #codes in parentheses in which the five code types are found and

whether T-Recs and FlowDroid detect the leaks caused by the five code types.

The row “any” gives #apps and #codes in which at least one code type is

found. . ... 80
4.9 Analysis time for the privacy leak detection. . . . ... ... ... ... .... 81
4.10 Time (seconds) for apps to be installed and uninstalled on the devices with

and without thetools. . .. ... .. ... .. .. .. .. .. .. .. L. 84
4.11 #apps successfully analyzed, #apps failed, and the analysis success rate for

each tool in the privacy leak detection. . . . . .. ... .. ... ... ... ... 84
4.12 #apps and #leaks in parentheses detected in the apps from 2021. “Overlap”

indicates #apps and #leaks detected by both T-Recs and the other tool. . ... 86
4.13 Analysis time for the ID leak detection. . . . ... ... ... .......... 87
4.14 #apps and #codes in parentheses in which the five code types are found and

whether FlowDroid detects the leaks caused by the five code types. The row

“any” gives #apps and #codes in which at least one code typeis found. ... 87
A.1 Hashes of 30 apps collected from Google Play Store in 2016. . . . . . ... .. 95
A.2 Hashes of 277 apps and games collected from Google Play Store in 2021. . . . 95
A.3 Hashes of 226 apps collected from Baidu Store in 2021. . . . .. ... ... .. 97
A4 Hashes of 96 apps collected from Google Play Store in 2016. . . . . ... ... 99
A.5 Hashes of 158 apps collected from Google Play Store in 2021. . . . . . ... .. 100
B.1 Analysis result for each case in the category Aliasing. . . .. ... ... .. .. 103
B.2 Analysis result for each case in the category Android Specific. . . ... .. .. 103
B.3 Analysis result for each case in the category Arrays and Lists. . . .. ... .. 103
B.4 Analysis result for each case in the category Callbacks. . . ... .. ... ... 104
B.5 Analysis result for each case in the category Emulator Detection.. . . . . . . . 104
B.6 Analysis result for each case in the category Field and Object Sensitivity. . . . 104
B.7 Analysis result for each case in the category General Java.. . . . . .. ... .. 104
B.8 Analysis result for each case in the category Inter Component Communication. 104
B.9 Analysis result for each case in the category Lifecycle. . . . .. ... ... ... 105
B.10 Analysis result for each case in the category Reflection. . . .. ... ... ... 105
B.11 Analysis result for each case in the category Reflection ICC. . ... ... ... 105
B.12 Analysis result for each case in the category Threading. . . . . . ... ... .. 105

B.13 Analysis result for each case in the category Unreachable Code. . . . ... .. 105



List of Algorithms

1 Taint propagation acrossan APIcall . ... ... ... ..............
2  Appexerciseprocedure . . ... ... ... oo

XV






Chapter 1

Introduction

Android OS started with version 1.0, released in 2008, and currently has 70% of the mobile
OS market share in 2023 [1]. Android OS became the most popular mobile OS in the world.
Users install Android applications (apps for short) to their Android devices. Apps are dis-
tributed through the official market, called Google Play Store [2], and other non-official mar-
kets, such as Aptoide [3] and F-Droid [4]. The Google Play Store currently provides 2.6
million apps [5]. There are 34 categories except for games, for example, communication,
education, entertainment, finance, medical, health & fitness, and shopping. Such a wide
variety of apps are downloaded and used in users’ day-to-day activities on their devices,
which are always connected to the internet.

With such smartphone development, the need to protect user privacy has increased. Reg-
ulations related to data protection have been put into operation in the past two decades. For
example, the Children’s Online Privacy Protection Act (COPPA) came into force in the US in
2000; the Personal Data Protection Act (PDPA) in Singapore in 2013; the California Consumer
Privacy Act (CCPA) in CA, US in 2018; the General Data Protection Regulation (GDPR) in
EU in 2018; the General Personal Data Protection Law (LGPD) in Brazil in 2020; and the
Personal Data Protection Act (PDPA) in Thailand in 2022. Recently, mobile app developers
have been fined. For example, the French regulator CNIL imposed a fine of 3 million euros
on Voodoo, a smartphone game development company, in December 2022 [6]. The company
used identifiers for advertising without user consent, which violated the French Data Pro-
tection Act (FDPA). According to the U.S. FTC announcement in May 2023 [7], an ovulation
tracking app, Premom agreed to pay a fine of 100,000 USD for sharing users” health data with
a third party and failing to notify the users of the incident. The Health Breach Notification
Rule requires such notification to users.

Google has also made changes to restricting data access in the Android OS and policies in
the Google Play Store. For example, accessing hardware information, which is unresettable
and can be used for long-term tracking, has been restricted since Android 8 (2017) [8]. Specif-
ically, they are settings and system properties, including boot date (ro.runtime.firstboot),
camera’s serial number (htc.camera.sensor.front_SN), Bluetooth MAC address property (per-
sist.service.bdroid.bdaddr), and Bluetooth MAC address (Settings.Secure.bluetooth_address).
Further, since Android 10, released in 2019 [9], apps installed from the Google Play Store
are prohibited from accessing IMEI, MEID, ICCID, IMSI, device serial number, and MAC
address. Also, privacy policies and privacy labels have become mandatory for all app de-
velopers since July 2022. The privacy label is also called the data safety section in the Google
Play Store. The data safety section provides users with information about what data the app
collects and what data the app shares with third parties. App developers are required to



2 Chapter 1. Introduction

submit the information to the Google Play Store. Google states that the data safety section is
the sole responsibility of the app developer.

1.1 Uncovering Privacy Protection Failures in Reality

While these regulations, market policies, and precautionary measures have been introduced,
it is also essential to uncover how well app developers and third-party SDK providers
follow the rules to protect user privacy. Security, privacy, and software engineering re-
searchers have investigated real-world apps and found a large number of issues related
to non-compliance, policy-violating, and protection-mechanism-circumventing behaviors in
them.

Reyes et al. [10] investigated apps’ compliance with COPPA and found violations in 19%
of the apps they analyzed. Also, privacy policy violations have been uncovered in apps [11,
12, 13] and third-party libraries [14]. Andow et al. [15] developed PoliCheck, performing
entity-sensitive analysis to detect inconsistencies between actual information leaks and pri-
vacy policies. Zhang et al. [16] investigated misconfigurations in analytics services and com-
pared the actual behaviors of apps with the terms of service of analytics services. After the
data safety section was introduced to the Google Play Store in 2022, Khandelwal et al. [17]
uncovered that app developers are failing to disclose consistent information in the section.

Also, leaks of privacy-sensitive information have been detected [18]. DialDroid [19] is
developed based on FlowDroid and detects data leaks caused by inter-app communica-
tions. Grace et al. [20] also analyzed privacy-sensitive information leaks in advertisements
in apps. Agrigento [21] performed differential analysis and uncovered that popular apps
and libraries apply complex combinations of encoding and encryption mechanisms to data
being leaked.

Reardon et al. [22] detected apps that bypass the permission mechanism and leak sen-
sitive information. Also, Meng et al. [23] found flaws that enable apps to obtain user-
unresettable identifiers, which should not be accessed. Zhao et al. [24] uncovered backdoor
and blocklist secrets in a large number of apps published on the Google Play Store and Baidu
Market and pre-installed apps. Also, TriggerScope [25] uncovered suspicious triggers, such
as backdoors in apps published on the Google Play Store.

Apposcopy [26] detects Android malware, and Gallingani et al. [27] detects vulnerabil-
ities of inter-component communication in apps. WeChecker [28] is designed to uncover
privilege escalation vulnerabilities.

It is expected that the regulations, market policies, and protection mechanisms will be
changed in the future, and researchers should keep investigating real-world apps and li-
braries. App analysis techniques are fundamental to such investigation and must be up-

graded continuously.

1.2 Existing Approaches to Mobile App Analysis

App analysis techniques have been developed and utilized by security, privacy, and software
engineering researchers to uncover issues related to non-compliance, policy-violating, or
protection-circumventing behaviors of apps. In terms of privacy, researchers often conduct
the detection of leaks of privacy-sensitive information. Two main analysis technique options

are taint analysis and network traffic analysis. Although network traffic analysis is widely



1.2. Existing Approaches to Mobile App Analysis 3

used [12, 21, 18, 10, 22, 13, 15], this paper focuses on taint analysis. Taint analysis has the
advantage of robustness against data transformation. In addition, taint analysis can be used
for information leak detection and other tasks requiring information flow detection.

Static taint analysis requires no Android device and processes apps without running
them. Since static taint analysis is scalable, it is popular for analyzing Android apps. Static
taint trackers are widely utilized to detect privacy policy violations [11, 16, 14], privacy sen-
sitive information leaks [19, 20], Android malware [26], vulnerabilities [27, 28], and other
suspicious behaviors (e.g., backdoors) [24, 25].

Various tools of static taint analysis have been developed for app analysis. FlowDroid [29]
is one of the most popular static taint analyzers and was developed in 2014. Also, Droid-
Safe [30] and Amandroid [31] are popular and general data flow analysis frameworks. Ic-
cTA [32], IC3 [33], and RAICC [34] are tools to precisely handle inter-component communi-
cation (ICC), one of the Android-specific features. Klieber et al. [35] and Bosu et al. [19] de-
veloped analysis techniques for tracking information flows through inter-app ICC. EdgeM-
iner [36] is designed to handle callbacks for tracking implicit control flows caused by the
Android framework. Summarizing the Android framework to determine source and sink
APIs is also challenging, and some approaches [37, 38] have been proposed. Another chal-
lenge is to handle Java-specific features, such as reflective calls (i.e., reflection), tackled by
Barros et al. [39] and DroidRA [40, 41]. Furthermore, the accuracy of static taint analysis
has been further improved with flow classification [42, 43, 44, 45, 46], dynamic heap snap-
shots [47], or path constraint computation [48]. DroidInfer [49] achieves higher scalability
than FlowDroid by reducing resource consumption. More recently, static analysis techniques
targeting native code have been developed, such as JN-SAF [50], CTAN [51], JuCify [52], and
uDep [53].

On the other hand, many dynamic taint trackers have been developed to detect privacy-
sensitive information leaks in apps or analyze mobile malware. TaintDroid [54] is a well-
established tool for dynamic taint analysis for Android apps. Since dynamic taint trackers
only analyze executed paths, it is highly accurate. In its evaluation, TaintDroid generates
no FPs in privacy leak detection with 30 popular real-world apps. Tripp et al. [55] devel-
oped BayesDroid based on TaintDroid to improve its accuracy further. Wei et al. [56] pro-
posed LazyTainter, which enhances TaintDroid’s memory efficiency. AppsPlayground [57]
is a performance-oriented dynamic analysis system utilizing TaintDroid for large-scale app
analysis. VetDroid [58] focuses on app behaviors related to the usage of sensitive system
resources and utilizes a dynamic taint analysis to track such resources.

More recently, researchers have developed hybrid analysis techniques utilizing static
taint analysis to assist a dynamic taint analysis. IntelliDroid [59] performs targeted exe-
cution, enabling a dynamic taint tracker to run a specific code path. Similarly, Harvester [60]
can improve a dynamic taint tracker by triggering malicious code.

Since Android version 5.0, released in 2014, a new Android runtime environment called
Android Runtime (ART) [61] has been introduced to replace the previously used runtime
called Dalvik Virtual Machine (VM). While the Dalvik VM employs an interpreter that per-
forms just-in-time compilation, the ART employs ahead-of-time (AOT) compilation, improv-
ing performance and battery life. Since TaintDroid relies on the Dalvik VM, it cannot be used
on Android version 5.0 and later and cannot analyze apps with minimum SDK versions
equal to or higher than Android version 5.0. TaintART [62], ARTist [63], and TaintMan [64]
were proposed as dynamic taint trackers compatible with the ART. There is also a dynamic



4 Chapter 1. Introduction

taint tracker [65] that instruments the target app’s code to inject a taint logic. The dynamic
taint analysis tools mentioned so far are bytecode-level taint trackers, only analyzing apps’
bytecode (i.e., DEX bytecode [66]). The DEX bytecode format maintains variable semantics,
helping a taint tracker to distinguish between data references and scalar values. When an
instruction operates on data, the data is always read into a virtual register.

Unlike the bytecode-level taint trackers, there are also native-level taint trackers. Droid-
Scope [67], NDroid [68, 69], and Malton [70] analyze apps’ native code to track information

flows more comprehensively.

1.2.1 ATA Problem

Cavallaro et al. [71] discuss anti-taint-analysis (ATA) techniques allowing adversaries to cir-
cumvent binary-level taint trackers. Pointer indirection, control dependence, and timing
channels can be used to cause information flows that are difficult to track. More recently,
Sarwar et al. [72] demonstrate a series of ATA techniques on the Android platform. An app
can conduct one of the techniques to transfer information without triggering taint propa-
gation of the bytecode-level taint trackers on the Android platform. They present control
dependence, which exploits control flows, and the subversion of benign code, which abuses
commands of the Linux system. They also define side channels as techniques exploiting any
medium that can represent information. They implemented 16 techniques into a proof of
concept called ScrubDroid [73]. The techniques are only a few lines of code each and are
shown to be sufficient to bypass TaintDroid, one of the most popular taint analysis tools,
completely. Similar techniques were discovered in some real-world apps [74]. In addition,
Tigress, a program obfuscation tool, presents ATA as one of its transformation methods [75].
Tigress” ATA implementation is based on works by Sarwar et al. [72] and Cavallaro et al. [71].
Such a tool raises a concern that the well-known ATA techniques from ScrubDroid can be
injected into any benign apps on app stores by their developers to defend them against a
taint analysis. Consequently, Android security and privacy studies that utilize current taint
trackers must produce unreliable results.

Most of the work on taint analysis for Android apps states that ATA techniques are out-
of-scope. Although there are a few approaches to tracking information flows against ATA
techniques, such as [76], they are only partially effective against ATA techniques and are still
vulnerable to the well-known techniques presented by ScrubDroid.

Another problem is that the classification in ScrubDroid does not effectively reveal fea-
tures of flows caused by the techniques, making it challenging to discuss which techniques
can be handled by what type of taint trackers, such as data-flow trackers and control-flow
trackers.

1.2.2 Accuracy and Usability Problems

Static taint analysis has the problem of detecting incorrect execution paths, increasing the
cost of verifying experiment results. Recent reviews of the literature on static taint analysis
showed the limitations of the analysis [77, 78]. Zhang et al. evaluated currently-available
static taint analysis tools: FlowDroid, Amandroid [31], and DroidSafe [30] with a test suite
called DroidBench [79] and real-world apps. The results show that the tools are inaccurate
and cannot be used for analyzing real-world apps dependably. The increase in false posi-
tives (FPs) complicates analysis-result verification, causing an increase in analysis cost. For



1.3. Taint Analysis with Runtime Data 5

example, Zhao et al. manually analyzed 70 out of over 16,000 detected apps to estimate
the accuracy, and the result is 87.14% (i.e., nine apps are FPs) [24]. Three of the FPs were
caused by conflicting constraints along the execution path. Such a manual analysis, espe-
cially finding path constraints, is complex and requires significant effort. Also, increasing
the complexity of the analysis algorithms increases the analysis time, preventing the analy-
sis from completing in a reasonable time.

On the other hand, a dynamic taint analysis uses the target app’s runtime semantics
and only analyzes the executed paths. There is no chance of detecting incorrect execution
paths. TaintDroid is one of the most popular dynamic taint analysis tools and is publicly
available. However, Reaves et al. [80] discuss that TaintDroid is the most difficult to set up
in comparison with static analysis tools they audited because TaintDroid requires the user
to build the Android from the source code. Also, TaintDroid depends on specific devices
and versions of Android OS, and a supported device is not always available. It also narrows
down the scope of analyzable apps. There are more tools [62, 63, 65, 64], which perform the
bytecode-level dynamic taint analysis for Android apps other than TaintDroid. Although, in
comparison with static taint analyzers, dynamic taint trackers have been barely reviewed in
the community except for TaintDroid. They are not effortlessly usable.

Another drawback in current dynamic taint trackers is that the app exercise needs to be
executed every time the taint analysis runs because the app exercise and the taint analysis
are performed simultaneously in TaintDroid. Therefore, when the analyst changes the pa-
rameters of the taint analysis (e.g., the data to be tracked) and re-analyzes the same app, the
app exercise also needs to be repeated, which incurs extra costs. It also distresses researchers
who add and evaluate new features to the taint analysis.

1.3 Taint Analysis with Runtime Data

This paper discusses the utilization of the app’s runtime data to improve taint analysis for
Android apps. Specifically, this paper proposes two approaches named VTDroid [81] (Chap-
ter 3) and T-Recs [82] (Chapter 4). VTDroid is designed to track information flows against
ATA techniques. T-Recs is developed to detect information flows accurately while reducing
the dependency on Android OS.

VTDroid focuses on the well-known ATA techniques shown in ScrubDroid, which might
be introduced into apps with obfuscator tools by app developers to protect their apps against
the analysis. So far, there is no tracker that can handle the combinations of the ATA tech-
niques. VTDroid’s goal is to make it difficult for apps to evade the taint tracking by neu-
tralizing such recognized and uncomplicated techniques (i.e., ScrubDroid) not specific to a
particular technique. VTDroid is based on a characterization of information flows. Infor-
mation can flow on the runtime layer and across API calls by data flows, resulting from as-
signment instructions, and other channels that are control dependence, pointer indirection,
and timing channels [71]. This paper takes them into consideration and characterizes the
ATA techniques by four types of information flow. This paper presents a new taint-tracking
technique, implemented into VIDroid, that detects the four types of information flow even
if they occur through unmonitored areas via API calls. In order to reduce the dependency on
the API method list, which is a disadvantage of current tracker [76], the approach performs

value logging and matching that propagate taint among registers based on their data values,



6 Chapter 1. Introduction

in addition to the traditional bytecode-level tracking. VTDroid also employs information-
preservability inspection to reduce the amount of FPs.

T-Recs is a new runtime-data-utilized taint tracker that solves the current situation of no
taint tracker that can reliably analyze real-world apps, especially recently released apps. T-
Recs records and reconstructs the app execution, and taint analysis is performed not on an
Android device but on any computer, including a desktop or laptop. T-Recs” implementa-
tion does not depend on Android OS and can avoid the TaintDroid’s usability issue. Further,
with T-Recs, the analyst can start analyzing apps immediately after plugging an unmodified
device into their computer. T-Recs consists of five components: parser, instrumentator, log-
ger, reconstructor, and exerciser. First, the parser and instrumentator run on a computer and
modify the target app to inject the logger. Then, the modified app is installed and launched
on an Android device, and the logger also starts running and recording the app’s runtime
data at almost instruction by instruction. Finally, on a computer, the reconstructor repro-
duces the app execution based on the parsed and logged data, and taint analysis is executed
along with it. Since the reconstructor is independent of the actual app execution, the taint
analysis can be re-executed without exercising the app. The last component, the exerciser,
addresses how to trigger the target behavior in apps, a general challenge in dynamic analy-
ses. Since a dynamic taint analysis only analyzes the executed part of the app’s code, trigger-
ing the target behavior in the app is necessary. However, app exercise depends on the apps
and the data to be tracked, and it is not trivial. For example, tracking user inputs requires
input-related exercises. In this paper, the exerciser is explicitly designed for DroidBench,
a popular test suite for evaluating taint analysis tools. The exerciser automatically triggers
ICC, callbacks, and lifecycle events in DroidBench apps so that T-Recs can be evaluated com-
pared to static taint trackers, which have no coverage issues.

1.4 Contributions

In Chapter 3, towards tracking information flows caused by ATA techniques, first, all the
16 techniques in ScrubDroid are characterized by newly defined types of information flow
(Section 3.2). New test suites are created and contain 31 ATA techniques against privacy
leak detection and 28 ATA techniques against the validation detection. Based on the charac-
teristics of the information flows, a unified method called value-utilized taint propagation
is devised to avoid FNs against the multiple ATA techniques that are not specific to a par-
ticular topic (Section 3.3). The method is implemented into a bytecode-level tracker called
VTDroid for app analysis (Section 3.4). VIDroid tracks data flows and the other types of
flow altogether. The effectiveness of VIDroid is evaluated with a test suite and real-world
apps collected from the Google Play Store and Baidu app store (Section 3.5). VTDroid is
compared to TaintDroid, CTT, and FlowDroid for privacy leak detection and is also eval-
uated by being used as the detector of user input validation for InputScope. The results
demonstrate that VIDroid produces smaller FNs than current trackers, TaintDroid, CTT,
and FlowDroid, while generating fewer FPs in privacy leak detection than the current so-
lution, CTT. In validation detection, VTDroid tracks more information flows resulting from
the ATA techniques while generating slightly more false positives than FlowDroid, a default
tracker in InputScope. Also, the VIDroid’s verification cost of FPs is negligible.
Chapter 4 explains the app-runtime recording and reconstruction mechanism (Section 4.2),

implemented into a new taint analysis system called T-Recs with nearly 17,000 lines of



1.4. Contributions 7

Python and Smali code (Section 4.3). T-Recs’ accuracy, analysis time, and success rate were
evaluated in privacy leak detection compared to currently available taint analyzers, which
are FlowDroid (w/ and w/o IC3), Amandroid, DroidSafe, DroidRA [40, 41], IccTA, and
TaintDroid (w/ and w/o IntelliDroid [59]) (Section 4.4). The evaluation involves Droid-
Bench, 254 popular apps from the Google Play Store in 2016 and 2021, and SDK-version-
varied apps from the Google Play Store and Anzhi [83]. The results show that T-Recs out-
performs the compared tools in detection accuracy. T-Recs also achieves reasonable analysis
time and success rate. T-Recs” app-runtime overhead (i.e., the overhead for apps to be in-
stalled, be launched, cause leaks, and be uninstalled) and parallel execution performance
were also evaluated in comparison with the other trackers. The results are acceptable, and
running T-Recs in parallel can easily shorten the analysis time. An additional experiment
shows that the importance of tracking ICC- and reflection-related flows is highlighted by
T-Recs, detecting leaks related to ICC and reflection, missed by FlowDroid in popular apps
collected from the Google Play Store in 2016 and 2021. A debugging feature was added to
the reconstructor to identify and count the leaks. Then, only the reconstructor was executed.
This experiment indicates that T-Recs’ cost of re-executing taint analysis is small, taking 34
minutes (17% of the whole) for the 96 apps collected in 2016 and one hour and 40 minutes
(11% of the total) for the 158 apps collected in 2021. T-Recs has been made available to the
community.






Chapter 2

Background

This chapter first explains how information flows occur in general program code. Then, it
describes Android-specific and Java-specific features that are keys to Android app analysis.
Lastly, it discusses the taint analysis fundamentals and current taint trackers for Android
app analysis.

2.1 Information Flow

This section explains a variety of information flows. Information flow can be considered a
dependency between variables where one holds a value derived from the other’s value [84].
When the value of y changes depending on the value of x, there is information flow from
x to y. This section describes four types of information flows: direct assignment, memory
operation, control dependence, and timing channel, which are discussed in the literature on
ATA techniques [71].

2.1.1 Direct Assignment

This type of information flow is caused by assignment instructions, such as =. Figure 2.1
shows an example of direct assignment information flow. The x’s value is moved to y by =
instruction, and y will have the same value as x’s. There is a direct dependency between the
two variables, and there is information flow from x to y. This type of information flow is
commonly called data flow.

Since it is obvious that the right side of = is the source of data flow and the left side is the
destination, tracking this information flow is straightforward. An information flow tracker
can track this flow as long as the tracker can monitor the instruction.

2.1.2 Memory Operation

This type of information flow is caused by correlating the information with memory ad-
dresses. Figure 2.2 shows an example of such information flow caused by an array. Lines
1 and 2 are code for creating a table where each element is the same value as its index. In
this code, table has 256 values, which can be extended easily. Information flow from x to y
is caused at Line 3. The value of x is used as an index to obtain a value in table, and the
value is assigned to y. As a result, x and y hold the same value, and the information can be

preserved. Note that x’s value is not directly assigned to y.



10 Chapter 2. Background

1 vy = x;
FIGURE 2.1: Information flow x = y by direct assignment.
1 for (int i = 0; i < 256; i++) {
2 table[i] = 1i; %
3 y = tablelx];

FIGURE 2.2: Information flow x = y by pointer indirection.

An information flow tracker can detect this information flow if the instruction can be
monitored. Specifically, the index and destination operands should be clear when the in-

struction is processed.

2.1.3 Control Dependence

A control flow causes this type of information flow. A control flow is a branching behavior
of a program. It represents the order of execution of instructions that may occur during
program execution. This type of information flow is commonly called implicit flow.

Figure 2.3 shows a simple code snippet that causes this type of information flow from x
to y. There is an if-else statement, and the condition holds if x’s value is 0. Assume that x’s
value is always either 0 or 1, y is assigned 0 if x’s value is 0, and y is assigned 1 if x’s value
is 1. Although there are no assignment statements between the two variables, y will be the
same value as x’s, and the information is preserved. Even if x has a broader range of values,
the code snippet can be easily extended and can transfer arbitrary values.

An information flow tracker should detect control-dependent statements to track this in-
formation flow. One approach is program counter tainting [85, 42]. If an operand of the
if statement is tainted, the program counter is also tainted. Then, if the program counter is
tainted, the destination operand of each instruction is also tainted. Further, You et al. [64] de-
veloped a technique that checks the values of variables at re-convergence points to identify
if the information is preserved, and the accuracy would be improved. This technique is ef-
fective as long as the destination of information flow can be monitored at the re-convergence
points.

214 Timing Channel

This type of information flow is caused by encoding data into timing. A function sleep() or
control instruction is used to delay the program execution, and the delay is measured to
extract the information. Figure 2.4 shows a simple example of a timing channel using sleep().
The delay changes depend on the x’s value in Line 2, and the delay is measured and saved
into y in Lines 1 and 3. Since the delay can preserve the information in x, there is information
flow from x to y. The delay can be measured outside the process (i.e., the receiving side) [71]
so that time() function is not necessary.

An information flow tracker can detect this information flow if the tracker knows what
instructions can delay the program execution. Also, the tracker should be able to moni-
tor the execution of such instructions. Researchers developed techniques that detect timing
channels by analyzing API usage frequencies [86] or the time differences between send op-

erations [87].



2.2. Android App Analysis Key Features 11

1 if (x == 0) {
2 y = 0;
3 } else {
4 y = 1; }
FIGURE 2.3: Information flow x = y by control dependency.
1 start = time();
2 sleep(x);
3 y = time() - start;

FIGURE 2.4: Information flow x = y by timing channel.

2.2 Android App Analysis Key Features

This section explains Android-specific and Java-specific features that are keys to information
flow analysis of Android apps.

2.21 Android-Specific Features

Android-specific features are challenges in Android app analysis. An app has no main()
function that is usually an entry point of a program and instead has callback functions that
are triggered by system and user events. Therefore, the Android platform itself or its model
is necessary to analyze apps; otherwise, the execution order of functions in an app is un-
known. In addition, callback functions can be dynamically registered, and static analysis
would be ineffective in such cases. The rest of this section explains major Android-specific

features.

Inter Component Communication

Inter-component communication is the communication between components of apps. An
app usually has some components called activities, and each activity provides a user inter-
face of specific tasks to the user. An activity can launch another activity and receive the
result from it. In the communication, a message called Intent indicates the target activity
name and data passed to the activity. If the target activity name is specified in an intent, it
is called explicit Intent, and if the name is not specified, it is called implicit Intent. Intent
messages are handled by intent filters based on component name, category, MIME type, and
the set of action strings. They are strings and are necessary for analysis tools to identify who
receives what intent message. However, such strings can be loaded from the network or
files and can also be encrypted or obfuscated, and correctly matching the intent messages to
intent filters is challenging [80].

Figure 2.5 shows an example of ICC, which is ActivityCommunication6 from Droid-
Bench. There are two activities: OutFlowActivity and InFlowActivity. OutFlowActivity.onCreate()
loads privacy-sensitive data and sends an intent message to launch InFlowActivity. InFlowAc-
tivity.onCreate() receives the message and writes the data to the log. An information flow
tracker should detect this control flow. In addition, the tracker must detect the data flow
between the activities via the intent message. The data is stored in the intent message
by putExtra() in OutFlowActivity.onCreate() and obtained by getStringExtra() in InFlowActiv-
ity.onCreate(). A field called extras is used to keep the data. The field is a key-value storage



—_
N

Chapter 2. Background

1 public class OutFlowActivity extends Activity {

2 @0verride

3 protected void onCreate (Bundle savedInstanceState) {
4 super .onCreate (savedInstanceState);

5 setContentView (R.layout.activity_main);

6

7 TelephonyManager telephonyManager =

8 (TelephonyManager) getSystemService(

9 Context.TELEPHONY_SERVICE) ;

10 String imei = telephonyManager.getDeviceId(); //source
11

12 Intent i = new Intent(this, InFlowActivity.class);
13 i.putExtra("DroidBench", imei);

14

15 startActivity (i);

16 }

17 %

18

19 public class InFlowActivity extends Activity {

20 @0verride

21 protected void onCreate(Bundle savedInstanceState) {
22 super .onCreate (savedInstanceState);

23 setContentView (R.layout.activity_main);

24

25 Intent i = getlIntent();

26 String imei = i.getStringExtra("DroidBench");

27 Log.i("DroidBench", imei); // sink

28 }

29 }

FIGURE 2.5: Example code snippet of ICC.

structure, and the key is “DroidBench” in this example. The tracker should collect the key to
differentiate values when multiple values are stored in the extras.

Lifecycle

Lifecycle indicates a series of states of an app. For example, when the user launches an app,
the app’s state is “created”, and when the user taps the home button and sends the app to
the background, the app’s state is “paused”. The app can perform appropriate procedures
depending on its state to avoid unnecessary resource usage. In addition, when the user
returns to the app, the app can let the user start using it continuously from the previous
point the user left the app.

More specifically, an app consists of four components: activities, services, broadcast re-
ceivers, and content providers. Activities provide user interfaces and have the most com-
plex lifecycle. The Activity class provides a core set of six callbacks: onCreate(), onStart(),
onResume(), onPause(), onStop(), and onDestroy(). The Android system invokes each of these
callbacks as the activity enters a new state. An information flow tracker should consider
the lifecycle callbacks to track control flows. Each component is statically defined so that
the tracker can detect the flow; however, there is an exception that the broadcast receiver

component is dynamically created, and program analysis tools often overlook it [80].



2.2. Android App Analysis Key Features 13
1 public class MainActivity extends Activity {

2 public static final String KEY = "DroidBench";

3

4 @0verride

5 public void onCreate(Bundle savedInstanceState)

6 {

7 super .onCreate (savedInstanceState);

8 setContentView(R.layout.activity_main);

9

10 if (savedInstanceState != null) {

11 String value = savedInstanceState.getString(KEY);
12 Log.i("DroidBench", value); // sink

13 }

14 }

15

16 @0verride

17 public void onSavelnstanceState (Bundle savedInstanceState)
18 {

19 TelephonyManager mgr =

20 (TelephonyManager) this.getSystemService(

21 TELEPHONY_SERVICE) ;

22 String imei = mgr.getDeviceId(); // source

23

24 savedInstanceState.putString (KEY, imei);

25

26 super.onSavelInstanceState (savedInstanceState);

27 }

28 }

FIGURE 2.6: Example code snippet of lifecycle.

Figure 2.6 shows an example of information flow caused by lifecycle callbacks. The code
is from ActivitySavedl in DroidBench. There is an activity called MainActivity. When the
user taps the app’s icon on the home screen and the app is launched, the activity is created,
and MainActivity.onCreate() is invoked. Then, the user presses the home button, MainActiv-
ity.onSavelnstanceState() is invoked, and privacy-sensitive data is obtained and stored into
savedInstanceState. Subsequently, if the user does not return to the app for a while, the app
is killed, and the activity is destroyed. When the user relaunches the app, since the activity
has been destroyed, MainActivity.onCreate() is invoked again. In the method, the privacy-
sensitive data is retrieved from savedInstanceState and is written to the log. An information
flow tracker must understand the sequence of invocations of MainActivity.onCreate() and
MainActivity.onSavelnstanceState() as well as the data flow via savedInstanceState to detect the
information flow.

Callbacks

In addition to lifecycle callbacks, there are more, such as system and UI callbacks. System
callbacks are invoked at system events. For example, onLocationChanged() method is called
by the Location Manager Service when the device geolocation is changed. Ul callbacks are
triggered depending on user-interface events, such as button taps by the user. An informa-
tion flow tracker should consider these callbacks as the app’s entry points. Additionally, an

app can contain a custom widget, which makes the analysis more complex [80].



14 Chapter 2. Background

1 public class Buttonl extends Activity {
2 private static String imei = null;
3
4 @0verride
5 protected void onCreate(Bundle savedInstanceState) {
6 super .onCreate (savedInstanceState);
7 setContentView (R.layout.activity_buttonl);
8
9 TelephonyManager telephonyManager =
10 (TelephonyManager) getSystemService(
11 Context .TELEPHONY_SERVICE);
12 imei = telephonyManager.getDeviceId(); // source
13 }
14
15 public void sendMessage(View view){
16 Log.i("DroidBench",
17 ((Button)view).getHint ().toString()); // sink
18 ((Button)view).setHint (imei);
19 }
20 %}
FIGURE 2.7: Example code snippet of UI callbacks.
1 <!-- activity_buttonl.xml -->
2 <RelativeLlayout
3 xmlns:android="http://schemas.android.com/apk/res/android"
4 xmlns:tools="http://schemas.android.com/tools"
5 android:layout_width="match_parent"
6 android:layout_height="match_parent"
7 tools:context=".Buttonl" >
8 <Button
9 android:id="@+id/buttonl"
10 android:layout_width="wrap_content"
11 android:layout_height="wrap_content"
12 android:layout_alignParentTop="true"
13 android:layout_centerHorizontal="true"
14 android:layout_marginTop="185dp"
15 android:text="@string/button"
16 android:hint="@string/button"
17 android:onClick="sendMessage"/>

18 </RelativelLayout>

FIGURE 2.8: XML file content corresponding to the example code snippet of
UI callbacks.



2.2. Android App Analysis Key Features 15

1 Class<?> clz = Class.forName(getString(R.string.class_name));
2 Method method = clz.getMethod(getString(R.string.method_name));
3
4 Class<?> clz2 = method.getDeclaringClass ();
5 BaseClass bc = (BaseClass) clz2.newlInstance();
FIGURE 2.9: Example code snippet of reflection.
1 <!'-- strings.xzxml -->
2 <string name="class_name">edu.wayne.cs.ConcreteClass</string>

3 <string name="method_name">foo</string>

FIGURE 2.10: XML file content corresponding to the example code snippet of
reflection.

Figure 2.7 shows a code snippet of Butfon1 activity, which is a Ul callback, and Figure 2.8
presents a part of the corresponding XML file (activity_buttonl.xml). They are obtained
from the Button5 test case in DroidBench. When the app is launched, Button1.onCreate() is
invoked, and privacy-sensitive data is obtained and stored in the static field. As the snippet
from the XML file (Figure 2.8) shows, there is a button with sendMessage() as its callback
method, configured at Line 17. In sendMessage, first, the data is obtained by getHint() and
is written to the log. Then, data in the static field is passed to setHint(). These lines of code
indicate that the button should be tapped twice to cause information flow of the sensitive
data. An information flow tracker should detect such multiple callback invocations as well
as the data flow through the static field to track the information flow.

2.2.2 Java-Specific Features

There are Java-specific features that complicate the app analysis, as well as Android-specific
features. Java code relies heavily on a class hierarchy structure, making it more challenging
to detect actually-executed methods and fields without running the code [80]. Besides that,
this section explains two major language features: reflection and exception.

Reflection

Reflection enables an app developer to resolve a method to be invoked or a field to be ac-
cessed dynamically. Using reflection can obfuscate apps, but many apps use reflection for
other purposes as well [88]. Therefore, entirely prohibiting reflection usage is not acceptable.
A target class, method, or field name is provided as a string. An app developer can obfuscate
the string until right before a reflection call, making a static analysis harder. An information
flow tracker must handle reflective invocations to track control flows.

Figure 2.9 shows an example of a reflective call in the Reflection? test case from Droid-
Bench. Strings of class and method names are defined in the XML file (Figure 2.10) and can
be accessed by R.string.class_name and R.string.method_name. First, the Class object is created
by forName() with R.string.class_name as an argument. Then, the Method object is generated
by getMethod() with R.string.method_name as an argument. The Method object’s class is ob-
tained by getDeclaringClass(), and the class is instantiated by newlnstance(). These lines of
code can hide the actual class and method names, making the app analysis more difficult.



16 Chapter 2. Background
1 public class Exceptions3 extends Activity {

2 @0verride

3 protected void onCreate (Bundle savedInstanceState) {

4 super .onCreate (savedInstanceState);

5 setContentView (R.layout.activity_exceptions3);

6

7 String imei = "";

8 try {

9 TelephonyManager telephonyManager =

10 (TelephonyManager) getSystemService(
11 Context . TELEPHONY_SERVICE);
12 imei = telephonyManager.getDeviceId(); // source
13 int[] arr = new int[42];
14 if (arr[32] > 0)
15 imei = "";
16 }
17 catch (RuntimeException ex) {
18 SmsManager sm = SmsManager.getDefault ();
19 sm.sendTextMessage (
20 "+49 1234", null, imei, null, null); // sink
21 }
22 }
23}
FIGURE 2.11: Example code snippet of exception.
Exception

Exception can complicate the control flow of a program, making it more difficult to track
information flows. A challenge is determining whether an exception occurs at lines of code.
If any exception never occurs in a try block, the corresponding catch block will never be
executed, and tracking information flows through the catch block can lead to false positives.
It has been pointed out that tracking exceptional flows can result in a substantial amount of
false positives [89].

Figure 2.11 shows a code snippet with a try-catch statement from Exceptions3 in Droid-
Bench. Privacy-sensitive data is loaded in the try block and is sent via an SMS message in the
catch block. The catch block is executed when RuntimeException occurs in the try block, and
the flow of the sensitive data is caused. However, in this example, the catch block will never
be executed because RuntimeException will never occur in the try block. If an information
flow tracker falsely assumes that the catch block is executed, the information flow is falsely

detected (i.e., false positive).

2.2.3 Other Features

There are more features specific to Android or Java. Android enables apps to save their
data to files and databases on storage such as internal storage and SD cards. Therefore,
an information flow tracker should track dataflows through such storage. Automatically
selecting sources and sinks for information flow analysis is also challenging. However, this
paper considers these features out-of-scope.

Also, there are Java-specific features such as dynamic code loading and native code. Dy-
namic code loading is often overlooked in the analysis of Java code [80]. Java supports the
execution of native code. Analyzing native code requires completely different techniques



2.3. Taint Analysis of Android Apps 17

from Java analysis. Native code is often ignored by the analysis tools as well as dynamic
code loading [80].

2.3 Taint Analysis of Android Apps

This section explains taint analysis, especially for Android app analysis. First, it describes
the fundamentals of taint analysis. Then, it introduces current taint trackers for Android app

analysis.

2.3.1 Taint Analysis Fundamentals

In this paper, taint analysis is considered to be a technique to detect information flows. Taint
tracking and information flow tracking can be considered different [71]; however, they are
considered the same in this paper. An information flow from a register x to another register
y, denoted x = y, is caused by an operation, or series of operations, that uses the value of x to
derive a value for y [84]. Tracking information flows can reveal the program’s behavior. For
example, an analyst can understand what information is sent to the network by the program.

In taint analysis, information that an analyst needs to track is marked with a tag called
a taint tag. Taint tags are propagated along with the information flows and are checked
at specific points in the program. Taint analysis consists of three operations: introduction,
propagation, and checking.

Taint Introduction

Taint introduction is an operation that assigns a new taint tag to a register or a variable.
Before the analysis, the user must configure the execution conditions of the taint introduc-
tion. Such configuration includes instruction names and operand types and is called a taint
source. For example, if the user tries to find leaks of phone numbers, the taint source is a

register holding the return value of a function returning a phone number.

Taint Propagation

Taint propagation is an operation that assigns taint tags of a register to another register. It is
usually performed at each instruction that causes information flows. As a result, all registers
holding the information that should be tracked are assigned taint tags. For example, suppose
an instruction copies the value of the source operand to the destination operand. In that case,
there is a data flow, and the taint tag of the source operand is propagated to the destination
operand to track the flow. If an instruction has multiple source operands, the taint tags of
the source operands should be combined and propagated to the destination operand. These
rules are called taint propagation rules.

Taint Checking

This operation checks whether a register has taint tags at pre-configured points in the pro-
gram. Such points are called taint sinks. For example, suppose the user is trying to uncover
information leaks and configures a tracker to check taint tags at functions sending network

data. In that case, the tracker performs the taint checking at the functions and notifies the



18 Chapter 2. Background

user if taint tags are found. Consequently, the user can understand whether information
flows from the taint source to the network.

2.3.2 Current Taint Trackers for Android App Analysis

When analyzing apps from the Google Play Store or third-party markets, their source code
is not usually available. Therefore, taint trackers should analyze apps at bytecode or binary
levels. TaintDroid [54] is a well-established tool of dynamic taint analysis for apps, employ-
ing bytecode-level tracking that is the most common taint-tracking approach utilized by
many systems [29, 63, 90, 65, 62, 64]. TaintDroid detects information flows by interpreting
apps’ instructions of the Dalvik executable (DEX) bytecode, operating with virtual registers
(registers for short). TaintDroid marks registers as tainted based on taint propagation rules
defined for each instruction, and a chain of tainted registers represents information flows.
Bytecode-level tracking is common because the DEX bytecode format preserves variable
semantics, which enables a tracker to distinguish between pointers, which are references to
data, and scalar values. Without variable semantics, a taint tracker can assign taint tags to
pointers, and the taint tags would quickly spread by pointer dereferences. It is called taint
explosion and can occur in native-level trackers. Although, there are native-level trackers
such as Malton [70], NDroid [69, 68], and DroidScope [67]. They target both DEX bytecode

and machine language instructions and are mainly aimed at analyzing Android malware.



19

Chapter 3

VTDroid: Value-utilized Tracking

of Information Flows

The number of Android apps has rapidly increased in app stores, such as the Google Play
Store. In order to detect apps’ bugs and policy-violating behaviors, security researchers
utilize app analysis techniques, which have been actively developed in the past decade.
Taint analysis is widely used to uncover hidden features, for example, trigger-based be-
haviors [25] and policy inconsistencies [11]. Recently, researchers developed a tool called
InputScope [24], revealing 12,706 backdoors and 4,028 censorship secrets in over 150,000
apps published on the Google Play Store and an unofficial store and pre-installed apps.
InputScope utilizes a taint tracker to detect user input validations, which relate to the back-
doors and censorship secrets.

TaintDroid [54] is a well-established tool of dynamic taint analysis for apps, employing
bytecode-level tracking that is the most common taint-tracking approach utilized by many
systems [29, 63, 90, 65, 62, 64]. TaintDroid detects information flows by interpreting apps’
instructions of the Dalvik executable (DEX) bytecode, operating with virtual registers (regis-
ters for short). TaintDroid marks registers as tainted based on taint propagation rules defined
for each instruction, and a chain of tainted registers represents information flows.

Since the taint propagation rules target only the bytecode instructions executed on the
runtime layer of the Android platform, the trackers will suffer from false negatives (FNs)
for apps transferring information across API calls. Information can flow from one register
to another across API calls, hidden from TaintDroid. Sarwar et al. [72] demonstrate anti-
taint-analysis (ATA) techniques with their proof-of-concept implementation called Scrub-
Droid [73] that exploit such obscured flows to hide their apps” behaviors from TaintDroid.
Tigress, a program obfuscation tool, presents ATA as one of its transformation methods [75].
Tigress” ATA implementation is based on works done by Sarwar et al. [72] and Cavallaro
et al. [71]. Such a tool raises a concern that the well-known ATA techniques from Scrub-
Droid can be injected into any benign apps on app stores by their developers to defend them
against a taint analysis. Consequently, Android security and privacy studies that utilize
current taint trackers must produce unreliable results.

With the motivation of tracking such information flows, Graa et al. devised a context-
tainting tracker (CTT) [76]. CTT utilizes a hand-picked list of API methods causing infor-
mation flows that TaintDroid overlooks. Their implementation lists nine specific methods in
the Android API and the runtime, such as setTextScaleX() and getTextScaleX() of the TextView
class, covering six ATA techniques in ScrubDroid. However, it is impractical to list all ex-
ploitable API methods among more than 110,000 API methods provided by the Android [37],



20 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

and FNs will still be produced when unlisted methods are leveraged. CTT can also increase
the number of false positives (FPs) because the listed methods are usually invoked for pur-
poses other than information transfer. Furthermore, the list depends on the versions of the
Android platform, and the list would be ineffective in the case that the Android platform is
updated.

This chapter presents a new taint-tracking technique that detects information flows oc-
curring across API calls [81]. In order to reduce the dependency on the API method list, the
approach performs value logging and matching that propagate taint among registers based
on their data values, in addition to the traditional bytecode-level tracking. The technique
is based on the characterization of ATA techniques. Information can flow on the runtime
layer and across API calls by data flows, resulting from assignment instructions, and other
channels that are control dependence, pointer indirection, and timing channels [71]. Conse-
quently, the ATA techniques can be characterized by four types of information flow.

Towards precise detection of ATA techniques’ information flows by utilizing register
values, this chapter focuses on evaluating the effectiveness and FP amount of exact value
matching in detecting information flows across API calls. Previous studies [91, 64] devel-
oped techniques that inspect flows” information preservability by leveraging runtime data
values to accurately detect information flows occurring with control dependence. It is ex-
pected that other types of flows could be detected by inspecting information preservabil-
ity with data values, and the amount of FPs could be reduced. However, no study that
explores the approach has been found. Therefore, as a first step, this chapter presents a
technique for detecting information flows across API calls based on the simplest method of
information-preservability inspection, which is exact value matching. This chapter would
provide a lower bound of the effectiveness and the amount of FPs in the value-utilized de-
tection for future development of more robust inspection methods.

The technique was implemented into a bytecode-level tracker called VIDroid for app
analysis. VIDroid tracks data flows and the other types of flow altogether. The effectiveness
of VIDroid was evaluated with a test suite and real-world apps collected from the Google
Play Store and Baidu app store. VIDroid was compared to TaintDroid, CTT, and FlowDroid
for privacy leak detection, and the results show that VIDroid outperforms the trackers. The
apps were also analyzed with InputScope utilizing VIDroid as the detector of user input
validations. The results demonstrate that VIDroid tracks more information flows resulting
from the ATA techniques while generating slightly more false positives than FlowDroid, a
default tracker in InputScope.

Here is the summary of the contributions:

o All the 16 techniques in ScrubDroid are characterized by defined types of information
flow and created test suites containing 31 ATA techniques against privacy leak detec-
tion and 28 ATA techniques against the validation detection.

e Based on the characteristics of the information flows, a unified method called value-
utilized taint propagation is devised to avoid FNs against the multiple ATA techniques
that are not specific to a particular topic.

e VIDroid is developed, and it is demonstrated that VI Droid produces smaller FNs than
current trackers, TaintDroid, CTT, and FlowDroid, while generating fewer FPs than the
current solution, CTT, in privacy leak detection, and the VTDroid’s verification cost of
FPs is negligible in the validation detection.



3.1. Background 21

The rest of this chapter is organized as follows. Current taint analysis and ATA tech-
niques are further explained in Section 3.1. Characteristics of ATA techniques are discussed
in Section 3.2. The approach is presented in Section 3.3, and its implementation, called VT-
Droid, is described in Section 3.4. The evaluation is reported in Section 3.5, and the capabili-
ties of VTDroid are explained in Section 3.6. Related work is discussed in Section 3.7. Lastly,

the summary is stated in Section 3.8.

3.1 Background

This section first explains current systems for Android app taint analysis. Then, this section
discusses ATA techniques and countermeasures.

3.1.1 Taint Tracking for App Analysis

An information flow from a register x to another register y, denoted x = y, is caused by
an operation, or series of operations, that uses the value of x to derive a value for y [84].
TaintDroid is a representative bytecode-level taint tracker in the Android platform and de-
tects x = y within an app by interpreting the app’s bytecode instructions as follows. First,
TaintDroid marks a register as tainted at some input point (i.e., taint source). Then, Taint-
Droid propagates taint from the register to other registers based on taint-propagation rules
defined for each bytecode instruction. As a result, registers holding values derived from a
taint source are marked as tainted. TaintDroid checks the taint at an output point (i.e., taint
sink) and identifies information flows from the input to output points.

Overtainting and undertainting are errors occurring in taint analysis [92]. Overtainting
means that a register is marked as tainted when its value is derived from none of the taint
sources. Itis a prolonged problem for binary-level trackers, which have been developed long
before Android-targeting trackers. However, TaintDroid can suppress it with variable se-
mantics in the DEX bytecode, which is the primary reason for tracking flows in apps at only
the bytecode level. In contrast, undertainting means that a register is not marked as tainted
(i.e., untainted) when its value is truly derived from a taint source. It leads to FNs that a ma-
licious app is classified as benign or bugs are overlooked. One major cause of undertainting
in the bytecode-level tracking is API methods, unmonitored by the previously-developed
trackers [29, 63, 54, 90, 65, 62, 64]. TaintDroid uses profiles to propagate taint among param-
eters, class members, and return values of the Java Native Interface (JNI) methods to avoid
missing such uncertain flows. However, it triggers FNs for JNI methods causing flows other
than to the return value [54]. StubDroid [38] addresses the formalization of the taint rules for
the tracking across API calls. StubDroid automatically generates summaries of data flows
in the Android framework; however, summaries are manually created for native code, and

FNs occur with methods for which summaries have not been created.

3.1.2 ATA Techniques and Countermeasures

Cavallaro et al. [71] discuss ATA techniques allowing adversaries to circumvent binary-level
trackers, and Sarwar et al. [72] demonstrate a series of ATA techniques that an app conducts
to transfer information without triggering taint propagation of the bytecode-level trackers
on the Android. They present control dependence, which exploits control flows, and the
subversion of benign code, which abuses commands of the Linux system. They also define



22 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

side channels as techniques exploiting any medium that can represent information. They call
the techniques side channels in the meaning of the channels that are out of the scope of the
tracking. They implemented 16 techniques into a proof of concept called ScrubDroid. The
techniques are only a few lines of code each and are shown to be sufficient to completely
bypass TaintDroid. For example, the TextScaling appears to be a simple flow, consisting
of setter setTextScaleX() and getter getTextScale(). However, the setter stores the transferred
value into a variable managed by native code, which disables the TaintDroid’s taint propa-
gation at JNI-method-call edges. A goal of this chapter is to make it difficult for attackers to
evade the taint tracking by disabling such uncomplicated techniques not specific to a partic-
ular topic. Also, similar techniques were discovered in some real-world apps [74]; thus, the
current approaches discussed in Section 3.1.1 are unsafe.

In order to reliably detect information flows against the ATA techniques, a taint tracker
should reduce the dependency on manually created native-method summaries. As yet,
CTT [76] is the only currently available solution against the ATA techniques, specifically
side channels, in ScrubDroid. This approach employs a hand-picked list of flow-causing API
methods that only cover the ATA techniques in ScrubDroid. The list is incomplete because
the information might flow through any API method provided by Android. Since most API
methods are executed for purposes other than transferring information, the CTT’s approach
must produce FPs. For example, CTT propagates taint from the argument register of set-
TextScaleX() to the return value of getTextScaleX() of the TextView class. To suppress FNs,
once a tainted value is passed to the setter, CTT propagates the taint to the return values of
all subsequent getters. However, information flow from the setter occurs only when the get-
ter’s TextView instance has the same resource ID as the setter’s; otherwise, no information
flow occurs, and overtainting is caused. In addition, the list depends on the versions of the
Android platform, and security analysts should devise a list of flow-causing API methods
depending on the versions of their target apps and environments.

3.2 Four Flow Types

The characteristics of ATA techniques’ flows (i.e., how a value for an untainted register is
derived from the value of a tainted register) is leveraged to detect them with reducing the
dependency on the list of flow-causing API methods. Since the classification in ScrubDroid
does not effectively reveal features of flows caused by the techniques, this section charac-
terizes them by newly defined types of information flow based on channels discussed by
Cavallaro et al. [71]. Information can flow with assignment instructions and other chan-
nel types: control flows, pointer indirection, and timing channels. The DEX bytecode pro-
vides branches (e.g., if) and array-op instructions so that an app can transfer information
with control flows and pointer indirection on the Android platform. It also offers the array-
length instruction that returns the size of an array and can be classified to none of the four
channel types. Since pointer-indirection-based techniques exploit arrays, it is extended to
a new class consisting of all array-based techniques, including the array-length. Timing-
based flows are also workable on the Android platform, as ScrubDroid includes one of
them. Hence, four types of information flow are considered: data-flow-based, referred to
as direct-assignment (DA) flows; array-based, memory-operation (MO) flows; control-flow-

based, control-dependence (CD) flows; and timing-based, timing-channel (TC) flows.



3.2. Four Flow Types 23

TABLE 3.1: Characterization of the techniques in ScrubDroid based on newly
defined types. They are also classified according to whether it is visible (o)
or invisible (o). The marks + and dt denote flows created with altering the
original techniques and flows having data-transformation capability respec-

tively.
ScrubDroid Defined Type
Class Technique DA MO CD TC
Control Simple Encoding - - ogr o
Dependence  Count-to-X - - ogr oy
Exception-Error - - ot o;t
Subversion of  Shell Command o - ol et
Benign Code  File-Shell Hybrid oy - o, o
Side Timekeeper - - o e
Channels File Length - o og -
Clipboard Length - o, oa -
Bitmap Pixel - o ©of -
Direct Buffer - o o5 -
Text Scaling . - . d+t -
Bitmap Cache o - o, -
Unclassified  File Last Modified e - o -
Lookup Table - ogt  ©°y -
Remote Control - - ogr o
Remote Dex - - ogr o4
#Techniques 16 5 5 16 8

Table 3.1 shows the characterization of the techniques in ScrubDroid, including four tech-
niques (from the File Last Modified to Remote Dex) that are unclassified in ScrubDroid.
Each of them causes a flow of one of the four flow types. They are also tested for pro-
ducing different types of flow from the originals and identified that they all can gener-
ate multiple types of flow. Empty cells are for infeasible pairs of a technique and a flow
type. The flows are further discussed from two aspects that can affect detection difficulty:
visibility and data-transformation capability. A visible flow indicates the dependency be-
tween registers on the runtime layer, and an invisible flow does not. Any data transfor-
mation are considered, including encoding, obfuscation, hashing, and encryption. A data-
transforming flow can cause x = y where x and y hold distinct values. Other flows are
called non-data-transforming flows. Stinson et al. [93] devised a tracking method based on
data contents to detect flows occurring through an unmonitored area. It has also been dis-
cussed that ATA techniques can evade the data-content tracking by transforming data [71].
Data-transformation capability in ATA techniques in the Android platform is investigated to
clarify the effectiveness of a tracking technique utilizing data contents. This section explains
the characterization of the ATA techniques.

Table 3.1 does not cover all techniques belonging to the three classes, and more tech-
niques can be found. While the multiple flow types for each technique are considered, cov-
ering all techniques belonging to each of the three classes is out of the scope because such
coverage requires extensive effort. In particular, side-channel techniques that do not trans-

form the transferred data in ScrubDroid could be modified to enable the data-transformation



24 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

—_

TextView tv = findViewById(R.id.a);
tv.setTextScaleX (x)
3 y = tv.getTextScaleX();

N

FIGURE 3.1: DA flow x = y w/ the TextView class, which extends the View

class.
String cmd = "echo "+x;
Runtime runtime = Runtime.getRuntime ();
BufferedReader br = new BufferedReader (new InputStreamReader (

runtime.exec(cmd).getInputStream()));
y = br.readLine ();

Q= WN -

FIGURE 3.2: DA flow x = y w/ echo command.

capability. This paper follows ScrubDroid and does not necessarily cover all techniques be-
longing to the three classes.

3.2.1 DA Flows

This type of flow x = y is caused by executing two instructions. The first instruction has x as
an operand and passes its value to API calls. The value is eventually stored in memory. The
second instruction loads the value from the memory into y. The dependency between the
two instructions is called read-after-write dependency, in which the second instruction has
the value stored by the first instruction as an operand. In the situation that the dependency
exists across API calls, the flow is invisible to bytecode-level trackers, failing to track the
flow.

Five techniques in Table 3.1 cause the dependency across API calls. They can be divided
into two groups based on data-transformation capability: unmonitored memory, which can-

not transform data, and unmonitored code, which can transform data.

Non-data-transforming flows

Three of them exploit unmonitored memory. The Text Scaling (Figure 3.1) and Bitmap Cache
leverage the View class, which is the fundamental element for user interface components and
mainly operated in API calls. Similarly, the File Last Modified abuses a file’s metadata stored
outside an app’s runtime instance. Their flows are considered as non-data-transforming. In
the techniques, a value remains the same after moving from a tainted register to an unmon-
itored memory until it is moved to another register. In other words, an app cannot append
values to an unmonitored memory and can only overwrite the current value with a new
value. Hence, values should be transferred from x to y one by one in the same order via an
unmonitored memory, which is referred to as a one-value feature.

Data-transforming flows

In contrast, the Shell Command (Figure 3.2) and File-Shell Hybrid leverage system com-
mand, for instance, echo and cat, provided by the Linux system. These two commands are
not data-transforming, but there are data-transforming commands, such as base64 and md5.

Therefore, all shell command executions must be considered data-transforming for a tracker



3.2. Four Flow Types 25

1 char table[] = new char [256];

2 tablel[x] = ’a’; // aput-op DEX bytecode
3 ByteBuffer byteBuffer =

4 ByteBuffer.allocateDirect (256) . order () ;
5 byteBuffer.put(x,’a’); // put(indez,data)
6 for (int i = 0; i < 256; i++) {

7 if (table[i] == ’a’){yl = i;}

8 if (byteBuffer.get (i) == ’a’){y2 = i;}}

FIGURE 3.3: MO flows x = y1 w/ array and x = y2 w/ class.

not knowing shell commands. An app can pass data to and obtain results from system com-
mands through the standard input/output and files. Note that the contents of files are not
regarded as unmonitored because TaintDroid tracks information flows through files. It was
found that unmonitored code can also store or obtain information to or from unmonitored

memory, for example, filenames. An example is shown in Section 3.2.4.

3.2.2 MO Flows

MO flows x = y are caused by arrays and class instances, and the x’s value is translated into
memory addresses.

Array-based MO Flows

The DEX bytecode does not support pointer operations, but arrays are available for visible
MO flows. The DEX bytecode provides a series of array-op instructions, such as aget-op,
which returns an element of an array; aput-op, which stores a value to an array; and array-
length, which returns the size of an array. Since they clearly indicate the relationship between
addresses and cells, the flows are visible on the runtime layer.

The Lookup Table listed in Table 3.1 uses the value of x as an index to obtain data from
an array into y. Note that TaintDroid tracks this flow with a propagation rule for the aget-op
because it commonly occurs with translation tables for character conversion. However, it
was found that the aget-op can be replaced with the aput-op without changing the program’s
semantics, and TaintDroid will fail to track it (flow x = yI in Figure 3.3). The value a is
copied to the position table[x], and later the program checks which index of table contains a to
get x back. The result is copied to y1. In addition, researches mentioning taint propagation
for the aput-op do not suggest a rule that can track the flow. Section 3.7.2 discusses this.
Furthermore, the position of a can be shifted by partially copying table to another array, and
a value for y1 will be changed from the value of x. As such, this type of flow can transform
data. Thus, a tracking technique that utilizes data contents is ineffective. This type of flow
can be caused by not only arrays but also classes, which will be explained in Section 3.2.2.

Class-based MO Flows

The Android APIs provide classes that cause invisible MO flows. It was identified that the
Bitmap Pixel and Direct Buffer, shown in Figure 3.3, are such classes (Table 3.1) based on the
number of API method arguments. To cause MO flows, an API method should take at least
two arguments: a value specifying a location and another value being stored (e.g., value x



N
(o)}

Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

1 String x = getSecret(); // taint source
2

3 // Flow to detect

4 String string = TextUtils.join(

5 "", Collections.nCopies(

6 Integer.parselnt(x), "A"));
7 y = string.length();

8

9 // FP to avoid

10 if (x.length() == 0) {

11 throw new RuntimeException("empty");}

FIGURE 3.4: MO flow x = y occurring via the string’s length, and CD flow x
= exception, which a system should avoid tracking.

and a respectively at line 5 in Figure 3.3). When the value of x is used as a location, it is not
stored in memory, which is the difference between MO and DA flows.

Such classes’ instances are accessed via API methods, obscuring the relationship between
addresses and cells and making the flows invisible. Tracking MO flows such as x = y2 in
Figure 3.3 requires taint propagations from arguments to the base object and the base ob-
ject to arguments at different invocations. They can obfuscate locations as well as arrays, for
example, the ByteBuffer class provides position() and slice() methods for shifting the cell loca-
tions. Therefore, a data-content-utilized tracker is ineffective against class-based MO flows.
Note that this characterization is given only in the app layer. In contrast, API methods may
cause other types of flow, such as DA or CD, in their implementation. Since the approach
analyzes only app code, this paper classifies information flows based on their characteristics
in the app layer.

Length-based MO Flows

The value of x can be used to determine the size of a new array and is translated into the dis-
tance between two addresses. Then, a value for y is derived by measuring the array’s length
with the array-length. Class instances also can be used as demonstrated by the File Length
and Clipboard Length in Table 3.1. ScrubDroid’s original code encodes data with loops,
whereas it can be altered by replacing the loops with the API methods (Figure 3.4). Length-
based MO flows can transform data, for example, the values of string and string.length() is
different in Figure 3.4. Hence, a data-content-utilized tracker is ineffective against length-
based MO flows. A challenge is that since the length is commonly operated with branches,
simply tracking all lengths [76] can open ample opportunities for false detection of CD flows.
For example, apps check whether a string is empty (Line 10 in Figure 3.4). If a tracker prop-
agates x’s taint to the length and detects the CD flow, the taint is assigned to the exception.
Subsequently, an FP detection occurs if the exception information is passed to a sink.

3.2.3 CD Flows

CD flows x = y leverage control flows, determining what sequences of instructions can be
executed. A branch is executed with x as an operand, and control is conditionally transferred

depending on the value. A value for y is determined by control-dependent instructions



3.2. Four Flow Types 27

TextView tvl = findViewById(R.id.a);
TextView tv2 = findViewById(R.id.a);
if (x == 1) { tvl.setTextScaleX(1); 1}
else { tv2.setTextScaleX(0); 1}

y = tvl.getTextScaleX();

Qb WD =

FIGURE 3.5: CD flow x = y occurring through unmonitored memory that is
used in the Text Scaling technique.

executed between the branch and its re-convergence point (i.e., immediate post-dominator
of the branch).

Visible CD Flows

If y is the destination operand of a control-dependent assignment instruction, the depen-
dency is visible in the app code. It is implemented in the Simple Encoding, Count-to-X,
Exception-Error, Remote Control, and Remote Dex (Table 3.1). Techniques causing MO flows
in Table 3.1 can also cause visible CD flows in which the destinations are the same register
on both sides of a branch.

Invisible CD Flows

It was discovered that the rest of the techniques in Table 3.1 also can be used as a part of
CD flows. The five techniques of DA flows can generate invisible CD flows that a control-
dependent instruction in one side of a branch stores an untainted value into unmonitored
memory, and a value for y is derived by an instruction executed after the re-convergence
point. Another control-dependent instruction on the other side of the branch can store an-
other untainted value into the same unmonitored memory with a separate instance, for ex-
ample, two instances of the TextView class tv1 and tv2 are used depending on whether a
branch is taken, and information is invisibly transferred from x to y (Figure 3.5).

Information Preservability

For precise tracking, it is important to track only CD flows x = y where x is a branch’s
operand, and y is assigned a value in one side of the branch and another distinct value
in the other side (i.e., a value for y is conditionally determined depending on the value of
x) [91]. Such flows can transfer a certain amount of information and are called information-
preserving CD flows. Therefore, a challenge in this paper is to distinguish between information-
preserving and non-information-preserving CD flows. You et al. [64] developed a tech-
nique that inspects the information preservability of visible CD flows by checking values
of registers at re-convergence points. Suppose a register has a unique value depending on
whether or not a branch is taken. In that case, the register is detected as the destination of
an information-preserving CD flow and is subsequently tainted. However, their approach
will fail in the case that API calls are exploited to cause control-dependent DA flows (i.e.,
invisible CD flows). Information can flow not to registers but across API calls, which cannot
be examined at the re-convergence points. For example, tv1.setTextScaleX(1) is executed if
the condition is true in Figure 3.5; otherwise, tv2.setTextScaleX(0) is executed. In order to
perform the information-preservability inspection, a system must know whether the des-
tinations (i.e., the stored memory locations) of the two methods” arguments are the same.



28 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

File file = new File("/secret/"+x);
file.createNewFile () ;

String cmd = "sleep $(1ls /secret)";

long start = System.currentTimeMillis ();
Runtime . getRuntime () .exec(cmd) .waitFor ();
y = System.currentTimeMillis() - start;

NUT WD -

FIGURE 3.6: TC flow x = y with the sleep command that takes an argument
from the filename, which equals to x’s value.

However, a system cannot simply decide it based on the method names because it depends
on R.d.a. In other words, the challenge is to equate the destinations of the two control-
dependent invocations or to detect the flow without the equating.

3.24 TC Flows

This type of flow x = y encodes data into timing by delaying program execution for a while,
depending on the x’s value. Then, the delay time is measured and saved into y. TC flows
cause no data flow but can transfer information. Since the current solution, CTT, tracks TC

flows, TC flows are considered in this paper.

Visible TC Flows

Delays can be produced with loops and be measured by communication intervals on a re-
mote server [71]. Hence, TC flows are implemented with loops based on the Simple En-
coding, Count-to-X, Exception-Error, and Remote Dex. Also, the Remote Control is altered
into a technique measuring delay times from a remote server. They all cause visible flows

because loops consist of branches, which are identifiable in the app code.

Invisible TC Flows

The Timekeeper in Table 3.1 invokes sleep() API method to produce delays. The API method
can be replaced by any API method that performs similarly to the sleep(). Thus, their flows
are invisible. In addition, it was found that API calls supply more options for apps to cause
TC flows. The Linux system provides a shell with that sleep and for commands can be exe-
cuted apart from app code, and invisible flows occur (Figure 3.6). The technique is imple-
mented based on the Shell Command and File-Shell Hybrid in Table 3.1, whose execution
time can be changed depending on its arguments. A system that only focuses on specific
API methods on the runtime layer, such as [76], will fail to detect invisible TC flows. Even
if a system considered Runtime.getRuntime().exec(cmd).waitFor(); a TC-flow-causing AP]I, the
taint propagation could not be performed because argument cmd is not tainted. A challenge
is to detect the flow and propagate the taint of x.

3.3 Approach

The approach tracks visible and invisible flows of DA, MO, CD, and TC to detect all the
techniques in ScrubDroid and other techniques exploiting unknown media across API calls.
The tracking reduces the dependency on the API method list and versions of the Android



3.3. Approach 29

Algorithm 1 Taint propagation across an API call

1: procedure PROPAGATE(method)

2: bo < method’s base object

3 args < invoke-op’s arguments including bo

4: ret <— move-result-op’s destination register

5: if method’s name ends with “length” or “size” then

6 if bo is tainted and

7 bo’s value differs from taint source values then
8 assign bo’s taint to ret

9

: else
10: remove ret’s taint
11: end if
12: return
13: end if
14: for arg in args do
15: if arg is tainted then
16: perform the value logging with arg
17: perform the TC encoder detection with arg
18: end if
19: end for
20: remove ret’s taint
21: copied_args <— copy of args before taint propagation
22: for copied_arg in copied_args do
23: if copied_arg is tainted then
24: for arg in args do
25: assign copied_arg’s taint to arg
26 end for
27: assign copied_arg’s taint to ret
28: end if
29: end for
30: if ret is not tainted then
31: perform the value matching with ret
32: if method is System.currentTimeMillis() then
33: perform TC decoder detection with ret
34: end if
35: end if

36: end procedure

platform. Hence, it covers more flow-causing API methods than CTT. The tracking also re-
duces the number of FPs by inspecting whether the information is transferred. Furthermore,
binary-level tracking is excluded to leverage the variable semantics.

Algorithm 1 shows how the approach propagates taint across an API call. First, it per-
forms the length tracking (Section 3.3.2) in Lines 5-13. If the target method is detected as a
length-related method, the procedure ends with the return at Line 12. Next, the value log-
ging (Section 3.3.1) and TC encoder detection (Section 3.3.4) are performed in Lines 14-19.
Then, the class tracking (Section 3.3.2) is executed in Lines 20-29, and the value matching
(Section 3.3.1) and TC decoder detection are performed (Section 3.3.4) in Lines 30-35. Addi-
tionally, the approach operates the array tracking (Section 3.3.2) and the CD-flow tracking
(Section 3.3.3) to detect information flows across array operations and control dependencies.



30 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

Non-Data-Transforming
x>yl

m B
A g - P
Code N Z)

Data-Transforming x=»y2
Input . Result

/3, £ Taint

N, :Transmitter VL
¢ :Receptor VL
==:VM

L, :Propagation

Added
Flows

= ) i S
a\\== a_, 1_\’ == 1’/

Unmonitored Memory

AP Cal I§ ~—
W Unmonitored Code

FIGURE 3.7: Two DA flows: x = y1 and x = y2. The value logging (VL) and

matching (VM) detect flows and propagate the taints between x and y1, x and

Input, and Result and y2. In contrast, Input’s taint is transparently propagated
to Result.

3.3.1 DA-Flow Tracking

The DA-flow tracking exploits actual data values transferred across API calls to track invis-
ible flows. It logs operand values of any API method invocation to not rely on the list of
flow-causing API methods. Also, it matches the values of tainted and untainted operands
and propagates the taint between them.

Value Logging

In order to capture all values passed to and obtained from API calls, the DA-flow tracking
intercepts operand values of each invoke-op (API) instruction that calls an API method. Note
that the invoke-op also calls methods implemented within app code, referred to as invoke-op
(non-API).

For non-data-transforming flows The value logging is performed before each execution of
the invoke-op (API) as follows:

1. When the invoke-op (API) is about to be executed, the tracker checks taint of its operand
registers, denoted x in Figure 3.7.

2. Itlogs values of tainted registers among them and flags them as candidates for a trans-
mitter passing values to API calls.

3. Logged values are kept separately by instruction addresses and register names.

Simultaneously, the value logging is performed after each execution of the invoke-op (API) as
follows:

1. When the invoke-op (API) is terminated, the tracker checks taint of values produced by
the method that are its return value and values of reference-data-type arguments, to
which the method might append values, denoted y1 and y2 in Figure 3.7.

2. It logs untainted values among them and labels them as candidates for a receptor that
obtains values from API calls.

3. Logged values are kept in the same way as transmitter candidates.



3.3. Approach 31

For data-transforming flows The logging before and after the invoke-op (API) is sufficient
to detect x = y1 in Figure 3.7 with the value matching. However, the logging is ineffective
when the data is transformed , for example, x = y2 in Figure 3.7, where their values are
different. The unmonitored code obtains a value a from the unmonitored memory, encodes
itto 1, and stores it to the unmonitored memory. The encoding is done by grep -c 4, and more
data transformation can be performed by other shell commands (e.g., base64 and md5).

The tracker, therefore, logs more values at each invocation of the API method executing
shell commands (e.g., Runtime.exec()). It injects bytecode that creates additional flows from
the shell commands to the app layer for capturing values accessed and outputted by the
shell commands. Then, it processes the values depending on the taint of the invoked API
method’s argument. If the argument is not tainted, it considers each value as a receptor
candidate (i.e., input of unmonitored code). For example, assume that the unmonitored
code in Figure 3.7 is executed by an API method invocation with an untainted argument, it
logs the value a as the input of the unmonitored code (denoted Input) and flags the input as
a candidate for a receptor.

If the argument is tainted or its input is tainted, the tracker considers each value as a
transmitter candidate (i.e., the result of unmonitored code). For example, assume that the
input of the unmonitored code in Figure 3.7 is tainted, it logs the value 1 as the result of the
unmonitored code (denoted Result) and flags Result as a candidate for a transmitter.

Value Matching

This operation detects DA flows by comparing captured values. When a new value is logged
as a receptor candidate, the tracker checks whether the value equals the last logged value of
each transmitter candidate. If two values of a transmitter and receptor candidates are iden-
tical, the taint is propagated between them. For example, a candidate pair x and yI hold the
same value 0 and are matched in Figure 3.7. Values must match between a transmitter and
a receptor; however, there is an exceptional technique called Bitmap Cache, which transfers
a value by showing it on the screen and capturing it into a screenshot. The image is logged
at a receptor. The tracker detects an image and extracts the value printed on the image by
using optical character recognition. The tracker uses the value as the receptor’s value.

In contrast, another pair x and y2 hold different values a and 1 because the unmonitored
code transforms the data. The tracker tracks the flow as follows:

1. It flags x as a transmitter candidate and Input as a receptor candidate as described in
Section 3.3.1.

2. Subsequently, it compares values of x and Input and propagates taint between them

because their values, a and 4, are identical.

3. Since Input is tainted, the other logged value 1 of the unmonitored code is flagged as a
candidate for a transmitter (Result), and the Input’s taint is propagated to Result.

4. When the value of 2 is logged, the tracker compares y2’s value with the last logged
value of each transmitter candidate, including Result, and the Result’s taint is propa-

gated to y2 because their values, 1 and 1, are identical.



32 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

TABLE 3.2: Taint-propagation rules for MO flows caused by the array-op and

the invoke-op (API). Function t(v) returns taint of register variable v or assigns

taint to it. Vg, and Vp, are a set of reference-data-type and primitive-data-

type arguments respectively, and (V') returns the union of all registers’ taint

in V or assigns taint to all of them. Rules marked * are conditionally applied
depending on the operand’s value.

# Instruction Taint Propagation

1 aput-op Vsrc, VArray, V1dx T(va)  T(vs) UT(v4)

2 T(v4)  T(v)) Ut(v4)

3 aget-op Upst, U Arrays Uldx T(UD) < t(v7) Ut(va)

4 T(op) < (o) Ut(va)

5 array-length vpst, Varmay  T(vp) = T(0a)"

6 invoke-op (API) {Vge, Vi) T(Vre) < T(VRe) UT(Vpy)

7 T(Vpr) = ©(VRe) Ut(Vpy)

8 T(result) «+ t(Vr,) Ut(Vp;)
9 move-result-op vps; T(vp) < T(result)*

3.3.2 MO-Flow Tracking

Since MO flows can transform data as described in Section 3.2.2, the value logging and
matching are ineffective. Therefore, the rules in Table 3.2 are used to propagate taint for
arrays and class instances.

Array Tracking

Visible MO flows transfer information between components and indices of arrays. Since
array-op instructions of the DEX bytecode indicate value, array, and index registers, the rela-
tionship among them is easily detected, and taint propagation for them is achieved straight-
forwardly. When the aput-op is executed, the source operand’s value is moved into the array
depending on the index operand’s value, and no register is completely overwritten. Thus,
any register’s taint must not be removed. As shown in Table 3.2, the array tracker appends
taint of the source and index registers to the array register for the aput-op (Rules 1 and 2).
When aget-op is executed, the destination operand’s value is completely overwritten with a
value depending on the array and index operands. Hence, the tracker overwrites the taint of
the destination register with the taint of the array and index registers (Rule 3). At the same
time, taint of the array register is appended to the index register by Rule 4, which enables a
tracker to follow the flow x = y1 in Figure 3.3.

Rule 4 is unnecessary if a tracker performs CD-flow tracking at the same time because
there is a CD flow from the branch’s operand table[i] to i at line 7 in Figure 3.3. However,
both Rule 4 and CD-flow tracking are employed altogether to monitor the number of oc-
currences of each flow and identify the path of information transfer more clearly for further

investigation.

Class Tracking

The approach tracks invisible MO flows by conservatively propagating taint among operand
registers of the invoke-op (API). It covers all the MO-flow techniques in Table 3.1 and unlisted
techniques exploiting unknown API classes. An app-level taint tracker [65] utilizes taint
propagation rules for API methods, only considering reference-data-type arguments to min-
imize the impact of overtainting. The restriction is loosened to support primitive-data-type



3.3. Approach 33

arguments and track MO flows more comprehensively. As shown in Lines 20-29 in Algo-
rithm 1, at each invoke-op (API) execution, the taint is propagated from any operands to all
reference-data-type arguments and the return value of the invoked method, which is the
destination register of the move-result-op instruction (Rules 6, 8, and 9 in Table 3.2). Since
operands of the invoke-op (API) invoking a non-static method contain an instance of the in-
voked method’s class (i.e., a base object), the rules track such instances as well as arguments.
The rules are based on over-approximations and could generate FPs. The rules will be eval-
uated to show that the rules generate fewer FPs than CTT in Section 3.5.4.

Rule 7 propagates the taint from reference-data-type to primitive-data-type arguments
(Table 3.2) to track MO flows such as x = y2 occurring via instance byteBuffer and primitive-
data-type argument i (Figure 3.3). Rule 7 is unnecessary if CD-flow tracking is simultane-
ously performed, but both Rule 7 and CD-flow tracking are implemented for the same reason
as Rule 4. Rules 6-9 also track MO flows when the instance byteBuffer is converted into an
array by an API method after line 5 instead of causing a CD flow in Figure 3.3.

Length Tracking

To reduce overtainting for the array-length, the length tracker utilizes data values to propa-
gate the taint from the array to its length (Rule 5 in Table 3.2). The tracker propagates the
taint only if a value joining all elements of an array is not the same as the original values
of tracked information (i.e., values loaded into registers at taint sources). This rule is based
on the fact that a value needs to be tracked only if its length presents the tracked informa-
tion, and the length of the original value itself will never present the information. If the
propagation is skipped, the tracker simply removes the taint of the destination operand.

Similarly, when the invoke-op calls a length-related method, it propagates taint from a
class instance (i.e., an operand of the invoke-op (API)) to its length (i.e., the destination reg-
ister of the corresponding move-result-op) only if the value of the instance is not identical to
original values of the tracked information (Rule 9 in Table 3.2). For example, the variable
string’s value does not match with the variable x’s value at the taint source in Figure 3.4,
and the tracker propagates the string’s taint to y at Line 7. On the other hand, x at Line 10
contains the same value as one at the taint source, the tracker does not propagate the x’s
taint to the length, and the CD-flow tracking is not performed for the if statement at Line
10. Length-related methods are detected by searching words length and size in their name
(Line 5 in Algorithm 1). Note that the search relies on API method names not to reduce FNs
but to reduce FPs. If the tracker fails to detect a length-related method (i.e., the condition is
false in Line 5 in Algorithm 1), the conservative rules will taint the length in Lines 20-29 in
Algorithm 1. The propagation causes a true positive (TP) if the length preserves the target
information. Otherwise, it generates an FP. Hence, FNs do not occur.

3.3.3 CD-Flow Tracking

The approach tracks CD flows on the runtime layer and across API calls taking the informa-
tion preservability into account as discussed in Section 3.2.3. The CD-flow tracker first iden-
tifies control dependencies at the bytecode level to detect control-dependent instructions.
Then, the tracker inspects whether control-dependent instructions preserve the information
of the corresponding branch’s operand. It propagates the taint of the branch’s operand to
destinations of the control-dependent instructions.



34 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

int[] secret = {0,2,3,1}; Information- Non-information
int[] table = {0,1,2,3}; preserving -preserving
for (int x1 : secret) { x] — yl x] — y2

for (int i : table) { Loop T R, T R
storel(i); “Tr | x1=0 |0

0 a a

2(¢a’);: -
e T =2 otz 2 aaa  |a
break;}} x1=31(01,23 3 a,a3aa a
y1l += loadl(); g | x1=1 01 1 aa, a

y2 += load2();} R,

FIGURE 3.8: Two invisible CD flows of the first type, x1 = y1 and x1 = y2,

which are direct-control-dependence-based and caused by the if statement.

T, and R, are transmitters and receptors of the DA flows respectively (n =

1, 2). API method loadN() returns values transferred by storeN() (N =1, 2).

Tables list the transitions of the logged values in each iteration of the outer
loop.

Regardless of the visibility, CD flows are divided into two types: direct-control-dependence-

based and implicit flows [71]. To illustrate examples, Figure 3.8 shows two invisible CD
flows categorized as direct-control-dependence-based, and Figure 3.9 gives three invisible
CD flows categorized as implicit flows. In Figure 3.8, transmitters T} and T are directly
control-dependent on the if statement because the transmitters are in the inner for loop’s
body, and the loop is exited by the if statement. In contrast, some of the storeN() invoca-
tions (i.e., transmitters of the DA flows) in Figure 3.9 are indirectly control-dependent on
the if statements because they are outside of the if statements’ blocks, and the if statements
have no control over the for loops, but the corresponding receptors can receive values de-
pending on the if statements. Also, visible CD flows are divided into either direct-control-
dependence-based or implicit according to whether the dependency is direct or indirect.

Visible-CD-Flow Tracking

For visible CD flows, the tracker checks whether the information is preserved between a
branch’s operand and a register assigned values by control-dependent instructions as fol-

lows:

Assigned register inspection for direct-control-dependence-based flows The tracker checks
whether a register is assigned a value on one side of the branch depending on the value of the
branch’s operand. The examination is based on the notion of distinct code [94]. The branch’s
operand values are considered words, and the values assigned to the register are regarded as
codewords. If the mapping from words to codewords is one-to-one, the flow must preserve
information because all of the words can be correctly derived from the codewords. If the
flow is information-preserving, the tracker propagates the taint from the branch’s operand

to the register at the re-convergence point.

Branch’s untainted operand inspection for implicit flows If the taint is not propagated in
the previous inspection, the tracker checks whether a register is assigned a different value
depending on whether the branch is taken or not taken. If so, the tracker inspects whether
the values of the branch’s untainted operand differ depending on the values of the branch’s
tainted operand when the branch is taken. If the flow satisfies these requirements, the tracker
considers the flow as information-preserving and propagates the taint from the branch’s

operand to the register at the re-convergence point.



3.3. Approach 35

::L“:[] ie;;et - {g’i’:’;}f Informat ion- Non-information
;gr[](i:t iz ': {sJec’re,tg’{ preserving —preserving
for (int j : table) { X2 — y3 x2 — y4 X2 — yb
torea(as | g
::2:‘5‘2{:,% x2=0|b |baaa a |aaaal|- aaaa
if (x2 == j; { x2=2|b |aab,a a |aaaal| bbbb|bbbb
store3(‘b’); - T, x2=3|b |aaab a |aaaa||bbbb|bbbb
store4(a’);} - 7, x2=1|b |abaa a |aaaal|bbbb|bbbb
if (x2 1= @) {
store5(‘b’);} - T;
y3 += load3(); - Ry
y4 += load4(); - R,
y5 += load5();}} - R;

FIGURE 3.9: Three invisible CD flows, x2 = y3, x2 = y4, and x2 = y5, which

are implicit flows and resulting from the if statements. T, and R, are trans-

mitters and receptors of the DA flows respectively (n = 3, 4, 5). API method

loadN() returns values transferred by storeN() (N = 3, 4, 5). Tables list the tran-
sitions of the logged values in each iteration of the outer loop.

Invisible-CD-Flow Tracking

In order to track invisible CD flows, control-dependent DA flows should be detected, as Sec-
tion 3.2.3 explained. When an API method is invoked on a side of a branch, and the branch’s
operand is tainted, the invisible-CD-flow tracker makes the method’s arguments transmitter
candidates of DA flow. The value logging and matching detect control-dependent DA flows
between the transmitters and receptors executed after the re-convergence point.

When a control-dependent DA flow is detected, the tracker examines the information
preservability of the invisible CD flow. Since control-dependent instructions in the CD flow
assign values not to registers but to API calls, the information preservability cannot be ex-
amined in the same way as the visible-CD-flow tracker.

Figure 3.8 and Figure 3.9 show invisible CD flows that are direct-control-dependence-
based and implicit flows, respectively. In each example, Transmitters T}, are executed within
the inner loop’s body, but receptors R, are invoked outside the inner loop’s body. In this
case, the only values transferred by the transmitters in the last iteration of the inner loop are
captured by the receptors because of the one-value feature, which an app can only overwrite
an unmonitored memory as Section 3.2.1 explained.

Figure 3.8 shows two invisible CD flows, which are direct-control-dependence-based. In
flow x1 = y1, transmitter T; transfers values, 0, 2, 3, and 1, depending on tainted operand
x1’s values, 0, 2, 3, and 1, and the information is preserved. In contrast, the information is
not preserved if the transmitter’s values do not depend on the tainted values (x1 = y2). Fig-
ure 3.9 illustrates three invisible CD flows, which are implicit flows. In flow x2 = y3, trans-
mitter T3 is executed with values depending on the comparison between tainted operand
x2’s values, 0, 2, 3, and 1, and untainted values, 0, 1, 2, and 3, in table, of which the attacker
has known the content. The attacker can restore the information from the sequence of the
receptor’s values, a and b. If the transmitter’s values do not depend on the comparison
results, such as Ty of x2 = y4, the flow does not preserve the information. Also, the infor-
mation is not preserved by x2 = y5 because the branch’s condition x2 /= 0 does not produce

a one-to-one mapping between x2’s values and the T5 execution.

Transmitter inspection for direct-control-dependence-based flows When a DA flow with
control dependency is detected, the tracker checks whether the transmitter’s values differ



36 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

depending on the tainted values of the branch. The tracker utilizes not all values logged at
the transmitter but only values that appeared at the receptor. If the dependency is detected,
it propagates the taint of the branch’s operand to the receptor of the DA flow. Flow x1 = y1
preserves the information because the transmitter’s values in the inner loop’s last iterations
(i.e., the receptor’s values), 0, 2, 3, and 1, differ depending on x1’s values, 0, 2, 3, and 1.
Hence, the tracker propagates x1’s taint to Ry and yI. In contrast, flow xI = y2 does not
preserve the information because receptor R, always receives a, regardless of x1’s values.

Branch’s untainted operand inspection for implicit flows If the taint is not propagated in
the previous inspection, the tracker checks whether the receptor’s values contain any value
that is not contained in the transmitter’s values. If so, the receptor contains distinct val-
ues transferred from other transmitters, and the information can be preserved. With the
checking, the tracker can proceed to the information-preservability inspection without the
equating of the destinations of control-dependent instructions. The tracker inspects whether
the values of the branch’s untainted operand differ depending on the values of the branch’s
tainted operand when the branch is taken. If there is a one-to-one mapping between val-
ues of the untainted and tainted operands, the tracker considers the flow as information-
preserving and propagates the taint from the tainted operand to the receptor. Flow x2 =
y3 preserves the information because receptor R3 obtains value a, which is different from
values transferred from T3. Additionally, values of the branch’s untainted operand j change
depending on values of the branch’s tainted operand x2 when the branch is taken. Hence,
the tracker propagates the taint from x2 to y3.

In contrast, consider flow x2 = y5, which the branch’s condition is x2 /= 0 instead of x2
== j. The receptor obtains the same sequence of values (b, b, b, b) when x2’s value is 1, 2, and
3, and the information is not preserved. The tracker detects it based on the branch’s operand
values, which untainted value 0 does not change depending on x2’s values, and the taint is
not propagated. Also, flow x2 = y4 is non-information-preserving because receptor R4 only
contains values a, which is the same value as T;. Note that the CD-flow tracker does not
detect so-called hidden implicit flows. Section 3.6.1 discusses this further.

3.3.4 TC-Flow Tracking

The tracker detects TC flows by detecting TC encoders and decoders and calculating the cor-
relation between them. TC encoders are instructions delaying the app execution depending
on tainted values, and the TC-flow tracker detects TC encoders without a fixed list of API
methods (e.g., Thread.sleep()) and shell commands (e.g., sleep) as follows:

1. When the invoke-op (API) is executed with a tainted operand, the tracker calculates
the time taken by the invocation. When the invoke-op (API) is executed without tainted
operands, the value matching is used to detect shell commands loading a tainted value
from not the argument but unmonitored memory. Then, the API invocation executing
such shell commands is detected as a TC encoder. If the same encoder is consecutively
executed with the same tainted value, the times are added up.

2. Then, the tracker computes the correlation between the tainted operand’s values and
the times. It uses a threshold to determine whether there is a one-to-one mapping
between the tainted values and the times. If so, the tracker considers the API method

invocation as a TC encoder.



3.4. Implementation 37

3. For if instruction, which can generate loops and delay the app execution, the tracker
simply flags it as a TC encoder when its operand is tainted.

The TC-flow tracker detects TC decoders and calculates the correlation between TC en-
coders and decoders as follows:

1. When System.currentTimeMillis() API method, which returns the system clock, is in-
voked, the tracker considers the invocation as a TC decoder. Also, it considers sinks as
TC decoders.

2. When TC decoders are executed multiple times, the tracker first calculates the time
interval between two TC decoders that are executed immediately before and after a

TC encoder.

3. Then, it computes the correlation between the intervals and values passed to the TC
encoder. Even if the exact value is passed to a TC encoder, there will be variations in
their durations [95]. Therefore, a threshold is used to determine whether durations are
distinguishable depending on the operand values of a TC encoder. If so, the tracker
propagates the taint from the TC encoder’s operand to the return value of the TC de-

coder. If the TC decoder is a sink, it produces an alert for privacy leak detection.

3.4 Implementation

A taint analysis system called VIDroid is developed with employing the tracking technique
to detect privacy leaks and input validations in apps. VIDroid executes taint analysis on a
server to make the implementation independent of specific versions of Android and devices.
Since any sufficient dynamic-taint-tracking tool for real-world app analysis was found, the
taint propagation rules were decided to be implemented on VTDroid. For example, Taint-
Droid is only available on Android version 4.3 or earlier and cannot be used to analyze apps
requiring the newer Android versions. VITDroid also has the advantage that performing
taint analysis on a server makes it possible for users to efficiently test taint propagation rules
without running target apps every time. Also, VIDroid requires no device modification,

such as rooting and makes analysis details accessible to its users.

3.4.1 Overview

VTDroid consists of an analysis server and an Android device. First, the server extracts
smali files, written in an assembly language of the DEX bytecode, from an app and statically
instruments code into them (Section 3.4.2). Then, the analyst re-creates the app with the
modified smali files and a self-signed certificate. Next, the analyst installs and launches it on
the device, and also the added code is executed and records the app’s runtime data to a file
on the device’s storage. Finally, the server obtains the file to reproduce the app’s behaviors
and performs taint analysis (Section 3.4.3). It also statically analyzes control flows of the
app’s smali files (Section 3.4.4).

A difference between VTDroid and the other dynamic analysis tools, TaintDroid and
CTT, is that only VTDroid records the app’s execution trace. The execution trace provides
information about executed code and processed values to analysts and makes understanding
the app’s behaviors easier. Since the taint tracker is not executed on the device, only the



38 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

TABLE 3.3: VTDroid injects code into positions before and/or after instruc-

tions and labels. Argument, index, source, and destination indicate target

operand registers for recording values, and * indicates points at which the
code is injected to record the code execution without recording values.

Instruction or Label Target Register
Before After

invoke-op argument  argument
move-result-op - destination
aput-op, aget-op index -
aput-op, iput-op, sput-op, cmp-op source -
aget-op, iget-op, sget-op, unop, binop - destination
if, switch * *
switch-L, method head - *

recording can affect the app runtime overhead. The app runtime overheads of the tools are

compared in Section 3.5.6.

3.4.2 Static Bytecode Instrumentation

Before the app installation, the server instruments code that saves the app’s runtime data
into the device’s storage, enabling the server to emulate the app’s behaviors. Recorded in-

formation is as follows:
o timestamp of the bytecode execution
e process identifier (PID) of a process executing the bytecode
o thread identifier (TID) of a thread executing the bytecode
e identifiers of code-instrumented class and method
e smali file’s line number at that the code is instrumented
e name and value of registers.

Table 3.3 lists DEX instructions, positions, and registers for that the code is instrumented
with or without recording values. The value-based taint propagation tracks information
transferred by the ATA techniques. Such information is, for example, in a format that can be
passed to a shell command or processed by a conditional instruction. Currently, techniques
that can transfer arbitrary objects are not found. Therefore, the code records the name and
value of registers only in the case that its type is convertible to the String class, covering all
eight primitive data types, String, and arrays of any of the nine types. In addition, values
of the android.text.Editable type are logged at the invocation of taint sources for suspicious
validation detection. The server statically extracts bytecode constants (i.e., const-op) from
smali files as necessary, and unconditional jumps (i.e., goto-op, return-op, and throw-op) are
also statically analyzed without the code instrumentation.

The server also checks whether methods are implemented within the app to classify API
and non-API methods. Since the relationship between threads should be explicitly recorded,
VTDroid employs a technique [64] creating an extra class field to methods that generate a
new thread (e.g., AsyncTask.execute()). It instruments code at a caller’s side that saves TID to
the field. It also instruments code that loads the field’s value at a callee’s side and writes it
to the record file at the called method’s head.



3.4. Implementation 39

As explained in Section 3.3.1, VIDroid instruments bytecode right before the invoke-op
(API) calling Runtime.exec(), which executes shell commands. The bytecode obtains the ex-
ecuted shell commands from the invoked method’s argument register and processes the
commands as follows:

1. The commands are obtained as a string, and the bytecode parses the string from the
head.

2. When a pipe is found, the bytecode extracts and executes the part from the head to the
current position without the pipe, and the standard output is recorded.

3. When a “$(” is found, it extracts and saves the part from the head to the current posi-
tion into a stack.

4. When a “)” is found, it extracts and executes the part from the previously found “$(”
to the current position without the dollar and parentheses and records the standard
output. Then, the bytecode concatenates the part with the element popped from the
stack.

5. When the bytecode parses the string to the end, it executes the entire string and records
the standard output.

In addition, after each execution of a part, the bytecode checks whether the part contains the
slash. When the slash is found, the bytecode considers that the part contains a file path. It
extracts the file path and records the file’s content by executing the cat command with the
path. As a result, VTDroid can capture the output of shell commands when the output is
redirected to a file.

3.4.3 Taint Analysis

The app is exercised on the device, and its runtime data is delivered to the server. Based
on recorded PIDs, TIDs, class and method identifiers, and line numbers, the server follows
the traces from the dynamic execution, including caller-callee relations of non-API meth-
ods, taken paths at conditional branches, and exception occurrences. Then, it reproduces
the sequence of instructions executed on the device and simultaneously performs data-flow
tracking and ATA-technique detection.

Data-Flow Tracking

The server tracks data flows resulting from the DEX bytecode assignment instructions with
the same propagation rules as those of TaintDroid. In addition, the taint is propagated from
the source to destination registers for the crmp-op instruction. At the same time, the server
calculates and sets the result of the crmp-op to the destination register by simulating the in-
struction.

When tainted registers are passed to a non-API method called by the invoke-op (non-API),
the server propagates taint between arguments and parameters of the invoked method, and
its return value’s taint is propagated to the destination register of the corresponding move-
result-op executed by the caller. At the same time, taint is propagated from callee’s parameter
registers to the caller’s reference-data-type arguments if the callee appends a tainted value
to the parameter registers. For NI methods, the server currently employs the same propa-
gation rules as those of API methods.



40 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

The server exploits actual values for some propagation rules. Class instance fields and
static fields are tracked based on their name and value. Similarly, it currently tracks data
flows through files, the SharedPreferences, and inter-component communication based on
their contents. Note that the tracking through files is limited. The system tracks data flows
through files by the value logging and matching, which is effective as long as the one-value
feature is satisfied. Since files should not always satisfy the one-value feature, the system
can miss data flows through files.

ATA-Technique Detection

Simultaneously with the data-flow tracking, the server executes the tracking technique de-
scribed in Section 3.3 at each execution of the invoke-op (API) and branches, which is ex-
plained in Section 3.4.4. When the invoke-op (API) is executed, the server operates the value
logging and matching if the invoked method is not one of the taint sources, sinks, and
length-related methods. The value logging currently targets the data types explained in
Section 3.4.2, and values are obtained from the record file. Suppose a value is identified
as an image based on the first few bytes (i.e., file signatures). In this case, optical charac-
ter recognition is executed to extract characters from it, which is used for the value logging
instead of the original bytes.

When the invoked method is Runtime.exec(), the server checks the taint of its argument
register and performs the DA-flow tracking described in Section 3.3.1. All values needed for
the tracking are obtained from the record file.

If the executed instruction is a TC encoder or decoder, the server examines TC flows
(Section 3.3.4). The threshold should be selected depending on the environment [95]. Hence,
considering 100%-accurate transmission, a threshold is determined to be 100 milliseconds by
measuring the accuracy of TC flows on the device. The server performs the TC-flow tracking
only when a TC encoder operates at least two different values to avoid FPs.

3.4.4 Control-Flow Analysis

The DEX bytecode provides twelve if-* instructions for branching. The server statically an-
alyzes control flows over a collection of the app code executed and creates control-flow
graphs and dominator and post-dominator trees with the iterative algorithm [96]. Loops
are controlled by the if and goto-op and are detected by finding back paths based on goto-
and cond-labels, and exit paths of a loop (i.e., jumps from the loop’s body to the outside) are
detected [97, 98]. The results are used to detect control-dependent instructions of each loop,
which are instructions within the loop’s body.

When a branch is executed, the taint of its operands is checked and propagated to the
destination registers of control-dependent instructions that are unop, binop, and const-op in-
structions depending on the result of the inspection explained in Section 3.3.3. VTDroid
would miss flows when the attacker knows the contents of the tracked information, which
will be further discussed in Section 3.6.1. In addition, the server counts and alerts control-
dependent sinks for privacy leak detection because the sinks can leak information directly
to a remote server.



3.5. Evaluation 41

Input Validation Compared Policies
Detection Content
— Resolution i

VTDroid

Secret Uncovering

Comparison
FlowDroid Context
Recovery Secrets

FIGURE 3.10: Overview of InputScope in the experiment. Validations are
detected by VTDroid or FlowDroid and are passed to the rest of the In-
putScope’s components, and secrets are uncovered.

App

[

3.5 Evaluation

This section shows how VIDroid benefits security analysts compared to current tools by
demonstrating the effectiveness of VIDroid in two contexts: privacy leak detection and
suspicious validation detection. In privacy leak detection, taint analysis is used to detect
information flows from points at which apps load sensitive information to other points at
which apps send data out to the network. Taint analysis is used to detect information flows
from points at which apps obtain user input to other points at which apps compare data in
suspicious validation detection. The former information flows are called privacy leaks, and

the latter, input validations.

3.5.1 Experiment Setup

VTDroid is executed on a machine with a ten-core 3.7GHz CPU and 128GB RAM in pri-
vacy leak detection. Apps are exercised with Zenfone 4 (Android 8.0.0, 64GB storage) de-
vice. This section involves three current trackers: FlowDroid [29], TaintDroid, and CTT [76].
FlowDroid is a state-of-the-art tool for static taint analysis. FlowDroid of version 2.8 is used.
Since the evaluation focuses on taint propagation and not taint introduction/checking, Flow-
Droid’s taint source/sink definition is upgraded when FlowDroid misses a flow because of
the definition. However, FlowDroid cannot be configured to use VI Droid’s taint sources
for contacts and photos because the VTDroid’s taint sources are value-based. Therefore, the
results of FlowDroid for contacts and photos are excluded.

In the community, TaintDroid is the most stable implementation of dynamic taint anal-
ysis for Android apps, and CTT is the only currently available technique against the ATA
techniques. TaintDroid (4.3r1) is used with a Nexus 4 smartphone. CTT is implemented into
another Nexus 4 with TaintDroid (4.3r1). TaintDroid and CTT are modified to allow the ex-
ecution of apps’ native programs to increase the number of apps that the tools can analyze.
It is confirmed that no FN is produced because of the modification, and the modification
only positively affects the tools’ results. In this experiment, each app is manually exercised
on each device, games are played to complete at least one stage, accounts are created and
logged in if available, and menu items are selected as many as possible. SIM cards were
installed, but only WiFi was used for the communication.

InputScope [24] is an open-sourced tool for uncovering secrets from user input valida-
tions. InputScope detects user input validations by utilizing FlowDroid, which is vulner-
able to ATA techniques. The environment consists of the latest version of InputScope and
FlowDroid in July 2021. FlowDroid is the same version as the one used in the privacy leak

evaluation. Figure 3.10 shows the overview of InputScope, consisting of four components:



42 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

input validation detection, compared content resolution, comparison context recovery, and
secret uncovering. Taint analysis, FlowDroid by default, is used to detect input validations,
and the validations are passed to the rest of the InputScope’s components. FlowDroid is
replaced with VTDroid for the input validation detection to compare two InputScopes with
VTDroid and FlowDroid. After VIDroid or FlowDroid detects validations, the results are
characterized by the next two components. The last component applies policies to deter-
mine behavior types: secret access key, master password, censorship behavior, and secret
command.

The two InputScopes are executed on the ten-core CPU computer and exercised apps
with the Zenfone 4 device. An app exerciser, Monkey, is used to exercise apps. Each app
is exercised for one hour. A script is used to input texts into an app by injecting keyboard
events when a keyboard is activated. The script helps Monkey to exercise apps’ validation
behaviors more effectively. Furthermore, apps are manually exercised when a keyboard is
activated during the exercise with Monkey.

3.5.2 Taint Sources and Sinks

This section explains taint sources and sinks used by VIDroid in the evaluation.

Taint Sources

For privacy leak detection, VTDroid tracks the four categories of private information tracked
by TaintDroid. It contains low-bandwidth and high-bandwidth sensors, information databases,
and device identifiers. Taint is introduced to values of location and device identifiers (i.e.,
IMEIL IMS]I, ICCID, and phone number) at the invoke-op (API) that calls permission-protected
APIs. At the same time, the values are obtained from the record file and saved for the length
tracking explained in Section 3.3.2. In contrast, the taint is introduced to values of photos
and contacts at the invoke-op (API) based on its contents. Before the taint analysis, the server
acquires photos from the device’s storage and data in contacts.

For suspicious validation detection, VIDroid targets the same taint sources as InputScope.

It contains three APl methods that return a value of the java.lang.String or the android.text.Editable.

Taint Sinks

For privacy leak detection, the server checks the taint at invocations of API methods relating
to streams of binary, objects, bytes, and characters that are DataOutput, ObjectOutput, Out-
putStream, Writer, ByteArrayInputStream, and their subclasses, 32 classes in total. Note that
the classes should not always cause a leak, and the presented sink definition is considered
out of scope. VTDroid also covers constructors of common HTTP-communication classes
that are java.net.URL, okhttp3, org.apache.http, and com.android.volley. For suspicious val-
idation detection, VTDroid checks the taint for 11 API methods that are InputScope’s taint
sinks [24].

3.5.3 Datasets

Two test suites were created to evaluate VIDroid and the current tools with apps actively
utilizing ATA techniques. As test suites, 34 ATA techniques in Table 3.1 are implemented,
and 31 distinct techniques are obtained (there are eight TC techniques in Table 3.1, but five



3.5. Evaluation 43

TABLE 3.4: Number of techniques detected by the four privacy-leak detectors
in the test suite.

ATA Techniques

System A MO cp TC S
VTDroid 5 5 16 5 31
CIT 2 3 2 1 8
TaintDroid 0 0 0 0 0
FlowDroid 0 1 0 0 1
#Techniques 5 5 16 5 31

TABLE 3.5: Number of apps alerted in the popular apps. The column “Any”
gives the number of apps leaking at least one source. Note that “Any” for
FlowDroid excludes contacts and photos.

System Any IMEI IMSI ICCID Location  Contacts Photos Phone Number
TPs / FPs / FNs

VTDroid 11/ 1/0 11/0/0 3/ 1/0 1/0/0 0/0/0 0/3/0 0/1/0 0/0/0

CTT 1/12/0 11/8/0 3/11/0 1/2/0 0/5/0 0/4/0 0/1/0 0/2/0

TaintDroid 9/ 0/2 9/0/2 0/ 0/3 1/0/0 0/0/0 0/0/0 0/0/0 0/0/0

FlowDroid 3/ 0/8 3/0/8 0/ 0/3 0/0/0 0/0/0 -/-/- -/-/ 0/0/0
Precision / Recall

VTDroid 092 /1.00 1.00/1.00 0.75/1.00 1.00/1.00 -/- 0.00 / - 0.00 / - -/-

CTT 048 /1.00 0.58/1.00 0.21/1.00 0.33/1.00 0.00/ - 0.00 / - 0.00 / - 0.00 / -

TaintDroid 1.00 / 0.82 1.00 / 0.82 -/0.00 1.00/1.00 -/- -/- -/- -/-

FlowDroid 1.00 / 0.27 1.00 / 0.27 -/0.00 -/ - -/- -/- -/- -/-

implemented TC techniques represent them). The test suite for privacy leak detection con-
tains 31 ATA techniques. Each technique accesses IMEI and sends the data out to the net-
work. Note that the Direct Buffer and Lookup Table tricks are replaced with the ATA tech-
niques in Figure 3.3. The other test suite for suspicious validation detection contains the
same ATA techniques except for three techniques: Bitmap-Cache-based DA and CD flows
and the Remote-Control-based TC flow. The three techniques were excluded because their
destination of information transfer is a remote server. Any validation outside of a device is
out of the scope of InputScope. Each technique in the test suite obtains user input and com-
pares the data with a hardcoded string. This behavior is categorized as master password
based on the policy [24].

VTDroid and the current tools were also evaluated with popular real-world apps, which
contain more complex code than apps in the test suites and are less likely to operate ATA
techniques. Recently-published apps are not suitable for privacy leak detection because they
do not access TaintDroid’s taint sources, as obtaining such sensitive information is restricted
year by year. Therefore, 30 apps were randomly chosen from the most popular apps that
were collected from the Google Play Store in 2016 and are shown to be more complex than
non-popular apps [21]. For suspicious validation detection, recently published apps were
collected from the Google Play Store and Baidu app store in July 2021. The top 200 free apps
and the top 200 free games on the Google Play Store were downloaded. Then, Android App
Bundles were omitted, and finally, 277 apk files were obtained. Also, apps were downloaded
from five rankings on the Baidu Store, duplicates and Android App Bundles were omitted,
and finally, 226 apk files were obtained. Complete lists of hashes of the apps mentioned here
are given in Appendix A.



44 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

3.5.4 Privacy Leak Detection

This section discusses the results of privacy leak detection.

Test Suite

The four systems analyzed the 31 ATA techniques (Table 3.4) in the test suite. TaintDroid
detects no technique. FlowDroid detects an MO flow with the taint rules for Bitmap.setText()
and Bitmap.getText(). CTT detects eight more techniques than TaintDroid. In contrast, VT-
Droid successfully detects all the techniques. The value logging and matching, not relying
on API method names, successfully detected all the non-data-transforming DA flows, which
are the Text Scaling, Bitmap Cache, and File Last Modified, and their invisible CD flows, six
techniques in total. The results demonstrate that VITDroid is more effective than the other
tools for analyzing apps aggressively exploiting the ATA techniques.

Popular Apps

Table 3.5 compares the results of the experiment with the 30 popular apps. TPs indicate
actual leak-causing apps detected by a system. FPs represent no-leak-causing apps falsely
flagged by a system. FNs show apps accomplishing leaks without triggering an alarm by a
system but detected by the others. The ground truth is obtained by verifying the detected
leaks based on the captured HTTP/HTTPS traffic.

VTDroid and CTT generate no FNs, while TaintDroid fails to detect two and three leaks
of IMEI and IMSI, and FlowDroid misses eight and three leaks of IMEI and IMSI detected by
the others. It was found that VTDroid detects information flows of the five leaks with rules
for MO flows (Section 3.3.2) and the DEX bytecode instructions (Section 3.4.3). It was also
confirmed that none of the DA, CD, and TC flows is involved in the information flows of
all leaks. There is no difference between the numbers of TPs detected by VIDroid and CTT.
Note that for fairness, leaks caused only on certain devices were manually identified and
omitted. Hence, security analysts can use either VIDroid or CTT to avoid missing leaks.

However, there are noticeable differences between the numbers of FPs detected by the
tools, especially for apps leaking IMEI, IMSI, or location. Overall, VTDroid triggers only
one more FP than TaintDroid and FlowDroid, whereas CTT produces 12 more FPs than
TaintDroid and FlowDroid (indicated by the column “Any”). The results indicate that a CTT
user should verify 12 apps that leak no information, while a VIDroid user should check only
one no-leak-causing app.

Although both VIDroid and CTT produce certain numbers of FPs, there is a significant
difference between VTDroid and CTT. Figure 3.11 shows the amounts of false alarms pro-
duced by the systems with apps that leak no sensitive information. The numbers of executed
sinks are almost the same among the systems: 913 sinks were executed during VTDroid’s
analysis; 789, CTT’s analysis; and 738, TaintDroid’s analysis. In contrast, the amount of sinks
falsely alarmed by CTT is notably high compared to VTDroid and TaintDroid. CTT gener-
ated 541 FPs, while VTDroid and TaintDroid produced 20 and 0 FPs, respectively. The FP
ratio is 69% for CTT and 2% for VTDroid. TaintDroid is 100% accurate. The difference is
because CTT taints the return value of API methods that do not usually cause information
flows, as Section 3.1.2 points out. In the situation that an analyst attempts to verify that an
app causes no leak, all the app’s alarms produced by a tool must be confirmed to be false.

Thus, the number of false alarms significantly affects the analysis cost. The overall results



3.5. Evaluation 45

I Falsely Alarmed Sinks
True Negative Sinks

800 A
9]
X
c
E
D 600 -
5
(9]
[J]
X
w
S 400 -
@
Q
IS
>
=

200 A

0- T
VTDroid CTT TaintDroid
System

FIGURE 3.11: Ratio of false alarms to the number of executed sinks in apps
that leak no sensitive information. FlowDroid is excluded because FlowDroid
performs static analysis and cannot count the sink execution number.

TABLE 3.6: Number of techniques detected by the two suspicious-validation
detectors in the test suite.

Svst ATA Techniques S
ystlt pa Mo cp TC "™
VTDroid 4 5 15 4 28

FlowDroid 0 0 0 0 0
#lechniques 4 5 15 4 28

demonstrate that VTDroid is more effective than CTT, TaintDroid, and FlowDroid for ana-
lysts who do not tolerate FPs and FNss.

3.5.5 Suspicious Validation Detection

This section presents the results of suspicious validation detection with popular apps. The
experiment was to evaluate the increase in the number of taint propagation and its verifica-

tion cost due to the taint propagation rules with the current tool as the basis.

Test Suite

The InputScopes with VIDroid and FlowDroid analyzed the 28 ATA techniques in the test
suite (Table 3.6). InputScope with VTDroid successfully detects all the techniques and un-
covers the master password secret. In contrast, InputScope with FlowDroid identifies none
of the techniques and fails to uncover any suspicious validation. The reason why FlowDroid
misses the MO flow, detected by FlowDroid in the privacy leak evaluation in Table 3.4, is
possibly the FlowDroid’s options set by InputScope. The results show that VIDroid is more
effective than FlowDroid for analyzing apps conducting the ATA techniques.



46

Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

TABLE 3.7: Results of suspicious validation detection by InputScopes with

VTDroid and FlowDroid. The values in parentheses show the number of

apps. Validations and secrets detected by VTDroid (shown in the columns

Total) contain all the validations and secrets detected by FlowDroid within

the same coverage. Validations and secrets detected only by VIDroid are

shown in the columns Only. C. stands for coverage, and the numbers within
the VIDroid’s and full coverages are shown for FlowDroid.

Dataset #Apps ‘ #Validations ‘ #Secrets
VTDroid FlowDroid VTDroid FlowDroid
Only Total VTDroid’s C. Full C. | Only Total VTDroid’sC. Full C.
Google 277 | 150 (6) 158 (9) 8(3) 312 60) | 6(2) 9(3) 3(1) 37(14)
Baidu 226 | 443 (2) 457 (6) 14 (4) 3,201(119) | 0(0) 0(0) 0(0) 40(17)
Sum 503 | 593 (8) 615 (15) 2(7) 3513(179) | 6(2) 9(3) 3(1) 77(31)
TABLE 3.8: Number of taint propagation by the taint propagation rules and
legacy rules in suspicious validation detection, and coverage of the apps’
code. The values in parentheses indicate the ratio to the total.
Dataset App Total DA MO CD TC Legacy Coverage
Google 1 1,369,890 97,505 (7.1) 260,298 (19.0) 107,888 (7.9) 43,395 (3.2) 860,804 (62.8) 13.7
2 821,544 15,976 (1.9) 348,046 (42.4) 114,233 (13.9) 324 (0.0) 342,965 (41.7) 25.5
3 174226 3555 (2.0) 44,356 (255) 12,072 (69) 1,289 (0.7) 112,954 (64.8) 38.6
4 148,022 1,363 (0.9) 82,804 (55.9) 1,393 (0.9) 2,114 (1.4) 60,348 (40.8) 7.8
5 126,304 674 (0.5) 76,286 (60.4) 11,262 (8.9) 0 (0.0) 38,082 (30.2) 5.7
6 100,778 16,223 (16.1) 18,334 (182) 18,958 (18.8) 34 (0.0) 47,229 (46.9) 34.2
7 79474 394 (05) 12,176 (153) 2,311 (2.9) 0 (0.0) 64,593 (81.3) 22.0
8 77879 13,831 (17.8) 10445 (13.4) 24,266 (31.2) 33 (0.0) 29,304 (37.6) 27.6
9 59,944 7,829 (13.1) 22,015 (36.7) 6,491 (10.8) 1,004 (1.7) 22,605 (37.7) 6.7
Baidu 10 694,610 18763 (2.7) 254,837 (36.7) 28238 (4.1) 35438 (5.1) 357,334 (51.4) 16.5
11 597,006 88,934 (14.9) 247,311 (414) 60,806 (10.2) 22,970 (3.8) 176,985 (29.6) 52
12 523375 34217 (65) 212433 (40.6) 32,671 (6.2) 9931 (1.9) 234,123 (44.7) 20.9
13 483,953 15,375 (3.2) 259,219 (53.6) 32,007 (6.6) 19,115 (3.9) 158,237 (32.7) 8.5
14 21,870 2978(13.6) 11,995(548) 1,086 (5.0) 1 (0.0) 5810 (26.6) 47
15 7930 272 (34) 3,344 (42.2) 732 (9.2) 0 (0.0) 3,582(45.2) 53
Popular Apps

Table 3.7 shows the numbers of apps, validations, and secrets detected by InputScopes with
VTDroid and FlowDroid. InputScope with FlowDroid uncovers secrets in 31 apps among
503 apps in total (6%), which is almost the same rate as the original paper’s results. In
comparison, VIDroid detects a smaller number of validations. The difference is because
FlowDroid statically analyzes the entire code of apps (i.e., full coverage). VTDroid dynami-
cally analyzes only the executed code of apps, and code coverages are different between the
two analyses. Code coverage of VIDroid is 70.35% at the highest, 9.41% on average, and
0.04% at the lowest. It was confirmed that validations detected only by FlowDroid were not
executed during the VIDroid’s analysis.

It is noteworthy that FlowDroid detects a few validations within the same coverage of
VTDroid. VIDroid detects 150 validations (six apps) and 443 validations (two apps) in the
datasets that FlowDroid overlooks. The differences are caused by the difference in taint
propagation rules employed by VTDroid and FlowDroid. VIDroid employs the taint prop-
agation rules for DA, MO, CD, and TC and other legacy rules that are for direct-assignment
bytecode instructions, including const-op, move-op, unop, binop, iget-op, iput-op, sget-op, sput-
op, and move-result-op of invoke-op (non-API). In contrast, FlowDroid employs only the legacy
rules and is not able to track flows of the four types as demonstrated in Section 3.5.5. Ta-
ble 3.8 shows the numbers of taint propagation by the rules and legacy rules with the 15



3.5. Evaluation 47

apps that VIDroid detects the validations shown in Table 3.7. Each value indicates the num-
ber of increases of tainted registers calculated by counting the execution of each rule with
a tainted register as its source operand of propagation. Note that the rule for const-op only
removes the taint of its destination operand, and the number of cleared taints by the rule
was counted. The data shows that information flows of any app are tracked by the rules
for DA, MO, CD, and/or TC, which FlowDroid does not employ. Thus, FlowDroid fails to
track some information flows in any app listed in Table 3.8 and could miss secrets if apps
performed suspicious validations with the flows. Hence, VIDroid is more effective than
FlowDroid for analysts who require a robust approach against the ATA techniques.

There is a trade-off between robustness and precision, and a robust tool could not be
practically used if the tool generates numerous FPs. Among the 615 validations detected by
VTDroid, only nine validations (three apps), shown in column 8 from Table 3.7, are flagged
as secrets by the last component with the policies. The latter three components of InputScope
screened out the other 606 validations. Note that it does not mean the 606 validations are all
false positives, but they are simply excluded from the final outcome because their compared
contents or comparison contexts are not suspicious. The nine validations were verified, and
three of them are TPs. FlowDroid also detects them (column 9). The other six validations are
tracked by the rules for DA, MO, and CD flows. Three of them are detected with a DA flow
that consists of an invocation of java.lang.CharSequence.charAt() APl method as either trans-
mitter or receptor. The official Android API reference shows that the API method returns a
character from its character sequence (i.e., base object). The API method only causes a flow
from the base object to the return value, which means it can be neither transmitter nor recep-
tor, and the detected DA flows do not actually exist. Hence, the three secrets were identified
as FPs. The other three validations are detected with a TC flow. The bytecode of the TC
flow’s encoder was manually analyzed, and it was found that the encoder is an if instruc-
tion checking whether the taint source value is null immediately after the value is obtained
(i.e., the encoder cannot preserve information of the taint source). It can be concluded that
the TC flow is FP. The verification cost is negligible, and it can be considered that VTDroid

achieves both robustness and precision.

3.5.6 Performance Evaluation

The performance of the tools used in the privacy leak evaluation will be discussed separately
for static and dynamic analyses. FlowDroid, the only static analysis tool in the privacy leak
evaluation, completed the analysis in 133 minutes, which is slightly longer than CTT and
TaintDroid. FlowDroid analyzed the apps one by one. The time can be easily shortened
by executing the analysis parallelly if more computation resources are available. However,
FlowDroid results in the least recall in Table 3.5, meaning that FlowDroid misses more flows
than the other tools.

On the other hand, the analysis time depends on the app exercise time for the dynamic
analysis tools. Since apps were manually exercised in privacy leak detection, an app’s ex-
ercise time increases roughly in proportion to the number of the app’s features. To finish
exercising all the popular apps on the devices, VIDroid took 101 minutes; CTT, 96 minutes;
and TaintDroid, 86 minutes. Since VIDroid instruments code before launching apps, it in-
creases the size of the app, the installation time, and the app runtime overhead. The app
runtime overhead is caused by the instrumented code writing logs to the device’s storage.
In exchange, VIDroid users can use the recorded execution traces to understand the app’s



48 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

1 /url?pkg=<value>&ver=1011&ha=0a&lc=en_US

FIGURE 3.12: An example of HTTP request containing transformed sensitive
information.

behaviors, while TaintDroid and CTT do not record such information in the experiment. If
TaintDroid or CTT were modified to record the information, the tool would write logs to
storage, which is the same type of operation as VTDroid’s instrumented code, and the tools’
app runtime overheads would be close to each other. Therefore, the app runtime overhead of
VTDroid is reasonable for researchers regularly requiring the information of execution traces
to understand apps’ suspicious behaviors. In the privacy leak evaluation, for example, it was
found that an app sends an HTTP request to a server in Figure 3.12, which apparently not
containing sensitive information. However, VTDroid flags it as a leak and shows a history
of taint propagation with actual values processed from a source to the sink. The history in-
dicates that characters Oa are the first two bytes of an encoded string compounding IMEI,
device name, and WiFi MAC address. In contrast, the other tools detect the leak and do not
describe it, and it is infeasible for researchers to verify whether the detection is true.

Performances of the core data flow tracker cannot be evaluated only by comparing the
app runtime overheads. This is because TaintDroid and CTT implement taint analysis on
Android devices, while VTDroid’s taint analysis is implemented on the server. VTDroid
also takes time for the server-side taint analysis. With the 30 popular apps in privacy leak
detection, the time taken to complete the analysis per app was calculated (Figure 3.13). A
timeout of one hour was used per analysis. VT Droid analyzes an app with tracking a single
private information per analysis, and the time varies depending on the tracked information.
For each app, the maximum and minimum show the analysis times of the longest-time-
taken and the shortest-time-taken private information, respectively. Since multiple private
information can be tracked in parallel, the analysis time for an app is determined by the
maximum. The results show that the analysis finishes within three minutes at a maximum
for 67% of the apps and within ten minutes for 87% of them. Code coverage was measured,
and the highest is 43%, the average is 15%, and the lowest is 4%. As an example of parallel-
analysis time, VTDroid was executed to analyze the 30 apps one by one on the condition
that VIDroid tracks the seven private information at the same time. VTDroid was finished
in 219 minutes. Overall, VIDroid took 29 minutes for the static bytecode instrumentation,
101 minutes for the app exercising, and 219 minutes for the information flow analysis, and
the total is 349 minutes. It is the longest among the tools but is still a few hours, which poses
no problem for practical use. The results demonstrate that VT Droid is practical for analyzing
popular real-world apps.

In suspicious validation detection, each app was exercised for one hour, and a timeout
of one hour was used for VIDroid. In addition, VTDroid takes several minutes for the static
bytecode instrumentation per app. Hence, a timeout of three hours was used for FlowDroid
for a fair comparison. Because of the timeouts, both VIDroid and FlowDroid failed to ana-
lyze some apps. Many factors can cause the analysis failure, for example, code complexity
and buggy apps. Improving the applicability of the tools is out of the scope of this paper,
and the results of successfully analyzed apps were focused.

Since the analysis times for both VTDroid and FlowDroid depend on the timeouts in
this experiment, the performance of the tools for the apps whose analysis results do not



3.6. Discussion 49

B (6] )]
o o o
I I I
[ |
1

Taint Analysis Time (minutes)
w
o

20
[ ] [ ]
10 - I
0 - -O'.-Q-I Iod L g I‘ b >
50 100 150 200 250 300 350

App Exercise Time (seconds)

FIGURE 3.13: Relation between app-exercise and server-side analysis times

per app. For each app, the upper and lower whiskers and dot denote the

maximum, minimum, and average of seven analysis times taken to track each
of the seven private information.

match cannot be compared. For three apps from the Google Play Store and four apps from
the Baidu app store that the validation detection results of VTDroid and FlowDroid are the
same, the analysis time for VIDroid was 560 minutes and for FlowDroid, 12 minutes. The
result shows that FlowDroid is faster than VTDroid. A major reason is that VIDroid takes
time to exercise the apps, which is necessary to obtain the apps’ runtime values. The time
can be shortened by improving the exerciser.

3.5.7 Ethical Considerations

The experiments were carried out only by the author and his supervisors, and no actual
personal information was involved. The respect for app publishers should be considered,
and the instrumentation of the app code is designed to not change any data sent to remote
servers, not to affect their properties. In addition, the results were carefully used only for the

purpose of the experiments and not used with any other intention.

3.6 Discussion

This section explains the robustness of the taint propagation rules and the limitations of
VTDroid.

3.6.1 Robustness of Taint Propagation

The tracker for both data-transforming and non-data-transforming DA flows performs taint
propagation based on value matches. Thus, the tracker generates FPs when an API method
is executed with a value that coincidentally matches one of the unrelated transmitter’s previ-
ously logged values. It is shown that the tracker generates fewer FPs than CTT in the privacy



50 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows
1 x = "passwd";

2 TextView tvl = findViewById(R.id.a);

3 TextView tv2 = findViewById(R.id.a);

4 tv2.setTextScaleX(0);

5 if (x == "topSecret") {

6 tvl.setTextScaleX (1);

7}

8 y = tv2.getTextScaleX();

FIGURE 3.14: Combination of invisible CD and hidden implicit flows x = y
w/ class.

leak evaluation and that the FP verification cost is small in the input validation evaluation.
Therefore, the impact of FP caused by the tracker is negligible.

The value logging and matching are based on the one-value feature, which assumes that
transferred values are not changed through unmonitored memory. However, this assump-
tion could be incorrect depending on API methods. Also, VIDroid tracks values printed
in an image with optical character recognition, but more techniques are available to hide
data in an image. Failing to track DA flows with the value logging and matching can cause
failures in tracking the other types of flows. The invisible-CD-flow tracking (Section 3.3.3)
and TC-flow tracking (Section 3.3.4) utilize the result of DA-flow tracking. Hence, if VT-
Droid misses a DA flow, it fails to detect CD and TC flows associated with the DA flow.
Therefore, conducting further investigation and characterization of API methods consider-
ing data-transformation capability is needed. Since VTDroid users can quickly test their taint
propagation rules on the analysis server without running apps repeatedly, it is believed that
this study will serve as a base for future research on taint analysis of Android apps.

The shell command parser explained in Section 3.4.2 currently considers pipes, paren-
theses, and redirect operators as delimiters to separate shell commands in ATA techniques
in the test suite. It was manually confirmed that the parser properly functioned with shell
commands (e.g., getprop and type) executed by the popular apps in the experiments. A more
well-formalized parser should be utilized in the future. However, the parser will still be lim-
ited to shell commands and cannot track flows in external programs, such as Python scripts.

A limitation of the CD-flow tracking is to track a CD flow that has not one-to-one but
many-to-one mapping, which can preserve not a perfect but a certain amount of informa-
tion. In addition, the CD-flow tracking does not detect a combination of the defined invisible
CD and hidden implicit flows [99]. Figure 3.14 shows an example of the combinational flows.
Since x’s value is passwd, the branch at line 5 is not taken. Subsequently, the transmitter at
line 6 is not executed, and the value logging and matching do not detect the flow between
lines 6 and 8. In this case, however, the branch only transfers information that x’s value is
not topSecret. As long as the branch is not taken, such comparisons with predicted values
are considered as non-information-preserving because values of device identifiers and user
input are not predictable. In addition, such comparisons are narrow conditions, which must
be detected as suspicious by other methods such as symbolic execution. Therefore, VIDroid
is currently allowed to miss the combinational flows. Also, the CD-flow tracking is currently
the only practical solution because current implicit flow tracking, such as [100, 101], taints
destination registers of control-dependent instructions when a branch is not taken, and no
register is tainted in the example. Therefore, the CD-flow tracking is acceptable and practi-
cal.



3.7. Related Work 51

The TC-flow-tracking threshold value used in the evaluation was determined by the au-
thors for the experiment environment. Since the balance between FP and FN changes de-
pending on the threshold value, the user must decide according to the balance the user
desires. Since the TC-flow tracking performs based on the execution time of API methods, it
is considered that low-level elements in API methods do not affect the tracker. Stephens et
al. [102] develop a program obfuscation framework that leverages several channels exploit-
ing low-level elements, such as just-in-time compilation and garbage collection, to encode
data into timing. However, their target is not Android, and it is unclear whether their chan-
nels work in the Android platform.

3.6.2 Limitations

Code coverage depends on app-exercising methods and experiment environments in dy-
namic analysis. Thus, the VTDroid’s coverage in Section 3.5 does not perfectly represent
code executed on real users’ devices. Scalability was prioritized, and Monkey was mainly
used in the suspicious validation detection. By improving the coverage, VTDroid should
detect the validations uncovered by FlowDroid within full coverage (Table 3.8) except Flow-
Droid’s FPs. Progressing the app-exercising methods and experiment environments is out
of this paper’s scope, and the coverage should be improved by current approaches [103, 104]
focusing on analysis environments.

VTDroid currently does not track information flows between multiple apps. However,
API methods provide shared resources to apps, which can be used for covert channels [105,
106]. VTDroid cannot track data leaving and returning to a device in a network reply be-
cause a remote server can modify it into any format. Also, native code, such as third-party
libraries, is out of focus of VIDroid as well as bytecode-level trackers. They are written by
app developers and packaged within apps and are different from API methods, not written
by third parties. Since it is easy to locate such libraries, they should be analyzed by tools
such as Malton [70].

Since the approach uses image data to introduce taint to images, analysts need to prepare
images carefully by themselves if they want to detect image leaks. Preparing images is out of
the scope of this paper. When the analysis server retrieves images from the Android device,
it would take time and consume a large disk space if there are many images. Also, if there
are few images on the device, apps may detect a small number of images and hide their
behavior.

3.7 Related Work

This section discusses related work. Until now, VTDroid is the only tracker that targets the
combinations of the four flow types. Therefore, this section presents current approaches for
each of the DA, MO, CD, and TC flows.

3.71 DA Flow Tracking

Similar to the value logging and matching, content-based tracking [93] is devised to track
information flows over the unmonitored area. However, the approach cannot track the other
types of flow and does not target the Android platform. Although full-system taint trackers

are developed [70, 67], they do not track control dependencies and can miss flows on the



52 Chapter 3. VTDroid: Value-utilized Tracking of Information Flows

runtime layer. For example, the major purpose of Malton [70] is to provide a comprehensive
view of the target apps. As such, it is not designed to mitigate undertainting on the runtime
layer and across API calls.

3.7.2 MO Flow Tracking

TaintDroid tracks two MO flows of the Direct Buffer and Lookup Table. However, the Direct
Buffer can use a tainted value as the location (Figure 3.3) to transfer information without
being tracked by TaintDroid. TaintDroid tracks the Lookup Table with a propagation rule
for the aget-op because the technique is commonly used for character conversion. However,
this paper presented an example (flow x = y1 in Figure 3.3), which TaintDroid will fail to
track. It was shown that one of the rules, Rule 4, can track the flow, and the rule was also
tested with real-world apps. Other than TaintDroid, taint propagation rules for the array
put operation are previously presented by Kynoid [107], TaintART [62], MirrorDroid [90],
and TaintMan [64]. However, none of their rules propagates the taint from the index to the
array (Rule 4 in Table 3.2), and they do not track CD flows. Hence, their approaches miss
the information flow. An app-level taint tracker [65] propagates taint among reference-data-
type arguments, base objects, and return values of API methods. Therefore, it could track
some invisible MO flows. However, it triggers FNs for methods taking primitive-data-type
arguments. Also, tainting return values of length-related methods can trigger overtainting
with CD flows because branches often operate lengths.

3.7.3 CD Flow Tracking

You et al. [64] developed CD-flow detection that checks the values of registers at re-convergence
points. However, it will fail when information is transferred to API calls, not to registers,
which cannot be examined at the re-convergence points. Researchers devised CD-flow track-
ing techniques [100] for TaintDroid and [108] for FlowDroid. FlowDroid also provides the
option of tracking CD flows and could detect some ATA techniques in the test suite. Even
though, unlike the CD-flow tracking, they only focus on visible CD flows and cannot track
invisible CD flows and the other types of flow.

3.7.4 TC Flow Tracking

Researchers developed techniques that detect timing channels by analyzing API usage fre-
quencies [86] or the time differences between send operations [87]. Nevertheless, their ap-
proaches do not track information flows within apps and have limited uses. For example,
the techniques cannot be utilized for input validation detection. Until now, CTT is the only
approach to tracking information flows over TC flows. However, tracking only TC flows
on the runtime layer will fail to detect TC flows in the shell commands. Detecting informa-
tion flows between an app and shell commands is essential to track such flows, which the
TC-flow tracker achieves.



3.8. Summary 53

3.8 Summary

This chapter presented a new approach to tracking visible and invisible information flows
originating from ATA techniques. The characterization of the flows enables a tracker to de-
tect all the ATA techniques in ScrubDroid and other tricks utilizing unknown media in API
calls. A taint tracker called VTDroid was built for privacy leak and user input validation de-
tections, and its effectiveness was evaluated compared to TaintDroid, CTT, and FlowDroid.
The results show that VIDroid outperforms the current trackers. VIDroid’s performance
demonstrated in this chapter should be an indicator for researchers to determine whether

they are concerned with ATA in their studies.






55

Chapter 4

T-Recs: Tracking Information
Flows by Recording and

Reconstruction

Protecting smartphone users has attracted increasing interest due to the appearance of sus-
picious apps and third-party SDKs. App analysts apply automatic analysis techniques to
large-scale datasets of Android apps to detect suspicious behaviors. For example, Zhao et
al. uncovered backdoor and blocklist secrets in apps published on the Google Play Store
and Baidu app store and pre-installed apps [24]. They used a static taint analysis tool called
FlowDroid [29] to uncover the secrets. Static taint analysis is popular in analyzing a large-
scale dataset because of its scalability.

However, static taint analysis has the problem of detecting incorrect execution paths, in-
creasing the cost of verifying experiment results. Recent reviews of the literature on static
taint analysis showed the limitations of the analysis [77, 78]. Zhang et al. evaluated currently-
available static taint analysis tools: FlowDroid, Amandroid [31], and DroidSafe [30] with
DroidBench [79] apps supported by the tools and real-world apps. The results show that
the tools are inaccurate and cannot be used for analyzing real-world apps dependably. Han-
dling inter-component communication (ICC), reflective calls, and component lifecycles are
significant challenges. For example, FlowDroid supports ICC detection with IccTA [32] and
IC3 [33], which are shown to be unreliable. The increase in false positives (FPs) complicates
analysis-result verification, causing an increase in analysis cost. For example, Zhao et al.
manually analyzed 70 out of over 16,000 detected apps to estimate the accuracy, and the
result is 87.14% (i.e., nine apps are FPs) [24]. Three of the FPs were caused by conflicting
constraints along the execution path. Such a manual analysis, especially finding path con-
straints, is complex and requires significant effort. Also, increasing the complexity of the
analysis algorithms increases the analysis time, precluding the analysis from completing in
a reasonable time.

On the other hand, a dynamic taint analysis only analyzes the executed paths, and there
is no chance of detecting incorrect execution paths. For example, TaintDroid [54] generates
no FP in the privacy leak evaluation with 30 popular real-world apps. However, current
dynamic taint analysis tools depend on specific devices and versions of Android OS. It de-
creases their usability [80] and the range of analyzable apps. In addition, the app exercise
must be performed every time the taint analysis runs. Therefore, when the analyst or re-
searcher changes the parameters or features of the taint analysis and re-analyzes the same
app, the app exercise also needs to be executed, which incurs extra costs.



56 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

This chapter presents a new runtime-data-utilized taint analysis system called T-Recs [82],
with which users can start analyzing apps immediately after plugging an unmodified de-
vice into their computer. T-Recs first records the target app’s runtime information at almost
instruction-by-instruction. Then, it accurately reconstructs the app execution on the com-
puter with the logged information to track information flows and detect information leaks,
whereas overcoming the device dependency issue. The computer is outside the Android
framework in contrast to TaintDroid, which is implemented on the Android framework.
Also, the logs are stored in the analysis computer so that the taint analysis can be executed
independently of the app exercise.

T-Recs consists of five components: parser, instrumentator, logger, reconstructor, and ex-
erciser. The parser, the instrumentator, and the logger procure the app’s runtime information
with as minimal bytecode instrumentation as possible. Then, the reconstructor reproduces
the app execution based on the parsed and logged information. The exerciser addresses
how to trigger the target behavior in apps, a general challenge in dynamic analyses. App
exercise depends on the apps and the data to be tracked. For example, tracking user inputs
requires input-related exercises. The exerciser triggers ICC, callbacks, and lifecycles in the
DroidBench apps because the static taint analysis has limitations for handling them.

T-Recs’ accuracy, analysis time, and success rate were evaluated in privacy leak detec-
tion compared to currently available taint analyzers, which are FlowDroid (w/ and w/o
IC3), Amandroid, DroidSafe, DroidRA [40, 41] (w/ FlowDroid, Amandroid, and DroidSafe),
IccTA, and TaintDroid (w/ and w/o IntelliDroid [59]). The results show that T-Recs outper-
forms the compared tools in detection accuracy. T-Recs also achieves reasonable analysis
time and success rate. Further, T-Recs detects ICC- and reflection-related leaks missed by
FlowDroid in popular apps collected from the Google Play Store in 2016 and 2021. For iden-
tifying and counting the leaks, a debugging feature was added to the reconstructor. Then,
only the reconstructor was executed. These experiments were conducted once the over-
all analysis was finished, indicating that T-Recs’ taint analysis (i.e., the reconstructor) can
be re-executed without re-exercising the app, which is one of T-Recs” advantages. T-Recs’
app-runtime overhead (i.e., overhead for apps to be installed, launch, cause leaks, and be
uninstalled) and parallel execution performance were also evaluated in comparison with the
other trackers. The results are acceptable, and running T-Recs in parallel can easily shorten
the analysis time. T-Recs has been made available to the community.

Here is the summary of the contributions:

* A mechanism for accurately reconstructing the app execution outside the Android
framework based on the app’s runtime information logged on a device was developed.

* The mechanism was implemented into a new runtime-data-utilized taint analysis sys-
tem called T-Recs with nearly 17,000 lines of Python and Smali code.

* It was demonstrated that T-Recs” leak detection performance compared to FlowDroid,
Amandroid, DroidSafe, DroidRA, IccTA, TaintDroid, and IntelliDroid with DroidBench,
254 popular apps from the Google Play Store in 2016 and 2021, and SDK-version-varied
apps from the Google Play Store and Anzhi [83].

* The importance of tracking ICC- and reflection-related flows is highlighted by T-Recs,
detecting these flows in ten apps and related leaks in six apps among 96 apps from the
Google Play Store in 2016 and also these flows in 52 apps and associated leaks in 29
apps among 158 apps from the Google Play Store in 2021.



4.1. Background 57

1| .class LLeaker;
2
3 | imei:Ljava/lang/String; // field
4
5 | .method public constructor <init>()V
6
7 invoke-direct {p0}, Landroid/app/Application;-><init>()V
8 | .end method
9
10 | .method public callback1()V
1
12 invoke-virtual {v0}, Landroid/telephony/TelephonyManager;->getDeviceld()Ljava/lang/String; // source
13
14 move-result-object v1 // tainted
15
16 if-eqz v1, cond_0
17
18 iput-object v1, p0, LLeaker;->imei:Ljava/lang/String; // field setter
19
20 :cond_0
21 | .end method
22
23 | .method public callback2()V
24
25 iget-object v1, p0, LLeaker;->imei:Ljava/lang/String; // field getter
26
27 invoke-static {v0, v1}, Landroid/util/Log;->i(Ljava/lang/String;Ljava/lang/String;)l // sink

28 | .end method

FIGURE 4.1: Smali code leaking the sensitive information.

* The additional experiments indicate that T-Recs’s cost of re-executing taint analysis is
small, taking 34 minutes (17% of the whole) for the 96 apps collected in 2016 and one
hour and 40 minutes (11% of the total) for the 158 apps collected in 2021.

The rest of this chapter is organized as follows. Information leaks and taint analysis are
explained in Section 4.1. The approach is presented in Section 4.2, and its implementation
is described in Section 4.3. The evaluation is reported in Section 4.4, and the results are
discussed in Section 4.5. Related work is explained in Section 4.6. Lastly, the summary is

stated in Section 4.7.

4.1 Background

This section first discusses an information-leaking app’s code. Then, it explains information

flow tracking and current taint analysis approaches.

41.1 Information-Leaking App’s Code

An app can leak sensitive information with, for example, the Smali code in Figure 4.1. In
Smali, one class is defined per file, similar to Java. The class name is printed in the first line
of the Smali file. It is prefixed with a capital L and suffixed with a semicolon. In Figure 4.1,
Leaker is the class name. A field of Leaker is defined in Line 3. The left part of the colon is
the field name (i.e., imei), and the right part is the data type (i.e., Ljava/lang/String;). The data

type is java.lang.String in Java, and slashes are used instead of dots in Smali.



58 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

Leaker has three methods defined in Lines 5-28. A method definition begins from a line
starting with .method to next .end method line. A constructor is defined in Lines 5-8; call-
back1(), 10-21; and callback2(), 23-28. The V attached to the method names’ ends indicates
the data type of the return value, and V means void in Java. The invoke instructions, such as
invoke-direct in Line 7, invoke-virtual in Line 12, and invoke-static in Line 27, are used to call a
method. The move-result-object instruction assigns the return value of the most recent invoke
instruction to the destination register (e.g., v1 in Line 14). The if-eqz instruction is one of the
branch instructions, and the path to the label is taken if the operand register value is 0 (e.g.,
if v1’s value is 0 in Line 16, Line 18 is skipped, and Line 20 is subsequently executed). The
iput-object and iget-object instructions in Lines 18 and 25 are a setter and a getter of instance
fields, respectively.

4.1.2 Information Flow Tracking

The information flow starts when the code obtains a device’s hardware identifier (i.e., IMEI)
in Lines 12-14 in the method callback1(). The code sets the value to the field imei in Line 18.
Then, the code moves the value from the field imei to the register v1 in Line 25 and leaks it
by calling Log.i() in Line 27 in the other method callback2().

Assume that callbackl() is called, a taint tracker can assign a taint tag to the register v1
in callback1() and propagates the taint from v1 to the field imei. A challenge is to determine
whether callback1() and callback2() are executed in this order. Execution of the methods de-
pends on ICC, user-interface events, and the app’s lifecycle. If a tracker overapproximates
the call flows, the leak is falsely detected (i.e., FP). Alternatively, if a tracker underapproxi-

mates, the leak is missed (i.e., false-negative (FN)).

4.1.3 Static Taint Analysis

Static taint analysis requires no Android device and processes apps without running them.
A significant challenge is to obtain precise Android models to find correct execution paths
(e.g., the execution order of callback1() and callback2() in Figure 4.1). Also, the execution order
of instructions changes based on system properties, such as OS version and IMEI (e.g., Line
16 in Figure 4.1).

Considerable effort has been devoted to Android-modeling techniques; however, the lim-
itations are demonstrated [78]. Zhang et al. showed that currently-available static taint anal-
ysis tools produce many FPs and FNs in DroidBench apps that contain ICC- and lifecycle-
related code similar to Figure 4.1. They also evaluated the tools with real-world apps and
concluded that none of them was reliable. The increase of FPs increases the analysis cost and
complicates the verification of analysis results. Also, increasing the complexity of analysis
algorithms multiplies the analysis time, making it challenging to complete the analysis in a

reasonable time.

4.1.4 Dynamic Taint Analysis

A dynamic taint analysis uses the target app’s runtime semantics. For example, Taint-
Droid [54] performs taint tracking within the Dalvik virtual machine interpreter, and the
Android models are not used. Since only the executed paths are analyzed, FPs, due to mis-

estimating call flows and control flows, do not occur. The computation required for the



4.2. Approach 59

N i Analysis Server 3 S Unmodified
l Unpackaging Packaging l Android Device

I P4

- Jﬁ
/ Smali T-Recs Smali \
Code Code
Parser Instrumentator

I } Exerciser
Logging Points>
Storage
Code —
Reconstructor

\\ Data

FIGURE 4.2: Overview of the approach.

Android modeling is no longer necessary, and the analysis time does not depend on the
modeling.

However, Reaves et al. [80] discuss that TaintDroid is the most difficult to set up in com-
parison with static analysis tools they audited because TaintDroid requires the user to build
the Android source code. Also, a supported device is not always available. Other current
dynamic taint analyzers could be easier to set up; however, they have been barely examined
in the community and are not effortlessly usable, which are discussed in Section 4.6.

TaintDroid’s other drawback is that the app exercise needs to be executed every time
running the taint analysis because the app exercise and the taint analysis are performed
simultaneously in TaintDroid. Therefore, when the analyst changes the parameters of the
taint analysis (e.g., the data to be tracked) and re-analyzes the same app, the app exercise
also needs to be repeated, which incurs extra costs. It also distresses researchers who add
new features to the taint analysis and evaluate them.

Another issue is the app exercise itself. Since a dynamic taint analysis only analyzes the
executed part of the app’s code, triggering the target behavior in the app is necessary. Mon-
key [109], a popular Ul/application exerciser, exercises the app randomly. Random exercise
is inefficient in triggering a leak in practice because sometimes a leak is only triggered by a
particular sequence of UI operations. For example, some of the DroidBench apps require a
specific sequence of operations to trigger leaks as shown by callback1() and callback2(), which
must be called in this order to cause the leak (Figure 4.1). Finding such operation sequences
using random input can take much time or fail to trigger leaks.

4.2 Approach

This section presents a new taint analysis system addressing the model accuracy, device
dependency, and re-analysis cost issues.

421 Overview

The system is designed to be automatic for analyzing large-scale datasets. It performs a
runtime-data-utilized taint analysis outside the Android framework to accomplish accuracy,
usability, and small re-analysis costs. There are the following challenges:

* How to implement a mechanism to provide app runtime information outside the An-

droid framework in a way that is effective for many real-world apps.



60 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

¢ What kind of app runtime information should be used to accurately reconstruct the
app execution and track information flows outside the Android framework.

¢ Since the system requires the app’s runtime data, how to automatically exercise the
app to trigger the target behavior should be addressed.

The system consists of five components that address these challenges. Figure 4.2 shows
the overview of the system. After the user plugs the unmodified Android device into the
analysis server, the setup is finished, and the analysis server first unpackages the app and
extracts the app’s Smali code.

* Parser extracts the app’s information from the Smali code to reduce the information to
be logged.

¢ Instrumentator injects the logger into the app code. It also provides the logging point

information to the reconstructor.

* Logger saves the app runtime information at the app’s bytecode level. It is indepen-
dent of specific Android devices and versions and requires no device modification,

such as rooting. The logs are eventually stored in the analysis server.

* Reconstructor reproduces the app execution, including call-, control-, and dataflows
on the analysis server based on the parsed and logged data. The logs are saved in the
storage of the analysis server so that the reconstructor can be executed separately from
the logger.

* Exerciser cooperates with the reconstructor to automatically trigger leaks caused by
ICC, callbacks, and lifecycles in the DroidBench apps.

The rest of this section describes each component.

4.2.2 Parser

The parser extracts class, method, field, and instruction information from the app’s Smali
code. The parser maps each class and method (e.g., class Leaker and methods init(), call-
back1(), and callback2() in Figure 4.1) to distinguish between in-app and API methods, and
the instrumentator uses the results. The parser also distinguishes fields (e.g., imei in Fig-
ure 4.1) implemented in subclasses and superclasses because the classes can have the same
name fields, and the fields are not distinguishable based on their names. The parser also
extracts fields’” default values hard-coded in the app code.

4.2.3 Instrumentator

The instrumentator injects the logging code (i.e., the logger) into the target app’s Smali code.
In this section, first, logging points are described. Then, logging-method construction is
explained. Next, the type-conflict problem and a solution are discussed. Lastly, DEX-related
problems and solutions are described.



4.2. Approach 61

1 | .class LLeaker;
2
3 | imei:Ljava/lang/String; // field
4
5 | .method public constructor <init>()V
6 invoke-static {}, LTRecsLog;->Log_1_5()V
7
8 invoke-direct {p0}, Landroid/app/Application;-><init>()V
9 invoke-static/range {p0 .. p0}, LTRecsLog;->Log_1_7_p0(Landroid/app/Application;)V
10 | .end method
11
12 | .method public callback1()V
13 invoke-static/range {p0 .. p0}, LTRecsLog;->Log_1_10_pO0O(LLeaker;)V
14
15 invoke-virtual {v0}, Landroid/telephony/TelephonyManager;->getDeviceld()Ljava/lang/String; // source
16
17 move-result-object v1
18 invoke-static/range {vO .. v0}, LTRecsLog;->Log_1_14_v0(Landroid/telephony/TelephonyManager;)V
19 invoke-static/range {v1 .. v1}, LTRecsLog;->Log_1_14_v1(Ljaval/lang/String;)V
20
21 if-eqz v1, cond_0
22
23 iput-object v1, p0, LLeaker;->imei:Ljava/lang/String; // field setter
24
25 :cond_0
26 | .end method
27
28 | .method public callback2()V
29 invoke-static/range {p0 .. p0}, LTRecsLog;->Log_1_23_pO0(LLeaker;)V
30
31 iget-object v1, p0, LLeaker;->imei:Ljava/lang/String; // field getter
32 invoke-static/range {v1 .. v1}, LTRecsLog;->Log_1_25_ v1(Ljaval/lang/String;)V
33
34 invoke-static {v0, v1}, Landroid/util/Log;->i(Ljava/lang/String;Ljava/lang/String;)! // sink
35 invoke-static/range {vO .. v0}, LTRecsLog;->Log_1_27_vO(Ljava/lang/String;)V
36 invoke-static/range {v1 .. v1}, LTRecsLog;->Log_1_27_v1(Ljava/lang/String;)V
37 | .end method

FIGURE 4.3: Example of the instrumentation applied to the code in Figure 4.1.
The red-colored lines are logging points injected into the code.

Logging Points

Figure 4.3 shows an example of the instrumentation. The red-colored lines are logging points
in the app code where the logging method invocations are injected. The logging methods
are static and are called by the invoke-static/range instruction. An argument register is passed
to the logging methods with brackets for logging the register’s value. For example, p0 is
passed to the logging method by {p0 .. p0}in Line 9, and p0’s value will be logged. The
subsequent LTRecsLog;—Log_1_7_p0 specifies the called class and method names of the log-

ger. TRecsLog is the class name and Log_1_7_p0 is the method name. The method name

consists of the target class identifier, the original instruction line number in the code before
the instrumentation (Figure 4.1), and the register name, which are 1, 7, and p0 respectively.
The class identifier is assigned to each class (i.e., each Smali file) in the app. The following
(Landroid/app/Application;) is the data type of the argument p0. V at the end is the data type
of the method’s return value and is void because the logging methods return nothing. The
logging method in Line 6 has no argument, and no value is logged at the point. The logging

points are as follows:

¢ immediately after field-getter instructions to save values loaded into the destination
registers because fields can be modified outside the app code (e.g., Line 32 in Fig-
ure 4.3). Also, logging at static-field operators informs the reconstructor about the



62 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

timing of the clinit invocation.
e right after monitor-enter, const-class, and check-cast instructions and catch labels.

¢ immediately after method calls (e.g., Lines 9, 18, 19, 35, and 36 in Figure 4.3) and at
the head of each method in the app code (e.g., Lines 6, 13, and 29 in Figure 4.3). The
logs are used to determine method call relationships accurately, which is explained
in Section 4.2.5. Argument values are also recorded at the head of the method and
used for argument mapping. The logger skips value logging for constructors because
constructors have an uninitialized object reference as its base object at the method head
(e.g., Line 6 in Figure 4.3). The return value is recorded for API method calls at the
corresponding move-result (e.g., Line 19 in Figure 4.3) and used for the return value
mapping, described in Section 4.2.5. The value of reference-data-type arguments is
also recorded after the method call since the method may modify the arguments.

The instrumentator considers reducing the instrumentation code volume for app run-
time performance. Results of arithmetic and logic operations and conditional branches (e.g.,
Line 21 in Figure 4.3) are not logged to reduce the amount of instrumentation code. Also, no
logging code is injected to the end of each method (e.g., Lines 10, 26, and 37 in Figure 4.3). In-
stead, the reconstructor simulates the operations on the server based on reproduced register

values.

Logging-Method Construction

Figure 4.3 indicates that a static logging method is constructed for every instrumented in-
struction. It avoids using local variables in the instrumented methods to reduce the impact
on the original code.

Suppose all the logging points call the same logging method. In that case, each log-
ging point must provide information, including the class identifier, line number, and regis-
ter name to the logging method (i.e., each logging point needs a local variable to keep the
information). However, introducing an additional local variable for the logging to a method
can fracture the original code. A method can use registers v0 to v65535 for the method’s
local variables and parameters in Smali. The method’s local variables are first assigned to
registers from v0. Then, the method’s parameters are assigned to registers. For example, if a
method has 14 local variables and two parameters, the local variables use registers v0 to v13,
and the parameters use v14 and v15. Assuming that an additional local variable is used for
the logging, the local variables now use registers v0 to v14, and the parameters use v15 and
v16. The second parameter’s register is changed from v15 to v16, which is not acceptable be-
cause whereas the first 16 registers v0 to v15 can be operated by all the instructions, v16 and
later registers are limited that only specific instructions can operate the registers. As a result,
the instrumentator must rewrite the original code’s instructions related to the second param-
eter, which is complex and better to be avoided. Therefore, the logging is designed to use no
local variables in the instrumented methods. Since sharing a logging method among multi-
ple logging points requires an additional local variable, a logging method is constructed for
every logging point.



4.2. Approach 63

1 |:Ary_start O
2 |invoke-static {}, LClass1;->method1()I; // return an integer value
3
4 |move-result v1 /I originally set the return value to vO
5 |invoke-static/range {v1 .. v1}, LTRecsLog;->Log_1_4_vO(I)V
6 |move vO0, v1
7
8 |int-to-float vO, vO /I convert integer to float
9 |goto :goto_0 // jump to 14
10 [:try_end_O
11 |.catch Ljaval/lang/Exception; {:try_start_O .. :try_end_0} :catch_0
12 |:catch_0 /I if an exception occurs from 1-10, jump to here
13 |invoke-static/range {}, LTRecsLog;->Log_1_11()V
14 |:goto_0
15 |invoke-static {v0}, LClass2;->method2(F)V; // vO must be float

FIGURE 4.4: Instrumented code of exception handling. The modified part
and injected code are red-colored.

1 FATAL EXCEPTION: main

2 Process: com.sample, PID: 4022

3 java.lang.VerifyError: Rejecting class com.sample.myclass
4 register vO has type int but expected float

FIGURE 4.5: An example of an error message indicating that the verifier de-
tected a type conflict in register v0.

Type-Conflict Problem

The instrumentation code must not cause errors while the app is running. Solving the type-
conflict problem discussed in [110] is challenging. Instrumenting an app can make data
types of a register potentially conflicted within a method of the app.

Figure 4.4 shows an example of the instrumentation applied to an exception-handling
code. The modified parts of the code are red-colored. A try block starts at :try_start_0 in Line
1 and ends at :fry_end_0 at Line 10. If no exception occurs between Line 1 and 8, the gofo
instruction changes the program counter to :goto_0 in Line 14, and invoke-static instruction in
Line 15 is subsequently executed after the try block. In the original code, only invoke-static in
Line 2 can cause an exception in the try block. Thus, the catch block would never be executed
after the invoke-static in Line 2 is successfully executed, and the instructions in Lines 4, 8, and
9 are necessarily executed. In other words, in the original code, after an integer value is
assigned to v0 in Line 4, the value is certainly converted to float by int-fo-float in Line 8.

On the other hand, if an exception occurs in the try block, the execution point is changed
to :catch_0 in Line 12. Then, instructions in Lines 13-15 are subsequently executed. In the
code after the instrumentation, invoke-static/range in Line 5 can cause an exception in the try
block, indicating that int-to-float in Line 8 can be skipped, and v0 holds an integer value when
the instructions after Line 12 are executed. In that case, the type-conflict problem occurs
because v0’s value must be float for invoke-static in Line 15. In this way, the instrumentation
can introduce a new exceptional flow leading to the type-conflict problem.

Since a verifier module of the Android runtime system always assumes that invoke causes
exceptions, it detects the type conflict and terminates the app execution. The verifier gen-
erates an error message suggesting that a class was rejected because register v0’s type can
be integer when the type must be float (Figure 4.5). To address the problem, Balachandran



64 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

et al. developed a register-type separation technique, which rewrites the whole code of the
app [110]. On the other hand, the approach replaces the destination register of move-result
in a try block (e.g., v0 at Line 4) with an unused register. The approach is called temporary-
register technique in this paper. For example, v1 is used as a temporary register instead of
v0 in Line 4, and the logger saves the v1’s value as the v0’s value in Line 5. After the logging,
the value is moved from v1 to v0 in Line 6 to maintain the semantics. The technique is also
applied to move-exception.

DEX-Related Problems

The instrumentator should avoid the 64K problem [111], which restricts a DEX file to con-
taining 65,536 method references at most. After the logging methods are injected, the instru-
mentator counts the number of method references in Smali files in each DEX file, which is a
directory when the app is unpackaged. Then, the instrumentator rearranges the Smali files
in a DEX directory into multiple DEX directories if the DEX directory contains more method
references than the maximum.

The instrumentator also detects long-distance jumps between an if-statement and its
jump destination. When an if-statement uses a 16-bit address to specify the jump desti-
nation, the jump distance could exceed the limit because of the injected code, and the app
repackaging would fail. The instrumentator detects such jumps and replaces the jumps with
a goto/32 statement that uses a 32-bit address.

424 Logger

The logger is injected into the app code by the instrumentator. Then, T-Recs repackages,
installs, and launches the app on the Android device, and the logger is also executed. The
logger targets primitive-data-type values, class object representations, string values of String
type classes, array representations, and array elements’ values.

The logger converts the class object representations into strings to write them into a log
file. However, the formats of string representations depend on the class’s toString() imple-
mentation. Also, the toString() should not be used when the class overrides the method
because calling the method can affect the app’s behavior (e.g., it could change a field value).
Therefore, the logger explicitly invokes getClass().getName() and hashCode(). The logger uses
a ring buffer to keep logs in the memory and reduce the number of writing to the disk for
the app runtime performance with a large number of logging.

After the app is exercised for a time specified by the analysts, T-Recs terminates and
uninstalls the app. Then, T-Recs collects the log file from the device and saves it in the

analysis server.

4.2.5 Reconstructor

The reconstructor reproduces the app execution, consisting of call-, control-, and dataflows,
based on the information obtained by the parser, the instrumentator, and the logger. Simul-
taneously, the reconstructor propagates taints to track information flows.

Figure 4.6 shows an example of reproducing the execution of the code in Figure 4.3. The
log file is obtained by executing the code in Figure 4.3 and is stored in the storage of the
analysis server so that the reconstructor can be performed independently of the logger. The
log format is PID:TID:ClassID_LineNumber. PID and TID are the identifiers of the process and



4.2. Approach 65

/ Analysis Server \

T-Recs
Reconstructor Log Format
- PID:TID:ClassID_Line_Reg:Value
Reproduced Execution (PID:12, TID:56) —-ine_Reg
Instances Reas Call Program Instruction break
and Fields 9 Stack Counter and ;
_ _ obtain Log File
empty .
5 method starts 12:96:1.5
- - 7 invoke-direct
Oxabcd - - - - constructor
- 7 invoke ends <«— |12:56:1_7_p0:0xabcd
8 method ends
empty
10 method starts <«— [12:56:1_10_p0:0xabcd
Oxabcd i —Vi
= 12 invoke-virtual
i imei:String 14 invoke ends <— [12:56:1_14_v0:0xef10
' i 16 if-eqz 12:56:1_14_v1:0xdcba:
-B56........... - 18 iput-object 356000000000003
*~CtainD empty 21 method ends
—>
23 method starts <+— |12:56:1_23 p0:0xabcd
Oxabcd i f
] N 25 iget-object
callback2 >
;] imei:String ) ) <«— |12:56:1_25 v1:0xdcba:
: ] 27 invoke-static 356000000000003
' o v1 —
96, 1 27  invoke ends <— [12:56:1_27_v0:0x00ef:Log
+-(@nD empty 28 method ends 12:56:1_27_v1:0xdcba:
356000000000003

2 =/

FIGURE 4.6: Example of app-execution reconstruction.

thread that executed the logging code. ClassID is the identifier of the class. LineNumber is
the instrumented instruction’s line number in the original code shown in Figure 4.1. The log
is followed by _RegisterName:RegisterValue if the instrumented instruction has an operand
register to be logged.

The reconstructor reproduces the execution with PID 12 and TID 56 in Figure 4.6. The
reproduced execution includes currently-executed instruction, program counter, call stack,
registers, instances, and fields. The call stack is empty at first, and the reconstructor starts
by obtaining the first log 12:56:1_5. The reconstructor sets the program counter 5 and sim-
ulates the instruction. Since program counter 5 is the head of constructor, the reconstructor
creates its stack frame and pushes it to the call stack. Then, the reconstructor increments
the program counter. The next instruction is invoke-direct at program counter 7, which is
another logging point, and the reconstructor breaks the reproduction and obtains the next
log 12:56:1_7_p0:0xabcd. The reconstructor creates register p0 and instance Oxabcd based on
the log. The reconstructor increments the program counter, reaches the end of the method,
and removes the method’s stack frame. Since the call stack is now empty, the reconstruc-
tor breaks the reproduction and obtains the next log, and the next method’s reconstruction
starts at program counter 10 in callback1(). By repeating these steps, the reconstructor re-
produces the execution. The rest of this section explains how the reconstructor simulates
register values, control flows, and call flows, and the taint propagation is described at the

end.



66 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

Register Values

The reconstructor reproduces register values based on logged object identifiers, strings, and
primitive-data-type values. It considers registers’ data types: primitive-data-type, reference-
data-type, and class references.

Primitive-data-type values are reproduced based on the logs and data extracted by the
parser. Boolean values, true and false, are represented by numeric values, 1 and 0, respec-
tively, for using the values with branches (e.g., if-eqz). Unary and binary operations, such
as numerical and logical calculations, with primitive-data-type values, are simulated by the
reconstructor. The reconstructor explicitly uses the same bit length to obtain the same calcu-
lation results as the actual execution.

Arrays and classes are reference-data-type, and registers of the data type hold object
references. In the reconstructor, simulated registers hold references to array and class in-
stances as same as the actual execution (e.g., register p0 holds a reference to instance Oxabcd
in Figure 4.6). Null values are represented by the numeric value 0, which is compatible with
branches (e.g., if-eqz). An array’s elements are logged and used to simulate array operations.
The reconstructor also supports multidimensional arrays. The reconstructor manages fields
of classes and handles static fields as a global area. When the app accesses an uninitialized
field, the reconstructor simulates default values, 0 for numeric values and null for objects.

When multiple threads write and read the same field simultaneously, the reconstructor
detects the timing of each operation based on logs at the monitor-enter. Figure 4.7 shows
an example of instrumented code with monitor-enter and monitor-exit instructions. These in-
structions enable an app to perform exclusive control to maintain consistency when multiple
threads use the same data in, for example, a field. In this example, thread1() sets a value to
field Leaker.imei at Line 7, and thread2() gets the value from the field at Line 19. Since these
instructions are placed between monitor-enter p0 and monitor-exit p0, they are executed one
at a time. The reconstructor can detect their execution order based on the logs generated at
Lines 5 and 17, and the data flow from v1 in Line 7 to v1 in Line 19 is accurately reproduced.
On the other hand, if an app does not use exclusive control, the reconstructor cannot repro-
duce the execution order of instructions in multiple threads accurately. However, in such
case, the impact of incorrect reproduction might be small because the app’s developer also
disregards the execution order.

Class references are generated by const-class instructions and used by branches and method
calls. The reconstructor simulates class references based on logged object representations.

Control Flows

The reconstructor reproduces control flows in each method of the app, which consists of con-
ditional branches (i.e., if and switch), unconditional jumps (i.e., goto), and exceptional flows
(i.e., try, catch, and throw). App code is written in Dalvik executable (DEX) bytecode [112],
which is register-based, and conditional branches operate on registers. Hence, the recon-
structor simulates conditional branches based on the reproduced register values (e.g., pro-
gram counter 16 in Figure 4.6).

Simulating exceptional flows requires the detection of exception sources and exceptional
jump destinations. The reconstructor detects exception sources based on simulation re-
sults (e.g., ArrayOutOfBoundException by simulating arrays) and the logs (e.g., exception-
causing calls by checking the completion of each call). The reconstructor checks a log that



4.2. Approach 67

1 |.method public thread1()V
2 invoke-static/range {p0 .. p0}, LTRecsLog;->Log_1_1_pO(LLeaker;)V
3
4 monitor-enter p0
5 invoke-static {}, LTRecsLog;->Log_1_3()V
6
7 iput-object v1, p0, LLeaker;->imei:Ljava/lang/String; // field setter
8
9 monitor-exit p0
10 return-void
11 |.end method
12
13 |.method public thread2()V
14 invoke-static/range {p0 .. p0}, LTRecsLog;->Log_1_11_pO(LLeaker;)V
15
16 monitor-enter p0
17 invoke-static {}, LTRecsLog;->Log_1_13()V
18
19 iget-object v1, p0, LLeaker;->imei:Ljava/lang/String; // field getter
20 invoke-static/range {v1 .. v1}, LTRecsLog;->Log_1_15_v1(Ljava/lang/String;)V
21
22 monitor-exit p0
23 return-void
24 |.end method

FIGURE 4.7: Instrumented code with monitor-enter and monitor-exit instruc-
tions.

Application Space

1 | class MainClass {

2 main() {

3 Leaker leaker = new Leaker();

4 SystemClass1.method1(leaker); } }
Framework Space

1 |class SystemClass1 {

2 method1 (appClass) {

3 appClass.callback1(); } }

FIGURE 4.8: Simplified example of source code causing an implicit control
flow transition.

must appear right after a finished call, and if the log is not found, the reconstructor under-
stands that an exception is caused during the call. For example, the reconstructor detects that
the call at Line 15 in Figure 4.3 causes no exception based on log 12:56:1_14_v0:0xef10 (Fig-
ure 4.6). In the same way, the reconstructor detects whether a check-cast instruction throws
an exception. The reconstructor also breaks the trace and checks the next log at throw in-
structions. The reconstructor detects exceptional-jump destinations based on the logs from
catch blocks (e.g., the logging point at Line 13 in Figure 4.4), which can be in a different

method from the exception source.

Call Flows

There are various patterns of method calls involving callbacks, lifecycles, ICC, reflection,
threading, and constructors. It indicates that only one-to-one mapping of parameters and
arguments fails to detect dataflows from a caller to a callee. Also, the return value from a
caller to a callee is not one-to-one because a callee can return a value to outside the app code,
or a caller can receive a returned value from outside the app code.



68 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

The logs provide the reconstructor with the timings of the starting and ending of each
method invocation and the timings of starting methods. The reconstructor breaks the trace
when it reaches a method invocation instruction and checks the next log. If the following
log is generated at the next line of the invocation, the invoked method is an API, not imple-
mented in the app. If the following log is a method head’s, an in-app caller-callee relation-
ship is detected. The reconstructor utilizes the logged register values to match parameters
and arguments from the caller to the callee. When the callee is finished, the reconstructor
matches the return value from the callee to the caller based on the logged register values.

When the app executes multiple threads, all the threads’ logs are mixed in the log file. The
reconstructor distinguishes threads using each log’s process and thread identifiers. Suppose
the next log has new process and thread identifiers. In that case, the reconstructor considers
that a new thread is starting and matches the base object’s representation to the previously
created instance’s representations.

Detecting implicit control flow transitions facilitated by the callback mechanism in the
Android framework is challenging for static taint analyzers [36]. Figure 4.8 shows an ex-
ample of source code causing an implicit control flow transition. In the application space,
MainClass.main() creates and passes a Leaker instance to SystemClass1.method1() in Lines 3
and 4. Then, in the framework space, SystemClass1.method1() invokes appClass.callback1()
in Line 3, which is Leaker.callback1(), defined in Figure 4.1. Leaker.callback1() obtains IMEI,
which can eventually be leaked. Therefore, a taint tracker must detect this control flow tran-
sition. The reconstructor cannot detect the relationship between SysternClass1.method1() and
Leaker.callback1() because it occurs in the framework space. However, such a relationship is
unnecessary because the reconstructor can detect the leak in Figure 4.1 based on logs gen-
erated at Leaker.callback1() and Leaker.callback2(). Also, based on PIDs and TIDs in the logs,
the reconstructor can detect the exact time sequence of the method executions in a thread.
On the other hand, if a callback method is executed in a different thread, the reconstructor
identifies the time sequence as described in Section 4.2.5.

The reconstructor resolves the target class and method names of reflective calls to detect
calls of taint sources and sinks. The reconstructor uses the argument values of the calls. Also,
the reconstructor must consider that a taint source or sink can be called with an in-app class
inheriting the class of the taint source or sink as the base object. The reconstructor resolves
the called method’s superclass based on class hierarchy information extracted by the parser.

There is a concern that the reconstructor may take a long time to analyze loops with a
large number of iterations. In the preliminary investigation of the DroidBench apps, such
loops were found in the method computePi() in PI1 from the category Emulator Detection
(ED). Figure 4.9 shows computePi()’s source code. The method has no parameters, and the
return value is not used by the caller (condition 1). In addition, the method has no API
invocation or field operation in the method body (condition 2). The method does not affect
anything outside the method, and the reconstructor can safely skip the method. Therefore,
by checking the two conditions, the reconstructor automatically detects such a method as an
anti-analysis technique and skips it.

Taint Propagation

Taint propagation is required at DEX bytecode instructions [112] and across API method
calls to track information flows. Taint propagation rules for DEX bytecode instructions are

well developed in previous studies such as TaintDroid [54], and the reconstructor utilizes



4.2. Approach 69

1 public static double computePi() {

2 double n = 999999999;

3 double sequenceFormula = O0;

4 for (int counter = 1; counter < n; counter += 2) {
5 sequenceFormula = sequenceFormula

6 + ((1.0 / (2.0 * counter - 1))

7 - (1.0 / (2.0 * counter + 1)));
8 }

9 double pi = 4 * sequenceFormula;

10 return pij;

11 3}

12

13 // Caller

14 public void theCaller () {
15 computePi () ;

16 3}

FIGURE 4.9: Source code of computePi() in case PI1 from category Emulator
Detection.

the same rules. TaintDroid assigns taints to registers, but the reconstructor assigns taints to
simulated class instances. For example, in Figure 4.6, the reconstructor detects the execution
of the taint source at the program counter 14 and introduces the taint by assigning the taint
mark to the string instance 356..3, which will be stored in the field imei of the object Oxabcd.
When a reference to a class is moved between registers by register operations, the taint prop-
agation is implicitly achieved, which is an advantage in simulating class instances. When
a class instance field is operated through different registers holding the same reference (i.e.,
aliasing), the operations are implicitly applied to the same field of the same instance. For
example, registers p0 in callback1() and p0 in callback2() reference the same object Oxabed with
the field imei holding the tainted string in Figure 4.6.

Previous studies developed conservative rules [65] and automatic model generators (e.g.,
StubDroid [38]) for propagating taints across API method calls. The reconstructor, perform-
ing on the analysis server, can be equipped with current approaches used by static and
dynamic taint trackers. In this study, an approach that conservatively propagates taints
is simply used. There are some dataflows that the conservative rules cannot track. The re-
constructor considers Intent, Message, Bundle, Shared Preferences, Parcel, and files. The
reconstructor uses API class names and matches values between setter and getter methods.
By propagating the taint status, the reconstructor not only assigns the taint but also removes
the taint. It can refine over-tainting caused by the conservative rules and reduce FPs.

4.2.6 Exerciser

After the app is installed on the Android device, the exerciser performs app exercise oper-
ations to trigger leaks in the app. The exerciser focuses on how to exercise the DroidBench
apps in this paper. Table 4.1 shows the necessary operations to trigger leaks in the Droid-
Bench apps. It also shows commands to perform each operation and necessary information,
such as the app’s package name and activity name, which are passed to the commands.
Leaks in some of the DroidBench apps can be triggered by only launching them. On the



70 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

TABLE 4.1: App exercise operations necessary to trigger leaks in the Droid-

Bench apps.
Operation Command Necessary information
Launch app monkey app’s package name
Kill app process ps and kill app’s package name
Rotate screen settings put system -

user_rotation
Press home button input keyevent -
Press back button  input keyevent -

Start activity am start activity name
Send broadcast am broadcast receiver name
Start service am start-service service name
Tap screen input tap coordinates

other hand, some of the DroidBench apps require a sequence of operations specific to indi-
vidual apps. Therefore, exercising the DroidBench apps using random input can take much
time until a specific operation sequence is performed by chance.

The exerciser shortens the analysis time by triggering leaks in the DroidBench apps as
quickly as possible. The exerciser iteratively runs the app and executes the reconstructor to
detect information flows. The exerciser checks the reconstructor’s result, and if the num-
ber of taint marks increases from the previous reconstruction result, the exerciser saves the
current sequence of operations and uses it in the next turn.

Algorithm 2 shows the exerciser’s pseudocode. The arguments are the app’s data (app),
a device with the app is installed (device), and the maximum number of operations to be per-
formed (max_op_num). There are two loops in the procedure (Lines 7 and 11). In the outer
loop, exercise operations that increase the taint marks (taint_increasing_ops) are performed
in Lines 8-9, and performable operations (performable_ops) are obtained in Line 10. The per-
formable operations include the operations shown in Table 4.1. For example, the coordinates
of the app’s Ul buttons are detected, and the tap operation is prepared for each button. Then,
in the inner loop, taint_increasing_ops are performed, and one of the performable operations
is performed in Lines 15-19. The log is obtained in Line 20, and the reconstructor is ex-
ecuted with the log in Line 21. Based on the newly found leaks and the number of taint
marks (leaks and taint_num), the exerciser stops the procedure (Lines 25-26), exits the inner
loop (Line 27-33), or inserts op to performable_ops’ head to retry the same operation (Line 34-
35). Some DroidBench apps change their behavior depending on random numbers, and the
number of taint marks can be different even for the same operation. Therefore, the exerciser
retries the same operation as long as the number of taint marks decreases to trigger the app’s
information-flow-causing behavior. When the inner loop is finished, the outer loop also ends
if the number of taint marks does not increase (Lines 38-39).

Also, determining when the exerciser exits is essential. The exerciser should not stop
when a leak is detected, as some of the apps cause multiple leaks. The exerciser should also
not run indefinitely, as reaching full coverage in runtime is very difficult. Therefore, in addi-
tion to the condition (Line 38-39), the exerciser stops when one of the following conditions
is satisfied. First, the exerciser limits the number of performed operations (Line 12). Second,
the exerciser exits when all the leaks are found in the app (Line 25). The max_leak_num is
calculated before the exercise (Line 6) and is the number of all possible combinations of taint
sources and sinks, including reflective calls, in the app extracted by the parser.



4.3. Implementation 71

@0verride
public void onLowMemory () {
TelephonyManager telephonyManager =
(TelephonyManager) getSystemService (
Context . TELEPHONY_SERVICE);
imei = telephonyManager.getDeviceId(); //source

NGk W

FIGURE 4.10: Taint source called in onLowMemory() appeared in case Regis-
terGlobal2 from category Callbacks.

In addition, the exerciser lets the reconstructor simulate triggering non-triggerable call-
back methods. A callback method onLowMemory() is barely called in the DroidBench apps
because the Android OS executes it only with memory-consuming apps. In the DroidBench
test cases, five apps are identified to contain the callback method. The callback method
executes a taint source, sink, or both. For example, case RegisterGlobal2 from category Call-
backs overrides onLowMemory() to invoke a taint source (Figure 4.10). The exerciser tells the
reconstructor to trigger onLowMemory() apart from the actual runtime. The reconstructor re-
produces the app execution without the app’s runtime information (i.e., without breaking
the reproduced execution at logging points) and detects information flows and leaks caused
by onLowMemory().

4.3 Implementation

Python is used to implement all the components except the logger. The logger is imple-
mented with the Smali language. The system is called T-Recs and is about 17,000 lines of
code.

T-Recs uses the Apktool [113] version 2.6.1 to unpackage and repackage the apps. Ap-
ktool employs Baksmali [114], a disassembler for DEX bytecode, which converts DEX byte-
code to mnemonic representation. The conversion generates text files with .smali extension.
Apktool also has a DEX bytecode assembler, Smali [114], which converts .smali files into DEX
bytecode format and creates an APK file. After the APK file is signed, it can be installed and
executed on Android devices.

The reconstructor uses Python’s references, exceptions, and lists to reproduce references,
exceptions, and arrays in the app execution. NumPy is used to simulate the same bit length
of numeric values in the reconstructor. The instrumentator performs the temporary-register
technique, explained in Section 4.2.3, only for methods in that two more registers are avail-
able.

The logger currently targets a limited depth of arrays, which is two-dimensional. The
supported level of depth can be trivially expanded by modifying the logger to record more
items in multidimensional arrays. However, the modification could affect the app runtime
performance.

As Section 4.2.6 explains, the exerciser is a prototype only for the DroidBench apps. The
callback-method triggerer is implemented to reproduce the execution of onLowMemory(),
the only method that cannot be triggered on Android devices in the DroidBench apps. Since
taint sources must be executed before taint sinks to cause the leaks, the timings of the method



72

Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

Algorithm 2 App exercise procedure

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

procedure EXERCISE(app, device, max_op_num)

op_num < 0
prev_taint_num < 0
found_leaks < empty list
taint_increasing_ops < empty list
max_leak_num < get_max_leak_num(app)
while true do
stop app and remove the logs on device
perform taint_increasing_ops
generate per formable_ops
while per formable_ops is not empty do
if op_num > max_op_num then
return
end if
stop app and remove the logs on device
perform taint_increasing_ops
op < pop an item from per formable_ops
perform op
op_num 4 op_num + 1
log < logs obtained from device
leaks, taint_num < reconstructor(log)
if leaks not in found_leaks then
found_leaks < leaks|found_leaks
leak_num < length of found_leaks
if leak_num = max_leak_num then
return
else
taint_increasing_ops < empty list
break
end if
else if taint_num > prev_taint_num then
append op to taint_increasing_ops
break
else if taint_num < prev_taint_num then
append op to per formable_ops’ head
end if
end while
if taint_num < prev_taint_num then
break
end if
prev_taint_num <— taint_num
end while

43: end procedure




4.4. Evaluation 73

execution are at each constructor’s end and the whole reconstruction’s end, which were

determined based on the investigation of the DroidBench apps.

4.4 Evaluation

This section presents T-Recs’ evaluation with a test suite and real-world apps. First, this
section explains datasets. Then, it describes the compared tools and analysis results of each

dataset. Lastly, it explains ethical considerations.

4.4.1 Datasets

The following datasets were used.

DroidBench 3.0

DroidBench is a popular test suite initially published in 2014, covering a wide range of
language- and Android-specific categories. DroidBench had 19 categories and 190 test cases
in total when this paper was written. This paper focuses on 158 test cases in 13 categories
supported by current static taint trackers: FlowDroid, Amandroid, and DroidSafe [78, 115]
to evaluate how T-Recs outperforms the trackers in accuracy with the supported cases. The
categories are Aliasing (A), Android Specific (AS), Arrays and Lists (AL), Callbacks (C), ED,
Field and Object Sensitivity (FO), General Java (G]J), ICC, Lifecycle (L), Reflection (R), Reflec-
tion ICC (RICC), Threading (T), and Unreachable Code (UC).

Popular apps from the Google Play Store in 2016

Analysis accuracy, time, and success rate were evaluated for detecting privacy leaks in real-
world apps. Since TaintDroid detects leaks of sensitive information, such as IMEI and IMSI,
a dataset in this evaluation must contain many apps that obtain and leak the information.
Popular apps in the Agrigento dataset were collected from the Google Play Store and have
such suspicious apps: 22 apps leaking IMEI and six apps leaking IMSI [21]. They were
collected in June 2016. The app set contains 96 apps given by the authors of [21]. A complete

list of hashes of the apps mentioned in this section is given in Appendix A.

Varied dataset from the Google Play Store and Anzhi

The app set contains randomly-collected 19,943 apps from the Google Play Store and 19,537
apps from Anzhi, 39,480 apps in total, via AndroZoo [116] in September 2021 for evaluating
the success rates of the compared tools” essential phases. Anzhi was selected as the rep-
resentative of third-party app markets because Anzhi was the market with the largest app
collection after the Google Play Store [116]. The apps from the Google Play Store support
SDK versions from one to 28 (i.e., 16 codenames), and the Anzhi apps support SDK versions
from one to 25 (i.e.,, 14 codenames). The datasets vary in supported SDK versions. Also,
the distribution of apps’ supported SDK versions differs between the markets, and the tools

were evaluated with a wide range of SDK versions.



74 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

Popular apps from the Google Play Store in 2021

The leak detection number and analysis time were evaluated with newer real-world apps.
The app set contains 158 apps that appeared in the top chart list of free apps in the Google
Play Store in July 2021. Since these apps are recently developed, 98% of them have androidx.*
packages [117]. Leaks caused by the packages were ignored because the packages are official
and can be considered benign. Appendix A shows a complete list of hashes of the 158 apps.

4.4.2 Privacy Leak Detection in DroidBench 3.0

This section describes the evaluation results of DroidBench 3.0 to show T-Recs’ superiority
over current trackers in detection accuracy. It also discusses the analysis time.

TABLE 4.2: Tools compared to T-Recs in the evaluation with DroidBench 3.0.

Tool Version

FlowDroid 2.9.0

FlowDroid;c3 FlowDroid w/ IC3 0.2.0
Amandroid 3.21

DroidSafe 2016-Jun-23

DroidRAF 2017-Apr-10 w/ FlowDroid
DroidRA 4 2017-Apr-10 w/ Amandroid
DroidRAp 2017-Apr-10 w/ DroidSafe
IecTA 2016-Feb-21

RAICC 1.0

TaintDroid 43 rl

IntelliDroid 2018-Jun-20

Compared Tools and Setup

Table 4.2 shows the tools compared to T-Recs. Available static taint analysis tools were se-
lected based on the study by Zhang et al. [78]: FlowDroid [118], FlowDroidc3 [118], Aman-
droid [119], DroidSafe [120], and DroidRA [121]. IC3 is obtained from the authors of [78].
In accordance with [78], DroidRA is used with FlowDroid, Amandroid, and DroidSafe, de-
noted by DroidRAF, DroidRA 4, and DroidRA p respectively. The same tool options and taint
source and sink definitions as the study [78] were used. Also, the comparison includes tools
targeting ICC: IccTA [122] and RAICC [34, 123]. In addition, it includes TaintDroid [124] and
IntelliDroid [125], which leverage a dynamic taint analysis.

Note that whereas the idea of the recording and reconstruction was initially realized in
VTDroid [126], VTDroid was omitted from the evaluation. The decision is because VTDroid
is specialized for specific flows, e.g., control dependencies and timing channels, which are
not supported by the selected tools, including T-Recs.

The execution environment for T-Recs and the static analyzers is a ten-core (20 threads)
3.7GHz CPU and 128GB RAM. Devices of Zenfone 4 (Android 8.0.0) and Nexus 5 (Android
5.0.1) and an emulator of Nexus 9 (Android 8.0.0) were used for T-Recs to exemplify T-Recs’
independency from specific Android devices and versions.

This section also involves TaintDroid with Nexus 4 (Android 4.3), the most popular and
stable dynamic taint tracker for Android apps. In order to evaluate TaintDroid with Droid-
Bench, TaintDroid was modified to support the taint sinks, which the original version of
TaintDroid does not support. TaintDroid only supports HTTP/HTTPS transmission as the



4.4. Evaluation 75

TABLE 4.3: Taint sinks and corresponding modified files” paths.

Sink ‘ Path

android.telephony.SmsManager: void sendTextMessage(java.lang.String, frameworks/opt/telephony /src/java/android/telephony/SmsManager.java
java.lang.String, java.lang.String, android.app.PendingIntent,
android.app.PendingIntent)

android.util.Log: int i(java.lang.String, java.lang.String) frameworks/base/core /java/android/util/Log java
android.util.Log: int e(java.lang.String, java.lang.String)
android.util.Log: int v(java.lang.String, java.lang.String)
android.util.Log: int d(java.lang.String, java.lang.String)

java.lang.ProcessBuilder: java.lang.Process start() | libcore/luni/src/main/java/java/lang/ProcessBuilderjava

android.app.Activity: void startActivityForResult(android.content.Intent, int) | frameworks/base/core/java/android/app/Activityjava
android.app.Activity: void startActivity(android.content.Intent)
android.app.Activity: void setResult(landroid.content.Intent)

java.net.URL: java.net. URLConnection openConnection() ‘ libcore/luni/src/main/java/java/net/URL.java

android.content.ContextWrapper: void sendBroadcast(android.content.Intent) ‘ frameworks/base/core/java/android /content/ContextWrapper.java

TABLE 4.4: Results of DroidBench. The second column shows the expected
#leaks. Gray cells highlight accurate results.

Test (#) E T-Recs FlowDroid;c3 FlowDroid Amandroid DroidSafe DroidRAF DroidRA 4 DroidRAp IccTA TaintDroid IntelliDroid

TP FP FN | TP FP FN | TP FP FN |TP FP FN | TP FP FN | TP FP FN |TP FP FN | TP FP FN | TP FP FN |TP FP FN | TP FP EN
A 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0
AS (11) 8 8 0 0 7 1 1 7 1 1 4 0 4 7 1 1 7 1 1 4 0 4 7 1 1 6 0 2 5 0 3 5 0 3
AL (10) 4 4 0 0 4 3 0 4 5 0 1 4 3 4 4 0 4 5 0 1 4 3 4 4 0 3 5 1 1 0 3 1 0 3
C(15) 18 18 0 0| 15 2 3| 15 2 3 2 1 16| 18 4 0| 15 2 3 2 1 16| 18 4 0| 16 2 2 1 0 17 1 0 17
ED (15) 16 = 16 0 0| 16 0 0| 16 0 0| 15 0 1 1 0 5|/ 16 0 0| 15 0 1 1 0 50116 0 0 9 0 7 9 0 7
FO (7) 2 2 0 0 2 0 0 2 0 0 2 0 0 2 2 0 2 0 0 2 0 0 2 2 0 2 0 0 2 0 0 2 0 0
GJ (25) 22 22 0 0 18 4 4 18 4 4 5 2 17 22 2 0 18 4 4 5 2 17 22 2 0 18 5 4110 0 12| 12 0 10
1CC (18) 27 | 27 0 0 18 0 9 14 0 13|23 9 4 21 2 6 14 0 13|23 9 4 21 2 6 19 1 8| 18 0 91 20 0 7
L (24) 21 | 21 0 0| 14 1 7| 14 1 7 6 2 15) 21 9 0| 13 1 8 6 2 15] 21 9 0| 16 1 5 9 0 12 9 0 12
R(9) 9 9 0 0 8 0 1 8 0 1 1 0 8 4 0 5 8 0 1 6 0 3 6 0 3 1 0 8 9 0 0 9 0 0
RICC (10) 21 21 0 0 2 0 19 2 0 19 4 0 17 5 0 16 2 0 19 4 0 17 5 0 16 2 0 19 ‘ 19 0 2019 0 2
T (6) 6 6 0 0 5 0 1 5 0 1 1 0 5 4 1 2 5 0 1 1 0 5 4 1 2 3 0 3 6 0 0 6 0 0
UC (4) 0 0 0 0 0 3 0 0 3 0 0 4 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 0 0 0 0
Sum (158) | 155 [[155 0 0] 110 15 45|106 17 49| 65 23 90| 119 28 36|105 17 50| 70 22 85| 121 28 34|103 18 52 ‘ 90 0 65]94 0 6l

taint sinks by default. Six files in the source code of TaintDroid were modified to support
taint sinks in the DroidBench apps. Table 4.3 shows the added taint sinks and corresponding
file paths. For more details, the modified code is available upon reasonable request.

Since TaintDroid does not have an app-exercise ability, a publicly-available hybrid anal-
ysis tool called IntelliDroid was used in combination with TaintDroid. IntelliDroid performs
targeted execution and officially supports TaintDroid.

The exerciser was employed to exercise the apps for T-Recs automatically. As Section 4.2.6
explains, the exerciser requires a parameter that specifies the maximum number of exercise
operations (Table 4.1) to be performed for an app on a device. The parameter value was
determined based on a preliminary investigation. Each app was tested, and the number of
exercise operations needed to trigger leaks in each app was obtained. The maximum was 27
for a case in the ICC category. Therefore, 30 was used as the maximum number of exercise

operations in this evaluation.

Detection Accuracy

Table 4.4 shows the result. The expected leak numbers are obtained from [115]. The result
shows that only T-Recs is 100% accurate. The parser, the instrumentator, and the logger
successfully processed all the apps, the exerciser automatically triggered all the leaks, and
the reconstructor successfully detected all the leaks.

Notably, in ED, the instrumentator did not inject the logger into the computePi() method
in an app called PI1 and successfully kept the method execution time within the thresh-
old. In addition, the reconstructor detected computePi() as a method that does not affect the
execution and skipped it, resulting in successful leak detection.

T-Recs’ independence of the analysis environment helps T-Recs analyze apps in ED. One
of the apps, for example, triggers a leak only when specific files exist on the device. Prior to
the evaluation, Nexus 4 (Android 4.3), Nexus 5 (Android 5.0.1), Zenfone 3 (Android 6.0.1),
Zenfone 4 (Android 8.0.0), Pixel 4 (Android 10), and Pixel 6 (Android 12) were investigated.



76 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

TABLE 4.5: Analysis time for the DroidBench apps.

Tool | Time
T-Recs 4 hours 58 minutes
FlowDroid 3 14 minutes
FlowDroid 4 minutes
Amandroid 47 minutes
DroidSafe 15 hours 37 minutes
DroidRAf 18 hours 56 minutes
DroidRA 4 19 hours 56 minutes
DroidRAp 33 hours 52 minutes
IccTA 1 hour 26 minutes
TaintDroid 36 minutes
IntelliDroid 59 minutes

Among them, only Nexus 4 and 5 can trigger the leaks. Nexus 5 was included in this evalu-
ation, and T-Recs successfully ran on the device and detected the leaks.

FlowDroidjc3 and FlowDroid generate 15 and 17 FPs, respectively, in call-flow-related
cases (AS, C, GJ, and L), control-flow-related cases (UC), and other cases (A and AL). UC
is related to path sensitivity, which FlowDroid cannot consider. The dynamic taint track-
ers outperform the static taint trackers in this category. FlowDroidjc3; and FlowDroid also
produce some FNs. In particular, the tools produce nine and 13 FNs because of failure in
intent tracking in ICC and 19 FNs in RICC because of failure to resolve reflective calls. The
other static taint analysis tools, Amandroid, DroidSafe DroidRAf, DroidRA 4, DroidRAp,
and IccTA, also produce a certain amount of FPs and FNs.

TaintDroid generates no FP, indicating that the tool is accurate. However, TaintDroid
misses 65 leaks. IntelliDroid improves TaintDroid’s result in three apps (four leaks) in GJ
and ICC. Since some callbacks were successfully triggered, IntelliDroid should be adequate
for more apps. The small number of improvements may be due to the quality of the tool,
and increasing the quality may improve the result.

RAICC instruments none of the 158 apps. This is because the apps do not contain code
targeted by RAICC. Since no leak detection is performed, the RAICC’s result is excluded
from Table 4.4. Section 4.6 discusses RAICC further.

Analysis Time

Table 4.5 shows the result. Each tool analyzed the apps one at a time. T-Recs’ parser and
instrumentator took 15 minutes, and the exerciser with the reconstructor took four hours
and 43 minutes. T-Recs is the fifth slowest, but it is acceptable because it finishes within a
reasonable time (one minute and 53 seconds per app). FlowDroid is the fastest, but the result
would be different in real-world-app analysis because the benchmark apps have minimal
code, and the static analysis time depends on the amount of code. On the other hand, T-
Recs, TaintDroid, and IntelliDroid require an app execution time regardless of benchmarks
or real-world apps. A result of real-world-app analysis is discussed in Section 4.4.3.

The analysis time of T-Recs can be shortened by improving the exerciser. The maximum
number of exercise operations slightly influences the number of leaks detected and analysis
time. If the maximum number of exercise operations is 40, T-Recs detects all the leaks and
takes five hours and 13 minutes. It is 10% longer than the analysis with 30 as the maximum

number of exercise operations. If the maximum number of exercise operations is 20, T-Recs



4.4. Evaluation 77

fails to detect one leak in a case in the ICC category and takes four hours and 48 minutes.
The analysis time is almost the same as one with 30 as the maximum number of exercise
operations. Each analysis time is the average of three executions. On the other hand, T-Recs
took 52 minutes in total with an ideal exerciser, which was manually created and contained

a minimum set of operations to trigger all the leaks.

4.4.3 Privacy Leak Detection in Popular Apps 2016

This section compares T-Recs, FlowDroid, FlowDroid c3, Amandroid, DroidSafe, DroidRAF,
DroidRA 4, DroidRAp, IccTA, TaintDroid, and IntelliDroid based on accuracy, time, and
success rate for detecting privacy leaks in real-world apps. The tracking targets are those
that the tools support: hardware identifiers (IMEI, IMSI, and ICCID), phone numbers, and

location data.

Compared Tools and Setup

T-Recs uses the Pixel 3 with Android 9 and the computer explained in Section 4.4.2. Android
9 is the last version in which the hardware identifiers are accessible. For T-Recs and Taint-
Droid, each app is installed and launched on the Android devices, and each system waits
for approximately 60 seconds and then uninstalls it. It was decided that the apps were not
exercised, based on the results of the preliminary experiment, indicating that apps in the
dataset cause leaks by simple operations, such as starting an app. A one-hour timeout is
used per app for each of T-Recs and the static analyzers.

Having flawless taint sink definitions for T-Recs and the static taint analyzers is challeng-
ing because there are numerous candidates, which are API methods that may cause leaks.
Since taint sink definitions must be prepared to detect privacy leaks, they were created in an
ad hoc manner. API methods of network-related libraries were chosen. Also, API methods
that write data to transmit it to the network were selected. These sink definitions were used
for T-Recs and the static taint analyzers, and it was believed that none of the tools is par-
ticularly advantageous to producing more TPs. However, the taint sink definitions cannot
be used universally. Also, taint sink definitions vary depending on what code the analysts
attempt to find and should be prepared by the analysts on their own. Therefore, it should
be clear that this paper does not offer taint sink definitions (i.e., out-of-scope). On the other

hand, TaintDroid’s default sink definitions were used for TaintDroid and IntelliDroid.

Detection Accuracy

Whereas establishing a ground truth is infeasible, correct leaks were obtained by manually
searching the network dump for plaintexts (e.g., IMEI value 356000000000003 in Figure 4.6)
and names (e.g., IMEI) of the target information. Also, transformed data (e.g., XXxxxxx==)
reported by T-Recs and TaintDroid were searched. In the dynamic analysis, detecting no leak
is correct if no leak occurred, and detecting a leak is correct if the leak occurred. Therefore,
considering only leaks occurring on both T-Recs” and TaintDroid’s devices is reasonable.
Each alert of T-Recs and TaintDroid was compared with the network dump to verify that
the leak occurred. If an alert includes transformed data, the app code was manually ana-
lyzed to confirm that the data contain the target information. The number of unique URLs
in TaintDroid’s alerts and the number of unique sink code locations in T-Recs’ alerts were

counted.



Flows by Recording and Reconstruction

0on

Tracking Informat

Chapter 4. T-Recs

78

TABLE 4.6: Leak detection result. E indicates expected #leaks. X indicates

that the tool failed, and Xjc3 indicates that IC3 failed.

IccTA
TP  unsure

DroidRAp
unsure

TP

DroidRA 4
TP  unsure

DroidRAF
TP unsure

DroidSafe
TP  unsure

Amandroid
TP unsure

FlowDroid,c3
unsure

TP

FlowDroid
TP  unsure

TaintDroid IntelliDroid
TP FP FN | TP FP FN

T-Recs
TP FP FN

#App‘ E‘

«~
XXX XX XXX XXX XX XXX XXXXXXXX x X % x % XX XX X X
)
XX XXX XX X XX X X X X X X X X X X X X X x X X x X X XXX XX X
XXX XX XXX XXX XX XXX XXXXXXXX X % % X X % XX XX X X
) -
XXX XX XXX XX XXX XXX R XX XX X% % X% % X% X X X X
— o
XXX XX XXX XXX XX XXX XXX XXX XX x % % x % % XXX X X X
oo o o
30X %X X XX X X X X X X X X X X X X x % x % % x % X XXX X
oo o o
oo )
XOUORXXRXXXXXXXX XX XXXX XX X X x XX XX X
co )
NS HEOoONOFO O-O~OSCMm=Oom— ~oco No o oo ooo
> x x
CooNNOYMH~N HOO00OO000O0O0O0O coco coco oo ooo
010 %+ o DN oo oo S oo oo oo
OO OO OO OOOOOOO OO xOO x % © x ©© x OO x OO
co~oan cococococoo co oo o oo co oo
CHFNFF AN T NOOOCOO—~0O0O OO0 OO o o coco cocococo
X OO0 0000000 N0 —~0OMOOOO0000 oxo coco xooooo
O~ O M O =N~ O cocococooo = =] coco cococoo
+NOON—ANOOONO—"O—~00000 OO0 o coco cococococo
O T oA NOaONOTOOONCO xO0O oo coco cococococo
CLBLANONFONO O —~O =00 OO0O o coo cococococo
SEBOIFIFFIOON A~ OSSOSO coco coco cococococo
e ——— —a %% ®ng

0]

0]

2|

0]

o]

58

56 | 20

14 32] 3 0

57 16 | 27

96 | 59 | 43




4.4. Evaluation 79

Table 4.6 shows the result. The expected #leaks indicates the number of unique URLs
with that the sensitive information leaked. T-Recs does not generate FP for apps without
leaks. Since the analyst needs to check only the 18 apps with leaks, the impact of the FPs is
small, suggesting that T-Recs is highly accurate. T-Recs has more FPs than TaintDroid be-
cause T-Recs’ sink definition differs from TaintDroid. The conservative rules for API method
calls explained in Section 4.2.5 may also be a factor. For the same reason, T-Recs generates
more TPs than TaintDroid.

IntelliDroid only detects the three expected leaks in two apps, which are also detected by
TaintDroid (Table 4.6). On the other hand, IntelliDroid misses many leaks that TaintDroid
detects, demonstrating that introducing IntelliDroid into TaintDroid makes TaintDroid over-
looks more leaks. Note that IntelliDroid finds a leak that does not occur in the environments
of T-Recs and TaintDroid, showing its superiority over T-Recs and TaintDroid. However, this
paper ignores the leak because improving code coverage of real-world apps is out-of-scope
of this paper, as Section 4.5 also discusses.

FlowDroid’s alerts were also verified based on T-Recs’ results because the two tools use
the same sink definitions. In addition, taint sources suggested by each alert were compared
with taint sources identified in the network dumps, and 20 TPs were identified. On the other
hand, as indicated by unsure in Table 4.6, the 58 alerts do not match with the network dumps.
They are considered to be unsure leaks that could be either TP or FP because there were no
resources for further high-cost verification. It was confirmed that T-Recs does not detect the
unsure leaks because of the code coverage. All the unsure leaks are caused by codes outside
the T-Recs’ code coverage. The maximum, minimum, average, and median of the T-Recs’
code coverages were 40.7%, 0.3%, 6.6%, and 4.3%, respectively. Note that 15 apps with zero
code coverage were omitted from this calculation. In contrast, FlowDroid can analyze the
entire code of each app, which is an advantage of static analysis. There is a trade-off between
the coverage and accuracy, which is discussed in Section 4.5.

FlowDroid 3, Amandroid, DroidSafe, DroidRA 4, and DroidRAp detect no leaks. Note
that the default definitions of taint sources and sinks are used for DroidSafe because chang-
ing the definitions requires modification of the source code of DroidSafe. Since DroidSafe
with the default definitions fails to analyze all the apps, it would detect no leaks even if
different source and sink definitions, such as the ones used by T-Recs and the other static
analyzers, were used. Also, the developer clearly states that DroidSafe is unsuitable for an-
alyzing apps published on the Google Play Store [127]. DroidRAF finds one TP and two
unsure leaks, which are also detected by FlowDroid. IccTA detects no TP and four unsure
leaks. These seven tools are not very effective in analyzing real-world apps.

On the whole, FlowDroid misses many leaks that T-Recs and TaintDroid detect, and
FlowDroid’s recall is low. At the same time, FlowDroid generates 58 unsure alerts, sug-
gesting high verification costs. Therefore, T-Recs and TaintDroid are more practical than
FlowDroid for privacy leak detection. Also, the other tools generate almost no alerts and

cannot be used for privacy leak detection dependably.

Tracking Ability for ICC- and Reflection-Related Flows

Static analysis can usually detect more leaks with higher FP rates than dynamic analysis.
However, the result shows that the dynamic analyzers (i.e., T-Recs and TaintDroid) detect
more leaks than the static analyzer (i.e., FlowDroid). T-Recs detects 43 TPs; TaintDroid, 27
TPs; and FlowDroid, 20 TPs. One of the possible reasons is that FlowDroid failed to complete



80 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

TABLE 4.7: ICC- and reflection-related flows selected based on the Droid-
Bench apps with that FlowDroid generates FNs.

Type | Description

1 Activity.startActivity() with a tainted argument
Messenger.send() with a tainted argument
Reflective call with a tainted argument
Reflective call with the tainted return value
Reflective call of a taint source

Q= W N

TABLE 4.8: #apps and #codes in parentheses in which the five code types are
found and whether T-Recs and FlowDroid detect the leaks caused by the five
code types. The row “any” gives #apps and #codes in which at least one code

type is found.
T-Recs FlowDroid
Type flow TP FP TP FN incompleted
1 0 0@ 0@/ |0 @O 0 (0 0 (0)
2 1(1) 0@ 0(@© |0 @©O 0 (@O 0 (0)
3 48 2G) 0@®G 00O 13 1 (2)
4 48 0@O© 0@ |[0(@© 0O 0 (0)
5 7(7) 5(15) 0(11) |0 (0 4 (9 1 (6)
any | 10(20) 6(18) 0(13) | 0 (0) 5(12) 1 (6)

the analysis of apps in that the dynamic analyzers detect TPs. FlowDroid failed the analysis
for two apps with one or more expected leaks (Table 4.6).

Another possible reason is the difference in information-flow-tracking abilities between
FlowDroid and the other tools. Since FlowDroid mostly misses leaks in the DroidBench apps
of ICC and RICC, this section is focusing on the ICC and RICC cases. Selected code types
are shown in Table 4.7 based on the DroidBench apps with which FlowDroid generates FNs
(Table 4.4). T-Recs’ reconstructor was modified to identify and count the occurrences of the
five code types. The experiment was conducted once the overall analysis was completed
(i.e., after the results in Table 4.6 were obtained). Since the logs obtained by the logger were
kept, only re-executing the reconstructor was needed. In other words, re-exercising the app
is unnecessary when testing a new feature in the reconstructor, which is further discussed in
Section 4.5.

Table 4.8 shows the number of apps and code points where the five code types are
found by T-Recs (second column flow). It also shows the number of apps and code points
where T-Recs detects leaks caused by the five code types (third and fourth columns). It also
shows whether FlowDroid detects the TP leaks detected by T-Recs (fifth, sixth, and seventh
columns). The result shows that four out of the five code types are found, and two of them
cause leaks. Whereas six leaks of the third type and 11 of the fifth type are FP (i.e., the
leaks are falsely detected), all the leak-detected apps are TP (i.e., no app is falsely detected
by T-Recs). In contrast, FlowDroid fails to detect all of them. FlowDroid misses some of
the leaks and fails to complete the analysis of some apps, as indicated by incompleted. Note
that Table 4.8 excludes the result that FlowDroid detects none of the FP leaks detected by
T-Recs. The results highlight the importance of tracking ICC- and reflection-related flows as
the flows appear in the real-world apps as well as the DroidBench apps.

There can be other types of code with which FlowDroid generates FNs in the DroidBench

apps. However, identifying the exact instructions preventing FlowDroid from tracking flows



4.4. Evaluation 81

TABLE 4.9: Analysis time for the privacy leak detection.

Tool | Time
T-Recs 3 hours 19 minutes
TaintDroid 2 hours 19 minutes
IntelliDroid 70 hours 6 minutes
FlowDroid 2 hours 34 minutes
FlowDroid;c3 | 15 hours 33 minutes
Amandroid 82 hours 5 minutes
DroidSafe 20 hours 29 minutes
DroidRAF 91 hours 32 minutes
DroidRA 4 95 hours 16 minutes
DroidRAp 94 hours 55 minutes
IccTA 55 hours 39 minutes

requires debugging FlowDroid, which is unfamiliar to the author. Therefore, only ICC and
reflection are focused in this section, and it is considered that the choice to be sufficient to
show how T-Recs detects leaks that FlowDroid misses.

Analysis Time

Table 4.9 shows the result. TaintDroid is the fastest, FlowDroid is second, and T-Recs is third.
Their results are not largely different. They did not reach the timeout in analyzing any apps.
In comparison, FlowDroid;c3 and the other tools took over 15 hours each. They failed many
apps because of the timeout and are not suitable for the analysis of a set of real-world apps.
For example, IC3 improves the performance of FlowDroid’s ICC handling, but the result
shows that IC3 cannot be finished in a reasonable time.

T-Recs’ parser and instrumentator took 27 minutes; the app exercise, 138 minutes; and
the reconstructor, 34 minutes. After the parser and the instrumentator process an app, the
analyst can analyze the app to detect various information flows by reconfiguring and run-
ning the reconstructor and, if necessary, exercising the app on a device to acquire more code
coverage. In other words, the parser and the instrumentator only need to be executed once
for each app. Hence, reducing the analysis time for the parser and the instrumentator is a
low priority. The two components have not been optimized in the current implementation
by, for example, processing Smali files in parallel. Therefore, The two components were
executed in 12 threads without conducting a further performance evaluation of them.

On the other hand, the reconstructor must be executed every time the analyst changes
the configuration (e.g., taint source and sink definitions). Also, if the analyst needs more
code coverage, re-trying the app exercise is necessary. Therefore, the rest of this section first
discusses the analysis time taken by the reconstructor (Section 4.4.3), and then the analysis
time for the app exercise is explained (Section 4.4.3).

T-Recs’ and FlowDroid’s Parallel App Analysis Time.

The reconstructor’s time depends on the number of apps analyzed in parallel, which is de-
termined by the available RAM size of the computer used. A computer with 128GB RAM
was used, and each tool’s memory was fixed to 120GB by using a Docker container limited to
120GB RAM with disabling the swap. Since the computer’s CPU has ten cores (20 threads),
the reconstructor was executed by changing the number of apps analyzed in parallel from



82 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

300 85
9
250 A
%
94
200 4 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94

85

80!
78

79 77 80
780770788 78l _H77R781,, ol

1 2 3 45 6 7 8 9 1011121314151617 1819 20
Number of Apps Analyzed in Parallel

FIGURE 4.11: Analysis time of T-Recs and FlowDroid with different number

of apps analyzed in parallel. The blue bars represent T-Recs’ results, and the

green bars represent FlowDroid’s results. The labels on the bars show the
number of successfully-analyzed apps.

one to 20. FlowDroid was also tested for comparison. The analysis time may vary depend-
ing on the order of the apps to be analyzed. In this study, the tools analyzed the apps in
alphabetical order by the app’s name.

Figure 4.11 shows the result. The blue bars show the analysis time taken by all phases
of T-Recs. The dark blue parts represent the time for the parser, the instrumentator, and the
app exercise. The light blue parts show the reconstructor’s time. For example, 98 minutes
for #apps = 1, 59 minutes for #apps = 2, and 34 minutes for #apps = 20, which is the shortest.
The bars’ labels represent the number of successfully-analyzed apps. The maximum is 94
because T-Recs fails two apps in phases prior to the reconstructor, and the reconstructor
processes only 94 apps. On the other hand, the green bars indicate FlowDroid’s result. For
example, 291 minutes for #apps = 1, 175 minutes for #apps = 2, and 74 minutes for #apps = 20,
which is the fastest. However, as the bars’ labels show, the number of successfully-analyzed
apps decreases as the number of apps analyzed in parallel increases. FlowDroid’s maximum
number of successfully-analyzed apps is 85 because FlowDroid fails 11 apps regardless of
the RAM size. Hence, the maximum number of apps that FlowDroid can analyze in parallel
without causing failure is three, and the time is 154 minutes.

For the results in Table 4.9, the number of apps analyzed in parallel was determined
based on the maximum number that would not cause the analysis to fail due to lack of
memory. T-Recs’ reconstructor was executed in 20 threads, and FlowDroid was executed by
analyzing three apps in parallel.

T-Recs” and TaintDroid’s App-Runtime Overheads

In dynamic analysis (i.e., T-Recs” app exercising phase and TaintDroid), the app-runtime
overhead affects the operation delay, which in turn makes the analysis time longer. If the
app exercise time is too short, the app may be terminated before a leak occurs, and the leak



4.4. Evaluation 83

60 1

50- I

.HnﬂnﬂﬂﬂnHﬂhn!DHﬂnHHﬂ

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18
App

Leak Time (s)

FIGURE 4.12: Time for apps to launch and cause leaks on Pixel 3 with and

without T-Recs and Nexus 4 with and without TaintDroid, which are repre-

sented by the dark blue bar, the light blue bar, the dark brown bar, and the
light brown bar from left to right, respectively.

would not be detected. Therefore, the app-runtime overheads of T-Recs and TaintDroid are
investigated by measuring the time for apps to launch and cause the same leaks with and
without the tools. Pixel 3 was used with and without T-Recs, and Nexus 4 was used with
and without TaintDroid to compare with T-Recs.

Figure 4.12 shows the leak time of the 18 apps that cause one or more leaks. Pixel 3 with
and without T-Recs and Nexus 4 with and without TaintDroid are represented by the four
bars from left to right for each app. A transparent part of the bar indicates the time for the
first leak in the app, and the colored part indicates the time for the last leak in the app (i.e.,
the time for occurring all the expected leaks in the app shown in Table 4.6). In a total of the
18 apps, T-Recs took 578.1 seconds; Pixel 3 without T-Recs, 74.9 seconds; TaintDroid, 104.0
seconds; and Nexus4 without TaintDroid, 113.1 seconds. T-Recs is 7.7 times slower than the
original Pixel 3 and 5.6 times slower than TaintDroid. Using TaintDroid is faster than not
using TaintDroid, indicating that TaintDroid has no overhead, and the result is consistent
with the original paper [54], reporting that TaintDroid has negligible perceived latency with
real-world apps. T-Recs took the longest time for app number 8, which was 60.9 seconds.
TaintDroid took the longest time for app number 9, which was 22.3 seconds. The T-Recs’
longest time is 2.7 times larger than TaintDroid.

The app-runtime overhead of T-Recs is caused due to the instrumentation, which is a
trade-off for the tool’s device independency. Preparing Android devices is easier for T-Recs
than TaintDroid. Hence, T-Recs users can run the app exercising parallelly on multiple de-
vices to shorten the analysis time. For example, assuming that the analyst sets the same
exercising time for every app (i.e., 61 seconds per app for T-Recs and 23 seconds per app for
TaintDroid), T-Recs’ time would be shorter than TaintDroid if three or more devices were
used in parallel for T-Recs. Hence, the app-runtime overhead of T-Recs is considered to be
acceptable.

The time for apps to be installed and uninstalled, which affects the analysis time, is mea-
sured. Table 4.10 shows the total time for 90 apps with T-Recs, Pixel 3 without T-Recs,
TaintDroid, and Nexus 4 without TaintDroid. The experiment excludes two apps that T-
Recs failed to complete the analysis and four apps that TaintDroid failed. The uninstallation
times are the same for Pixel with and without T-Recs. It barely changes for Nexus 4 with and



84 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

TABLE 4.10: Time (seconds) for apps to be installed and uninstalled on the
devices with and without the tools.

‘ Pixel 3 w/ T-Recs Pixel 3 w/o T-Recs Nexus 4 w/ TaintDroid Nexus 4 w/o TaintDroid

Install 497 396 1714 1571
Uninstall 36 36 119 114

TABLE 4.11: #apps successfully analyzed, #apps failed, and the analysis suc-
cess rate for each tool in the privacy leak detection.

Tool ‘ #apps succeeded #apps failed Success Rate
T-Recs 94 2 98%
TaintDroid 92 4 96%
IntelliDroid 72 24 75%
FlowDroid 85 11 89%
FlowDroid 3 29 67 30%
Amandroid 12 84 13%
DroidSafe 0 96 0%
DroidRAF 4 92 4%
DroidRA A 0 96 0%
DroidRAp 0 96 0%
IecTA 8 88 8%

without TaintDroid. On the other hand, for the installation times, although using T-Recs is
26% slower than not using T-Recs, the T-Recs’ result is 3.4 times faster than TaintDroid. This
is mainly because T-Recs’” device, Pixel 3, has a higher processing performance than Taint-
Droid’s Nexus 4. The result demonstrates the device-independency advantage of T-Recs, in

which the analyst can use new smartphones with high-performing processors.

Analysis Success Rate

Table 4.11 shows the results. T-Recs’ success rate is 98%, the highest among the compared
tools. It failed one app in the instrumentation phase and one app in the installation phase.
No type-conflict error occurred during app execution, and the success rate of the logger is
100%. The reconstructor also succeeded in detecting information flows.

FlowDroid’s success rate is 89%. It stopped during the analysis due to some runtime
errors with 11 apps. All failures occurred in the call graph construction phase before the flow
detection process. These failures occur regardless of the taint source and sink definitions.
FlowDroidc3 failed with 67 apps, mostly due to IC3 failures (e.g., exceeding the timeout).
TaintDroid failed to install four apps due to incompatible SDK versions. TaintDroid uses
Android 4.3 at the latest, and all apps that do not support this version cannot be analyzed.

IntelliDroid’s success rate is 75%, and the other tools’ success rates are diminutive.

4.4.4 Success Rate of Essential Phases in Varied Dataset

This section focuses on the tools” essential phases that are independent of tracked data to
obtain the upper bounds of the tools” analysis success rate in general. Section 4.4.4 explains
the essential phases, which vary from tool to tool, and Section 4.4.4 presents the result.



4.4. Evaluation 85

Compared Tools and Setup

Since IntelliDroid, FlowDroidc3, Amandroid, DroidSafe, DroidRAF, DroidRA 4, DroidRAp,
and IccTA detect almost no leaks (Table 4.6), and their success rates are less than 80% (Ta-
ble 4.11), this section excludes them. Hence, this section compares T-Recs, FlowDroid, and
TaintDroid. They may fail for reasons other than those described in Section 4.4.3. However,
hidden errors could not be detected without knowing the tools’ details. Also, errors in infor-
mation flow tracking could depend on tracked data. In dynamic analysis, app exercise also
depends on data being tracked. Therefore, this section focuses on the tools’ essential phases,
independent of taint source and sink definitions.

Since T-Recs’” instrumentation and app-installation failed (Section 4.4.3), the percentage
of successfully instrumented and installed apps was examined. The device used was Pixel
6 (Android 12), which was the latest device available at the paper was written and is much
newer than TaintDroid’s Nexus 4, highlighting the device-independency advantage of T-
Recs. Considering that FlowDroid failed regardless of the taint source and sink definitions
(Section 4.4.3), FlowDroid was executed without taint source and sink definitions to exam-
ine the percentage of analysis failures that occurred in the call graph construction phase. No
timeout was used. Since TaintDroid’s app-installation failed (Section 4.4.3), the percentage
of apps that are successfully installed to TaintDroid was examined. TaintDroid failed be-
cause of the apps’ supported SDK versions, which can be acquired by investigating the app
files, but other factors may cause the installation failures. Therefore, the apps were actually
installed one by one to TaintDroid without launching them.

Results

The rate of successfully-processed apps for each Android codename is shown in Figure 4.13.
The Android codename (e.g., 1.0, 1.1, C, and D) indicates the minimum SDK version sup-
ported by an app configured by the app developers. The result shows that T-Recs evenly
supports the 16 codenames (i.e., 28 SDK versions). T-Recs achieves at least 86.3% for any
version, and the average is 96.6%. FlowDroid also achieves at least 87.5% for any version,
and the average is 95.6%. On the other hand, TaintDroid fails for apps newer than version
J (i.e., Android 4.3), and the average is 62.5%. TaintDroid is not applicable for apps devel-
oped for Android 4.4 or later versions after 2013. In this evaluation, T-Recs took 276 hours;
TaintDroid, 116 hours; and FlowDroid, 108 hours.

4.4.5 1D Leak Detection in Popular Apps 2021

Recently-published popular apps were used to consider a more up-to-date situation than
Section 4.4.3 because access to the hardware identifiers has been restricted since Android 10.

Compared Tools and Setup

This section compares T-Recs, FlowDroid, FlowDroidc3, Amandroid, DroidSafe, DroidRAF,
DroidRA 4, DroidRAp, and IccTA. It omits TaintDroid and IntelliDroid because TaintDroid’s
success rate is low for newer apps (Section 4.4.4). The app set used in this section contains
139 apps (88%) with minimum SDK versions of 19 (i.e., Android 4.4) and greater, which can-
not be analyzed by TaintDroid and IntelliDroid. As a result, T-Recs was only compared with
static analysis, which was disadvantageous for T-Recs because of the coverage difference,



86 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

100+
904
80
70+
60 1
50 A
40 1
304
20
10+

Success Rate

10 1.1 ¢ D E F G H I J K L ™M N O P
Android OS Version

FIGURE 4.13: Success rates for the varied dataset. T-Recs is left blue bars,
FlowDroid is center green bars, and TaintDroid is right brown bars.

TABLE 4.12: #apps and #leaks in parentheses detected in the apps from 2021.
“Overlap” indicates #apps and #leaks detected by both T-Recs and the other
tool.

‘T—Recs FlowDroid FlowDroid;c3 Amandroid DroidSafe DroidRAr DroidRA, DroidRAp IccTA

55(400) 60 (214) 4(6) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Overlap - 3( 8) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

and static analysis should detect more leaks. However, showing that T-Recs can detect leaks
in newer apps is still valuable.

T-Recs launched and waited for each app on Pixel 3 for two minutes with no exercise
operation based on the assumption that ID leaks swiftly occur as well as the evaluation in
Section 4.4.3. A one-hour timeout is used per app for each tool.

Target taint sources are identifiers, including Build. SERIAL, MAC address, Android ID,
Google Advertising ID, Instance ID, and Globally-Unique ID [128] in addition to the taint
sources used in the privacy leak evaluation (Section 4.4.3). Taint sinks are the same as the
privacy leak evaluation. As described in Section 4.4.3, this evaluation also uses the default

definitions of taint sources and sinks for DroidSafe.

Results

Table 4.12 shows the number of apps and leaks detected by the tools. T-Recs and FlowDroid
detect leaks in 55 and 60 apps, respectively. FlowDroidjc3 detects six leaks in four apps,
which are also uncovered by FlowDroid. The other tools generate no alerts.

T-Recs detects leaks in fewer apps than FlowDroid, as expected. In contrast, T-Recs de-
tects 400 leaks, which is larger than FlowDroid’s result. Based on the result in Table 4.6,
T-Recs generates numerous FP leak alerts as well as TPs for leak-causing apps. Therefore,
some of the 400 leaks could be FP. At the same time, however, Table 4.6 shows that T-Recs
produces no FP for no-leak-causing apps. Hence, all 55 apps detected by T-Recs in Table 4.12
are likely TP. Interestingly, the detected apps and leaks overlap slightly between the tools.
The result shows that T-Recs can track information flows and detect ID leaks, primarily un-
detected by FlowDroid, in recently-developed apps from the Google Play Store.

On the other hand, Table 4.12 shows that FlowDroid detects 206 leaks that T-Recs does
not detect (i.e., among 214 leaks detected by FlowDroid, the overlap is only eight leaks).
It was confirmed that 205 leaks are caused by codes not covered by T-Recs. In contrast,



4.4. Evaluation 87

TABLE 4.13: Analysis time for the ID leak detection.

Tool | Time
T-Recs 14 hours 35 minutes
FlowDroid 19 hours 58 minutes
FlowDroid;c3 | 22 hours 18 minutes
Amandroid 122 hours 33 minutes
DroidSafe 4 hours 33 minutes
DroidRAf 149 hours 44 minutes
DroidRA 4 149 hours 45 minutes
DroidRAp 149 hours 45 minutes
IccTA 42 hours 1 minute

TABLE 4.14: #apps and #codes in parentheses in which the five code types
are found and whether FlowDroid detects the leaks caused by the five code
types. The row “any” gives #apps and #codes in which at least one code type

is found.
T-Recs FlowDroid
Type flow leak | positive negative incompleted
1 1 2 1 Q) 0 (0) 1 (1) 0 (0)
2 2 (2 0 (© 0 (0) 0 (0) 0 (0)
3 40 (95) 25 (89) 0 (0) 20 (71) 5(18)
4 43 (177) 16 (59) 0 (0) 12 (40) 4 (19)
5 22 (24) 6 (21) 0 (0) 4 (6) 2 (15)
any | 52(223) 29(110) | 0 (0) 24 (83) 5(27)

the other leak is caused by codes within T-Recs’ code coverage. However, T-Recs does not
detect the leak because of the leak’s sink. This sink is a writer that outputs data not to the
network but to a file. Hence, detecting the leak is FP. T-Recs identifies that the information
flow’s destination is a file and does not detect it as a leak. Overall, FlowDroid detects leaks
undetected by T-Recs principally because of the difference in their code coverages. The
maximum, minimum, average, and median of the T-Recs’ code coverages were 28.9%, 0.05%,
6.1%, and 4.6%, respectively. Note that 16 apps with zero code coverage were excluded from
this calculation. In contrast, FlowDroid can analyze the whole code of each app, which is a
trade-off for accuracy, and Section 4.5 further discusses this.

Table 4.13 shows the analysis time taken by each tool. T-Recs took 14 hours and 35 min-
utes. The parser and the instrumentator took five hours and 13 minutes; the app exercise,
seven hours and 42 minutes; and the reconstructor, one hour and 40 minutes.

Tracking Ability for ICC- and Reflection-Related Flows

Similar to Table 4.8 in the privacy leak evaluation (Section 4.4.3), Table 4.14 shows T-Recs’
and FlowDroid’s results for the five types of code related to ICC and reflection. It shows
the number of apps and code points where the five code types are found (second column
flow) and where the related leaks are detected (third column leak). It also shows whether
FlowDroid detects the leaks (fourth, fifth, and sixth). The result shows that all five code
types are found, and also leaks related to four code types are found. In contrast, FlowDroid
detects none of the leaks. FlowDroid fails to complete the analysis for some of the apps, as
indicated by incompleted. The results show one of the reasons why T-Recs” and FlowDroid’s



88 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

. l = \ﬁ ’
=

FIGURE 4.14: Two Nexus 4 devices used to run TaintDroid and IntelliDroid.
Their batteries have been swollen in approximately one year of use.

results barely overlap. The results emphasize the importance of tracking ICC- and reflection-
related flows as the flows appear in the recently-published real-world apps.
As well as Section 4.4.3, this experiment was conducted after the results in Table 4.12

were obtained, and re-exercising the app was unnecessary. It is also discussed in Section 4.5.

4.4.6 Ethical Considerations

In the evaluation, the experiments were carried out only by my team. Android devices used
in the experiment were bought and prepared for the experiments, and no actual personal
information were used. Respect for app publishers is also considered. The bytecode in-
strumentation targets only code that does not change any data sent to remote servers so as
not to affect the publishers’ properties. Additionally, the results were carefully used only to
evaluate the tools and were not used for other purposes.

4.5 Discussion

As mentioned in Section 4.4.3 and Section 4.4.5, T-Recs can re-execute the taint analysis (i.e.,
the reconstructor) without the app exercise after a new feature is added to the taint analyzer.
In the privacy leak detection (Section 4.4.3), the reconstructor took 34 minutes, which is 17%
of the whole. The reconstructor took one hour and 40 minutes, which is 11% of the whole
in the ID leak detection (Section 4.4.5). Note that these times were measured after the new
feature (i.e., the ICC- and reflection-related-flow counter) had been added. A large amount
of time is saved because T-Recs’ analysis time depends mainly on app exercise time. As
another example, in the DroidBench evaluation (Section 4.4.2), the exerciser took four hours
and 43 minutes (i.e., 95% of the whole). In addition, the app exercise time can be extended
when the analyst targets other than privacy leaks because this paper currently focuses only
on privacy leaks, which tend to take a short time to occur. Therefore, being able to re-execute
the taint analysis without running the app exercise is a significant advantage of T-Recs.

The evaluation shows that T-Recs has higher usability than TaintDroid in terms of ease of
setup. TaintDroid is only available on Nexus 4 or older devices. Accessibility of the devices
is extremely poor, and also, devices have a limited lifespan due to, for example, battery
swelling (Figure 4.14). T-Recs, on the other hand, allows analysts to freely select devices
such as Pixel3 and Pixel6, depending on each evaluation’s environmental requirements (e.g.,
Android OS version). These devices are readily available, and the analysis can be started
speedily by simply connecting them to a computer.



4.6. Related Work 89

In the evaluation, privacy leaks are the main target and can be easily triggered. The
core of this paper is to perform a runtime-data-utilized taint analysis outside the Android
device, and improving code coverage of real-world apps is out-of-scope. As long as there
is a code coverage problem with dynamic analysis, it is unrealistic to replace static analysis
with dynamic analysis in some cases, and the analyses should be selected according to the
user’s purpose. Static analysis should be used in exchange for higher verification costs when
code coverage is a priority. T-Recs should be used when low verification cost (i.e., accuracy)
is a priority.

In the DroidBench evaluation, the categories covered by the compared tools [78] were
selected, and others, such as native code and inter-app communication, are out-of-scope. It
is believed that T-Recs can be used in combination with existing tools, such as JN-SAF [50]
for summarizing flows in native code because T-Recs performs the taint analysis on the
server.

The manual analysis of the network dumps explained in Section 4.4.3 is limited, which
could affect the accuracy of the data in Table 4.6. Only plain texts of the target informa-
tion, their names, and transformed data found by T-Recs and TaintDroid were searched in
the network dumps. Therefore, some leaks could be missed, for example, leaks caused by
an app performing complex encryption on IMEI without being detected by the tools. Such
mistakes affect the following. First, there would be more FNs in T-Recs” and TaintDroid’s
results. However, the impact is considered to be small because modifying both tools’ results
by the same amount does not change the conclusion that T-Recs generates fewer FNs than
TaintDroid. Second, if a missed leak had been counted as the unsure in FlowDroid’s result,
the number of unsure leaks would have decreased, and the number of TPs would have in-
creased. However, detecting such encrypted leaks requires reverse engineering of the app.
The cost is high, which is consistent with the argument that the verification cost of the un-
sure leaks is high in Section 4.4.3. Therefore, the effect of missing leaks is considered to be
acceptable.

Apps may detect code rewriting and stop running to protect the app developers and
users [129]. When analyzing such apps, the logger must be integrated into the Android OS
instead of the app bytecode instrumentation. As a result, the logger would depend on the
Android OS version, the same as the existing dynamic analysis systems. However, com-
pared to implementing the taint logic itself, implementing only the logger would be less
expensive and more practical.

Whereas TaintDroid performs variable-, method-, file-, and message-level tracking, T-
Recs does not track inter-app messages and does not keep tracking tainted content in a file
across different runs. Although this was not a problem in the evaluation, it could depend on
the information being tracked. As well as TaintDroid, T-Recs disregards implicit flows [89].

4.6 Related Work

Various tools of static taint analysis for Android apps have been developed and assessed
in the community [77, 78, 130]. Mordahl et al. [130] examined configurations in FlowDroid
and DroidSafe. Pauck et al. [77] evaluated static taint trackers: Amandroid, DIALDroid [19],
DidFail [35], DroidSafe, FlowDroid, and IccTA. They excluded unavailable and unsatisfied
tools, such as SCanDroid [131] and DroidInfer [49], for competitive comparison. Zhang
et al. [78] compared FlowDroid combined with IccTA, Amandroid, and DroidSafe under



90 Chapter 4. T-Recs: Tracking Information Flows by Recording and Reconstruction

the same setup. They also included DroidRA, an instrumentation-based approach targeting
reflective calls and used in combination with FlowDroid, Amandroid, and DroidSafe. This
paper followed the study and used the same tools and configuration parameters because the
exact set of used benchmark applications and the answers are available [115].

RAICC [34] is one of the latest tools targeting ICC. Specifically, RAICC targets “atypi-
cal ICC methods”, which allow to perform an ICC while it is not its primary purpose [34].
Since the 158 apps in DroidBench do not contain “atypical ICC methods”, RAICC instru-
ments none of the apps in the evaluation (Section 4.4.2). Its developers confirmed the result
and mentioned that it is intended for RAICC to instrument no DroidBench apps. On the
other hand, this paper mainly focuses on addressing the inaccuracy of current taint analyz-
ers against DroidBench, which contains more common cases than “atypical ICC methods”.
Also, Barros et al. [39] developed a static analysis technique for handling ICC and reflective
calls precisely. Their approach is implemented for Java and requires the target apps’ source
code. However, when analyzing apps from the Google Play Store or third-party markets,
their source code is not usually available.

As native code is being more frequently used in apps, researchers have been developing
new static analysis techniques targeting native code, such as JN-SAF [50] and JuCify [52].
JuCify unifies call graphs of native code and bytecode, and the result can be used by Flow-
Droid and other static analyzers that do not support native code. Also, CTAN [51] improves
JN-SAF. Furthermore, uDep [53] empowers static taint analysis tools, such as DroidSafe, by
performing static and dynamic analyses of native code to model the tainting behaviors of
native code. As Section 4.5 explains, native code is out-of-scope of this paper.

There are more tools [62, 63, 65, 64], which perform the bytecode-level dynamic taint
analysis for Android apps other than TaintDroid. Although, in comparison with static taint
analyzers, dynamic taint trackers have been barely reviewed in the community except for
TaintDroid. The taint tracking module of ARTist was given by the authors. However, the
authors mentioned that the module is aged and requires quite some adoptions to be used
with ARTist. Therefore, the tool was not used in the evaluation. TaintMan was obtained
from the authors. However, difficulties were encountered in deploying the tool, and the tool
was omitted. TaintART is not publicly available, and the authors did not reply to a request.
Since native code is out-of-scope, OS-level trackers [67, 69] were excluded. For these reasons,
only TaintDroid was chosen for the evaluation.

Recently, researchers developed hybrid analysis techniques such as targeted execution [59]
and program slicing [60], which can assist taint trackers in detecting more leaks. IntelliDroid
performs targeted execution, which is efficient when attempting to run a specific code path.
However, it depends on static analysis and inherits the drawbacks of inaccurate models.
It was evaluated in the DroidBench evaluation in Section 4.4.2, and its result only slightly
increased from TaintDroid. Besides IntelliDroid, Harvester [60] can improve TaintDroid by
triggering malicious code. However, Harvester was omitted because the user must coordi-
nate its target logging points (i.e., not wholly automatic), and also, Harvester is not publicly
available.



4.7. Summary 91

4.7 Summary

This chapter presented a usable taint tracker called T-Recs, which detects information flows
by recording and reconstructing the app execution. T-Recs addresses the limitations of cur-
rent dynamic trackers, which are the dependency on the analysis environments and the re-
analysis cost. T-Recs was implemented and evaluated with 158 apps from DroidBench, 96
and 158 popular apps from the Google Play Store, and SDK-version-varied apps randomly
collected from the Google Play Store and Anzhi. The results show that T-Recs is making
steady progress. While T-Recs gives overwhelming results, static taint trackers may keep
establishing a strong presence in mobile security and privacy studies because they are easier
to use, more scalable, and wider in coverage. T-Recs, on the other hand, should be used to
leverage the advantages of runtime data. For example, if a study focuses on apps’ behavior
changes depending on the apps’ and their servers’ configurations, utilizing runtime data is
more realistic than analyzing only the apps’ code statically. T-Recs has been made publicly
available at https://github.com/SaitoLab-Nitech/T-Recs.






93

Chapter 5

Conclusion

This thesis proposed two approaches named VIDroid and T-Recs based on the idea of uti-
lizing the app’s runtime data to improve the taint analysis.

Chapter 1 Android OS occupies 70% of the total mobile OS market share in 2023. The
official market, Google Play Store, currently provides 2.6 million apps downloaded and used
in users’ day-to-day activities on their devices, always connected to the internet.

On the other hand, the need to protect user privacy has been increasing. Data protec-
tion regulations, such as COPPA, CCPA, and GDPR, have been implemented in the past
two decades. Google has also made changes to data protection mechanisms on the OS and
policies in the Google Play Store.

It is also essential to uncover how well app developers and third-party SDK providers
follow the rules to protect user privacy. Researchers have investigated real-world apps and
found many non-compliant, policy-violating, and protection-mechanism-circumventing be-
haviors. Taint analysis techniques have been actively developed and utilized to detect such

suspicious behaviors.

Chapter 2 Chapter 2 described the fundamentals for understanding taint analysis for An-
droid apps. A taint analysis system must take information flow types into consideration to
avoid overlooking information flow. In addition, Android apps have various unique fea-
tures, making the taint analysis more difficult. In order to balance precision and recall in
these situations, current mainstream analyzers are bytecode-level trackers and target only
direct data flows.

Chapter 3 Chapter 3 explained VTDroid, designed to make it difficult for apps to evade
taint tracking by neutralizing uncomplicated ATA techniques not specific to a particular
ATA technique. A series of ATA techniques has been demonstrated on the Android platform.
They are only a few lines of code each and could be introduced into apps with obfuscator
tools by app developers to protect their apps against a taint analysis. However, there are
only a few counter approaches against ATA techniques, which are only partially effective
against the variety of ATA techniques.

First, this chapter characterized the ATA techniques by the four types of information flow.
Then, it proposed value logging and matching that propagate taint among registers based
on their data values, in addition to the traditional bytecode-level tracking. VIDroid was
evaluated with newly created test suites and real-world apps compared with TaintDroid,
CTT, and FlowDroid. The results demonstrate that VT Droid tracks more information flows
resulting from the ATA techniques and generates fewer FPs than CTT. Therefore, VIDroid



94 Chapter 5. Conclusion

makes handling ATA techniques more realistic than CTT in real-world app analyses. V-
Droid’s performance demonstrated in this chapter should be an indicator for researchers to
determine whether they are concerned with ATA techniques in their studies.

Chapter4 Chapter 4 described T-Recs, a runtime-data-utilized taint tracker that solves the
current situation of no tracker that can analyze apps reliably. The community needs a reliable
taint tracker for analyzing real-world apps. Researchers recently tested popular static taint
analyzers and concluded that the tools are inaccurate and cannot be used for analyzing real-
world apps dependably. On the other hand, researchers examined a famous dynamic taint
tracker, TaintDroid, and pointed out that TaintDroid is the most difficult to set up compared
to the static analysis tools they audited. Also, TaintDroid depends on specific devices and
versions of Android OS released in 2013, narrowing down the scope of analyzable apps.
Other dynamic analyzers are not effortlessly usable.

T-Recs addresses the issue. It records and reconstructs the app execution and performs
taint analysis on an ordinary computer (e.g., a computer running Linux), not depending
on Android OS. T-Recs’ accuracy, analysis time, and success rate were evaluated in privacy
leak detection compared to currently available taint analyzers, which are FlowDroid (w/
and w/o IC3), Amandroid, DroidSafe, DroidRA, IccTA, and TaintDroid (w/ and w/o Intel-
liDroid). The evaluation involved 158 test cases in DroidBench, 254 popular apps from the
Google Play Store in 2016 and 2021, and 39,480 SDK-version-varied apps from the Google
Play Store and Anzhi. The results show that T-Recs outperforms the compared tools in de-
tection accuracy. T-Recs also achieves reasonable analysis time, app-runtime overhead, and
success rate. T-Recs is making steady progress.

While T-Recs gives overwhelming results, static taint trackers may keep establishing a
strong presence in mobile security and privacy studies because they are easier to use, more
scalable, and wider in coverage. T-Recs, on the other hand, should be used to leverage the
advantages of runtime data. For example, if a study focuses on apps’ behavior changes
depending on the apps’ and their servers’ configurations, utilizing runtime data is more

realistic than analyzing only the apps’ code statically.

Data and code availability VTDroid and T-Recs have been made available to the com-
munity. VIDroid is released at https://github.com/SaitoLab-Nitech/VIDroid. The ATA
test suite for privacy leak detection is available at https://github.com/SaitoLab-Nitech/
ATATechniques. The ATA test suite for suspicious validation detection is also available at
https://github.com/SaitoLab-Nitech/ATATechniques_SuspiciousValidationDetection.
T-Recs has been made available at https://github.com/SaitoLab-Nitech/T-Recs. The
other datasets used in this study are available from the author upon reasonable request.

The regulations, market policies, and protection mechanisms will be reformed in the
future, and researchers should keep examining apps and libraries. VTDroid and T-Recs
should be promising tools that empower researchers to analyze apps in the future.



95

Appendix A

Hashes of the Analyzed Apps

A1 Apps Used in the VTDroid Evaluation

This section gives hashes of the three sets of apps used in evaluating VTDroid explained in
Section 3.5.

A.1.1 Popular Apps Collected from Google Play Store in 2016
Table A.1 shows hashes of 30 apps used in Section 3.5.4.

TABLE A.1: Hashes of 30 apps collected from Google Play Store in 2016.

385bd2a3e0e6c99e175fe131bcad9db89e60c341538556aa784c7a8fe5990422, 41126e3999cb4d7a7910716260a8255d7754e7ddc945c68de6a089b1c0dd8ccc,
€94539ba3e4777a1346bf595d74365fd6d5de6d6457d9b079f8b2d3fda3cab9a, 328663f3ee60c1ab9e0c915892634b9bc80c2bb1142f47d74d39a0c4ebal18f1,
1d6bfdb5bfe601b5a35cdd0c7be2320d5cd46180584fd51243b292626990dec0, 9c4e0807ac1d830786dcb9b6731fb08eb047d81f1a42711471182205b8ea72d]f,
£33e3fd3e3a020addb9c7edfdf0b3b13bc382221dc1c967a81a7de702dc239ad, 2183e6282243269d7ab25a31b5f0b1fcfd 15d73b0e24890fb5bace8c1965753,
af7a3cc40£fb6930398048a86f1a2c4cd1368c966e5826534a7118a89d45eb28, 2abbea68266066{476bc251ebfc5ac7e510bde98d3706d74d3feb5bc9d fceleb,
4e7abb31e72a286447ccec93ea5604bbbbc5e43f273d3301£312c564d4071c02, 235010d4454a3dce9b334f99a26ddc7d4123737363a43823¢19d96fb970ba00f,
7600e01d616401987dbeb194adabe4bed0906fcd0f2063eb34f5a7f3cc6441dc, efb39a8b64400c285£f41c90e0abb734c2{76059c8aeIb6631e533c841c7d7f6,
eaellc32fadd6fb3eb171d1cf78aec84ec537a35bc15648b1a7b91b4af09deb2, al4c4158898656abc08bcbf43df9299c5dec984068460d5826{2e8ef5f0b7c75,
al6ed39c64a7cfb692a1b42757ce5bb85dcf60355ca4b98109e3445fdf5d23bd, 668047b8393391a3682e5ef429164124f2990£39f9dc3c9b130340862d87436,
44ac462{846cffcbe3d3156d00c9837a30228b12fa4b2287bfdf1767edbda3e?, 401722b99fe626albabbbed8f5809135dbed706c061315d308e7284e4dbb91a7,
9d919ba99629b8a061aab253135¢186167b2ea6123d7d3830654869cafccd5£4, 8cf04193f124693a5643dcbaf1f0b969f9a481c6{f749acad8albd8el5fdblac,
554730324c46d55c0ed84c74449b1faa9694f59ecf9c9dcaal6laleb6ecbebd7ae, feef2e5635ccO0baebbecb9d4cad61bafec163a9f8da7dc23e728e2€291299019,
98f7cbd948ddf41b112579600535da71f748394c1a6f61e9ebfe6al58f5291ed, 7905242ba51fe30824b2cc3ccced60c63albf49a2065f7024a399c0e51572e68,
a44626cbdc5d85d230d3afd7be29dd660d53e911e88fcd44e87e37145d462183, d1eble7e4faf16832adcbf3f2ac3341e3a4e8c98b22ee24b9b52526f0c11b82a,
548ed9f19181381c0440a1ef07937211a253799a32d92{77300967525da63a7e, 703b0f193ebc9713da8d56dcc3bf668683690e92d0ed7fa8ce9a85f9ba6d405

A.1.2 Popular Apps Collected from Google Play Store in 2021

Table A.2 shows hashes of 277 apps used in Section 3.5.5.

TABLE A.2: Hashes of 277 apps and games collected from Google Play Store
in 2021.

93743bdd9ec9919446159fbdc4716505fb13776a5423572{85cd31887fea6057, aea9687feef84d6c5c45ba6828520b45d9320a50b8acbb3e00898b29b91ac751,
99ed3082155257d{8def811c47b6fa1980a31750592dce33b7a22dc0fad50e45, 4db06{56dcfcec21cc1808e8954bf5272bbef4d2237a822963324d0d76b62a5¢,
e53b89177e697eff71776ab360727afee73f58e4492cd758a8cb47d3618bdc12, 3ffe2a52eda8f4eb3cc90d599aa7252bfe0759d 1e7e65f23221ef007797fa947,
882calbd7bc58d380ca3fcae3510891eeeadd75e37728a065e43d5d9013a5fed, 7680b4db799fccbfd639efefb6856b4e83a20c58f0733a52abcd565bec76ee85,
4c5e1236595c81a04dbee97d374109e4f4df9cec990bc514bb2098e364f73e00, e39adObaeeld61246e17f7d3d213cf2c65cf3ee41c6851230f13d50224bcf0e4,
bba3d239fddd7bb1bc7b18204cfc0380alce519ffd08716cd65184e8cf86bd66, 8cl6ffae75fa7609626feb15b317486286bc752fb2dd9e05e3209758054133c4,
976£247bf4dd445d7b51{5db2daf439e1eb08297b6a4432332425f7cbd6ec27e, a595aff30bb60a8a8b583af6998fd4d13edc9ad4f6bif19b194d1c5d6d459e56,
dd7a2833705d79867531ec660e1c9f441156fc61381£292f13bcad6b9677f6e2, 89faf29f3d81ded7e81d0adde7cac501f0ad645d68a420866f35f31a7a50f292,
f0e1f423dfb50a5a0c7135fded2fdc777ele2fel14c9eb5df099271e9b2e534bd, 0346{2e43613fe50bel6c9fce9ad3ffa689a50773c35319171a3e51704c4809,
d318a6994b74960bb85e3{454af59b2f03605db83£19732c6d 1392852784858, d5f4ad05fbfafel5bfd5b5d6c2a294e0a9¢250211a026£a090977f535d30eac3,
2f5££3459c73a2d168e8cf5f3339047b346dc82a044e262dd6820d8cbafc87b6, ce5365bc90d3b750a85ba5fb8eadff09c22a9b70d200ef77aa8c0970f6c31d 16,
b66e0b731dcddd0f167bdfde4cIbleae31a86f242cb9f0be37988a7478eee521, e67019b3aba4e8388837da735866b8e241882a2128a2db6d78a707d54ab31d0,
fe762b1bd71b2a9%ee80cd1a85e189¢21078b069fa921dd455e0286¢f875abc10, 1b20£8305956e0ee245b488b2cb451746efb44793a00e03bb346280196c4c974,
ea9adc48032442{3779c04c084b2860d44cb16b5a33397b6c78{f59cc75b9fe8, f9bfa1680d1b62178ab27bf1d6829cafd9e1af0097d7ee22b3677bf666e7bde6,
£998a13609e1a2calab2eb76180dc3ed8970dee2f3f72bccf7ale1fa9742¢226, db2c734d9041878ac99f32023b755a0af6566348e7925¢13267588edc734d967,
a3a434d95f0fec2e543328c85cd3fef412dfc465169b41979762ddf507f90680, 9c463392057c86{0ccce39e93ffeb8fb2f225ecec31cb84c2da8b60884245¢fc,
c808ef7e416c7db772840e66a8416e07e13a5b08d2e064c556f65079fac9e4a5, f28ealb9f085339b4c664562377€7926d6a999ca81b768fa8286c53b5be90fde,
5ceab8764de790b3550c653d736d483b56afc459a7a5e49bffacd786ac7e00ca, €352f9d9d74bdd0c3578296ae4e80dd7b3722d24568a44ea5889e9d5e13e4477,
20c224b1b12713b743326d89c4294bb54c6e47605a14395b548a7672e42a3c3, 66044239eb7317c34bflecd8855bc26497dfdb32de68cf14b626916d74d 1835,



96 Appendix A. Hashes of the Analyzed Apps

99dc4b979f8499412a0e0£f06d963f077f852b08bf066be28636105595da9d4f, 46a0aacacdb6c403bafc692e55e71cf58ebf6adb156dc5cf159b5a29¢97f76d29,
b39f84e7146afed6074f96b90f56a2ef621b26e835c9Ib2c1dc72f7b43be594a5, 91eec64749ac26af48a94cc352534dc658b5394d395£f26{68e1091bb0caa25d,
25678£286172670a72478b3418c6d99689923e47ecc5{5aa888782546e1a0233, 0b9{81c77fb6161e0c69cal8fae8e63d59bf07216d4f5cb559909a8717ef6ed1,
c5e41c76f0074ce833219d97bbd 16fe2caaeedd1fed92al6bfde53c42ea7ceee, ee2dcd56258aee6f7e17c76b682ed72e8388f020d6dbed0b7289c95fb2a691c7,
€669950a39ce73eb5336356bb32376a2a150a25¢1472e¢98880a80e1fe279e65d, fe80al8fa969879b5d8b0369d4d84f21ffaff024d4a20c572ab686b099df4b18,
b7149¢ce223d8134a556099812f5af8a3b75f55ca511b9c2e3a4674dclec36d8e, 4alcSae33cc3aeed744a51038d1821f617c2da419f9f50fe9f709d28821ead03,
88c8201b80ae5cf7cffd71f99d723a0a67668bef2f6b1bc03246cadc2f749¢65, €9c2bd1bc41d47b166f4020ccdda248263052c2ae4fdf09862ee7d7e8082ae31,
232022fa86dd20f310£096122e48472d9e8eeaeb1629a570133f436ca76d5edc, 66e2c2455892790fdd042caf1f47bf0b16d85bae26693852e8730d6a8580ec3,
9alfe7ba72f9a04c1cle5e7310301cf7al11dc2da6902e5deb302d0e119¢508d, 948bfa4ab9cad794394ffb156e6802856a7ae36933f91dd29109d59ad8210699,
a3a9101b94fae560bb2b7d1ef3c8616bc7771a44ca9c8bfd018eda3fa550b0b3, 832bed4187cc470e03c2db4f7e42f5adb53d68c280879e701103bbbee3ald8ba,
5709d451a6de4a070643721f4596b6bfd5380f26da7a27d1d915f93753aeaece4, 769c60e4f420f13aa2c3ee62337a73{74011d5eaf8892b3ce873561e9c5a24cd,
61de7e4f717e13d7fd2056c2e222a8e7b9e546babd528cfe6b2c1852972¢15d6, 61f1c706b4aa72a9e64a25fd2a082181487969a373020c37a176800albeb99fe,
499427f1bd3c085082ffc1c23faf95540c6006d7daa70463aec51bb042ac2e8b, b2605b21{6eff598c7b446a6cf4fel3ce74c6befdf2069aaaf859a967249cc38,
7859739908505860d f5166acac3c2e9f5e44clead4258a0ccfc2fd5e9aa677e90, a5113a4b8746b7ffd7d0b6d2f9fa77714a367c891518bfd341499364e4b7c0cd,
8154022d610dacdea08c7419f7baa45b4b62b2fd0533ff0d5bb5d6822d028110, 5aa93a29d ff4cd520e69c87e93ae32fb69aebe467227b5354442fc171cd92173,
463681c66ef6aca7ad1847b98fe3ecOee3afbe649f8740b0a568180e7ad72d95, 4bald318683e2711d5d98aadb368676b93b9b161ede80b84{3b4e99cf823a706,
7a7971d366a136f81e7ab43787184ebafa3577a2c40c1df413¢199f1d078253f, a0ec014e633bla0def25d523ecf81e5530e091be1c9075fad7af8aee97c86038,
389c¢7dec20d3cad1a873ada95c9036ef8d6e882023d7ald0bc3b962c76dcdd51, d82741954830656962418{043bbef70aa7e920499b638e4c35b66100£2¢32d95,
cle64bd45bb1£812564c4fd788045a1f266d807ba95da7c9caelc991e0d367b7, 8a78d9c87011e54dd2fdf06c535b664544826510c8d8518b088bb992a36966ed,
9799204773c27134d929bdb7c4£026451703717bb7c25a8668727a7212ecfd29, cf43f249f89390dabd5bf53b906f9d5fe20c5575b0313997bd7109d61d8418eb,
5648004fc4788b2dee4a64151{85fbd7e9831b82b9336e1bbbeacec0aad66827, badfb2b6d143c886{10b71219¢384689aebf932316cb8af0480e5f9ac32a05b5,
4c227ce66be3f17ea2c76b646263d943c5d1859254d717e97494c8647e1bldel, dacdff226287d965cal27{f25ffc792{8c29baaa31392e29a4fbbc48f22¢e4fea,
fbc1432e9c0a84e9e878452825c3acaf3efbf9ff1fe489c4398e5d0ca7309370, 76e970b5d30f6dcb89225¢31d4004b3fc683ca58c86ac148b139a3638323e089,
175£81d73067caf0837d8a38a3e394bd74993e34e2658537b072814cd87785ac, 1d6239f165{9c40a6dd36054f€99768272bc62a2054falc30{5af8085b36d902,
a296ebfe5¢73251000bb0769569951336ae7d1cb6f443a2cc9d63f111b8c94d2, 1d80a31879e87798cd9d578a8f510494bdebb7c43cdbeSea326ce59f719ee327,
c8b7046749d78a748dadc144355b1a21felc75317dac2818e9fe777a53f66ee5, e4e5174c1f429d198825d8bb72262a02c4050fca8df8ec59b73b2fb18b196e89,
2205316c04a1043e670fa9%a8ba7{1{f427b8c9b7e0e265bec0bf32a3456521d2, 62100bd3a9ef310b12154c0c69be50d37ac3fa28871aeb45a289502525{2477e,
464b61c19f409bc7035294b50df365ddab4c61d5¢701c175c£56d023£f5e927f, 389902d32{67555{8bb9c959c3654e691c680d24e20b5b22698d2d9407e3¢561,
9b33c978ed9e3f65e71c451356226ed5fcc09480ddfa3b3c2872d9ef4al3a66, 3e56aalala38f49a7f2e84bd49ba3112d757a84b3a15a36507676acec64c78df,
3328b30707e39aaedb06fcd228cef56dc8875b05458f9e8b9eb03388bf1{0af8, 5303bd1ef5c¢54b43190ada36b47b6f14baf0d04a5ad93a184d3b8bedc2aabab?,
3093cafc048cb12699f9064ec50ca98c22e7bedacee563b796a07ed8549fa561, 20439fadabdcbdflec975cae5417499a448e997d8aca32ba809b0c79735e88¢5,
f2e0c441a8f664aa7acd7acce35e861398a3ad63c208adcd0ae9de056ae9645e, £35906d81b7e54a0c8b3c411a8b09f3e56a9d111a3999¢9233b5fe61626e81af,
7a103c4ee48a9c2262388ee818303559{62967efad5c09862ea22fb913cd9d9e, 859ae9040b9925¢9479466075679fda54f7a7a48195e019a5¢13a44b9e23ab10,
01010528305b60a0a3ead5e74416fc540aba880£7c8f8e9029d5b8ala57f8ca, 919977e9bbe0c2b41e5e91b8edfbfec8d4£22552d1e653a8a5¢f038c01886349,
9936955360f4a06d638d18be5a8303486b82d27dd102a53e842d42a353ee079¢, 3ceee2eb7bd089d0204f9d89a43e4de15d5917bd9c8be87f46d15266e352a3b,
4400e2541abba700fd151bdf6aba01f1b5d9{6f80a5038acd6b37fbc9d2cbf59, 694d6cb8b81f030aaefb7f9c933b9bed8db177efb07c30e3dc8d937acdb8ae5ce,
1fde6f3ac7f84b86a5a83ff968840cd 1ee337c637e816c094bc3f006{539bde5, 4300a74faf8alea70c860855ce0a04def4dbc354f4€5940869bc17e6726dc821,
91ccce773160477e02eed7562e7ed9ef97c24a5938e030b328f4fee83bd789e7, 1afdc983261fff19101c2dfa54b551e274cf007a8ceac606f92ec509db11ac3c,
3933c8ad78a684ae2596d95ccfe987ed7c57b4ff8da016c9alcdel3842229234, 91d785e0ee4782e1a0a2016d8e0df5ec698ad4fef21913405857877e9eac9513,
b0d3a791ccf357479924d8a415910bf0cdcc7cfele89c3efbd8a743858854b7c, 7589736fbledac7ff6018d1021592b3f2abaa8fac0313a18d5315046a268bef1,
92e59fbe8337edc0e55b35bdalbd95dd26da82503bdce3cee80be570319¢7fe2, 3ce537999fa73774ee8bdb181bf7d8e35b070b8aaa84094f80f2d30b601b3641,
6e57851e00491bdee27fd986¢14abbbc83584c775bba51f9dd59997ef853ccdc, 4cb502f81fba5f0bad91d2431d9f38b9bdf5b3f43ba5150547e23143038f88cb,
75fa06aal3657418fb8aeff47db7650b2f96943955cb5cea25974c2ed4a7c673, 9f4c9d990a2d2a126775a150d59cd7d05efe54b8a81fe07ce6dc61c0bbe40fb4,
253a6a66dc5a53f183baadc2580fa8cdb923d785669153a4d1f2deac8dealc5e, 7a34e40c2e0alb1290095677cdd8878b89309ecc3652b7f4c436688312d4d21a,
e73e1e2d86286c4fb51c57e4ee0f2c4d091174c3658170844cffaecec093aced, b7f6e9d744798b8040c5ad6631dcb5c25¢0a28123364aec8d3b68aceaf392286,
fdfd7208a48a559959e705806e55784958e571dc97d4570b9a58b51ac0ac9dc?, Oca75ac7{632954b258a5e4ed504eb28822ba707a81b5cd8ab567fbbael2e7e,
a2234d128d1c260e34ba7098aa15c68126d8e077c51£55bd16724b5867b3fd34, df2eda61d01519febfc1d86f1aeec9elab84ef6df5c612bd79ab6d 15152095,
2a0d0ef7ddccdea78fd5ac94d2acce696fb3e2e3c7d4d66af59655baf29a73d6, 3771c601e10aaf060cf3f5e44fdc45e844950ecae8673469158b9737503¢6967,
df3592ced9cb1b36953cb7d806fa56d3{580ea2d754c654ed67bdcd943173d4a, 76fd2604cb693d7ac93aaa55dab446bbc2e443a99d7006de03a0b2b9181f46ac,
69319bc8a6£296465e4981288104ec64954babc5b4c1b01159b4981eed559cca, a3d0f659a86bde22e3fc4bfb1db60637e2de715b63407eadb49a61a0ed8bf83d,
6b6e04370acelfd74ee88404acf3069285aed0d3d6d1a478f35af70c84e6eble, 9f57aedd77a352c¢89065dc5166e60670db7cf681d6fff7cbfa97d074d8d71762,
dc5767eb6ac4d8c31d2cb73db3b2237{08e776a35b84dfcedaef3310cc7bd659, 2af98ac89b277ba2a26e4211a751219407eb4a39a0fa07b8fa7d2{672eead7e9,
73fb069209933b5ac865869da56fd1ac55cb5145d{3cf5bf27957cf7a9431037, 56297f087b890f132ab5c1e59¢7c278cbe18e54044a5ed57910d2812£55019eb,
3cc8e22493763c3£2c53609818fae023b6070f0cb7128ad429e387836cddbal, 0ea9a33bdea21236ce91cale223f51b4abcba9489ea35c4c8b68775a18959b9f,
5a11c684f9cbb6e59aeaa25400fe5e334c6a21763813e2e016d7eaed58169cfd3, 0861826e6fefb273d6423b5000d89843ee8f9ddaal73d0c3010fd2e864c767ef,
d17413aaf5f15ddc0cc42a43b08735cc9329£89d34925f3b7ca54737b2fbdel8, afd77edf2db2f99dd2220b1cc2b64ddfdad0f3c23¢39112194e7b60a28736a3f,
577acde222af8754bfc12c3524fe080225ealdbc2d3a5b5dba3e1659634ab74c, 19dd32277da69516c2f737372¢552d101b4779742eb0ad d8e41df9d20bfdb815,
d1d966589bb0f3b51e6fe9e5b3992ba4d898d65b3390e3d07ebe54bcl7f1f66b, 541cb9b45045168255c2ed611cfdc84765¢64408d94238b29d c4dc2f64£51399,
e8f16593dblaefaecb1442f0fa410314076a8dc7c96f79c54111daled76cc543, fc544835cdf7blal1bc09a039ae7a43ea827c6d9dd7803{8112133f598941291,
ba4808d35396a7b11a3f49cac3b962f19a49eal51c44812fd1fd87b919a4c292, 0b940f64{775f70fdbcf68c16d1d611326948810fb7d308dc1eb0e08ac5c43cf,
al1a420b2b6b111197f00b31df0124d1f41ec287a4c11b4d4c25daade317f112, 7a46c5034d3aa676c3c5b98bf4al6bf5485e2042baaled8a5e8bb1d441017d85,
6cbc86bb20329a7242c091£5f4e6c0£338943a70d5735da2542e6a5a8411fe81, 3d474490e8a40a18d98d0ebe0b8cael2b9379e540c143cel1c5915db3bbb4741,
21ded5facf782cb275dcf8dd322d9b982e75175caedd4d4edd2816e98892053a, 7fc70774345bafeabfof8bfb72ee5081501495406366b715293929585942112,
0409e2129a06f9ab0ff56dfc68abc615b495404dcadd6139f99f0c3fa5e14235, 46476758d53247c8591e6dabf46ced1952e732174a2f38alcf8al4eac7c0de5,
18182ad640313423ccb964a5061a17b49afff826c2d2b066cb3a78415f5fd0e5, Sbe5d3bd22607e0a33f71a3b467aeb783c416de5b20908a124879aacbe8846d0,
1686c8f90e5de0e5333ef07f8d3db895dbecb1balfcbded1f7e3e71allc6dbe, baf0d35c2cce3f3db23917865f1b409d4a3b854b3efa958f6d11f83bc9a98324,
14148a33a5c980cce640b1740b5d73cf3532eb440647f680f2e4710d07197ad2, fa7b297e186de0e428b0920e106073f9879b2173e55bfab3086ed99d3527ee2b,
06882978b1de2f4f67b4808acdf06530db69312bceb4775083b08f379dab137a, f14ba60f23f9alcbcaf7f03fb544be35felc3c5d77cf290£8¢913da8015f1a90,
585467a011cd85988790646b5591ec11ccfee0430c6ba24d1d0db3813bebfa65, 616bb2a98f475d91£67015403be093c534677280fa0c30f8cb0a3a%al4f172c5,
d49f63b3deed8e1d05c9a74a36a0d417d97491b5c8a756e12e¢57305946221681, 60a5c39e4d83a3839a81fd2c7b00baafbel1f46be0330cee75c79616b8984b30,
d8ae2d136e4alc521a82ca793b3cb650e9ea5461a28e8553632b286£13d99e8b, 38813ef36a0336e1a0207eeec5e3c3d0bbfc31468af432de7621c8f44e2805€5,
76de78d09d9ebefee65e4075ba35f4d6260436633c384a18b891db4c49b35c03, 5d5cc7b4473ac27b5097e02adcce41b79b9f61e55fb7b38c039cb1deecac698f,
318fcaed1f9f2c206d586f1902c65777£65410246f6b1450deadda6f007e6f22, 3cdab8bf8435981eaceaababcb81a75¢02¢92483517ea995d59ec2b21b636885,
10814460d1a2c39ceb6361d95b53f18b1ca529511a0a9df14dal1d5346£f5723, 43904a7d40d6e61241c10c6cb70a6cc99b80294238122¢32154b44d818044851,
1b7b1d273212£855a3714046167b0bec5e635c¢6b7c78089de43d14dd1d7acea5, 2fc9dalee4d34ef059605df1a095006508d3885b9e8296771a89d6179542f431,
365a541a989681b9acf920c7f395188cb3f811b4d41e1d624aa45a65a742bc51, 7¢5927d48e4£532754c8422d70b55339b0aal44aabaa645a3cd341c53aeff29a,
0Oebc1d7d0eeabed709cc7d3£d0f548c6ef002093c40c7cad877159¢10ef0d74c, de00e51a6c0391b073312b4c71ea03dfb6388b7899142b93bc42e7323c30deb8,
ae14029ac5c9bdf5e9b9356095278823£2f473fdfe13a24311b12649f9a7d285, 420cb3cad224c0dce8a55ebba09571f03bc7c0936232becb52e33a20be386ada,
bf3725458474{7414873a7e95e286cf5ca5463d45627519f1b7c9cc25692bcb, 75d9efb9ed1d641a2a06300f048906b77766b50ee54e3cce5eab9317d3bffd88,



A.1. Apps Used in the VIDroid Evaluation 97

£d18£304£2134603b8434€9acf3f7fb85782b4bf8dadfd23d0146473b1bc7416, dcaf43b86c33d8b2d89d105a6ccea54f3aedcd1ef1fdf24425f1d1f067a0c3b8,
b29£e5976379050e2536753ceb97715a75d405e€91b110a1de9165c4ccf70e6ce, ae6b0b91e9edcd15424513£fd48b3296566f31€094f74fa2a97{0273aff59fb8,
7e39651ea180636f7deld625a6af763fee7b955¢2b60273093ad17d7757685¢, b15b784924c4bfe305752a6007aee6c2a78b741ca6a859195765d7576fed 844,
4fa7556d71d2a193fb39d74466c1e7c5ca9c011d9ed26e0c1b526£c227629d71, dabb8lae7ef8c0215d0f9c0e2a3cd93170a42dd9de5f41cac77b49408b96c1e5,
eld341a62a1e93877ef77f8adcd7d1adfbeefcb22235784a08cac5d373627b5d, b03450762d7f7897a6f0dbd61c05{5d3d7feb7fc236a88fdddad1f0f7aaa0b2b,
116ab52a3f055{8f7ded34ec072596286b33c0bcd8b3ccb96ec9cc35{6809885, f4c483f9c1838080f64b918aaf0304ece09d41d2dad0cdce769b8927e0a9b5d3,
cdlee57d9a6b79f2c7469b511ef534eccaafaf89ef4fbddb7e285524028ce859, c4a511171b94cf71f7a363dad1ec6798b14416132f7199c0elfb5a742c1£c08b,
0692f686d90d2845d7e93e5972d701d9f50dc9a70b1f8ede1249ed82aca03d5¢c, eDaa98bad59e2943ae6faa5526bd2db1b3ecafbdf4a72bc1a8865b07c05ecd5b,
cflcfce83e2e7bl1aef6dbeeb0ec9d90cb5907ac25762b7c89ab75e30854111, 52£83397b98(77242bef64011fdfa4elebb7275176470563c9d787{0c3d4395,
1c8c91b57b99bcfc6bcb548e80f772£262d2cd4ef4db46543c3e65efbf6f9d9f, f3a027ae48ccf6573d4209d3287a95802815483(70f56dea01f33f1493eea711,
ec875a644ad8b2af6ca9a36936e175b2d79b29ddbe74d 1ff9b48b9d8f1fb793e, e57ec7eb68bc259a0f8c44851f33b8ecb7c84171dab7b8d75e1e1d50afe1d9b0,
4ebe40997d1£3dc709477dc224b6d3c7b429d2347c678b55bd6bb99a0762e3b8, fb564e7aale42e5332742519d74e722d6d4101927ffc4d1a173591cc1f9£3dd,
ac2515ace3c5f030d1fe7eb2658dde67ebeb4248454803e7fe0ae989412df8a9, bd0al94efb45e78e48af1cb80ala759202ea3783{2b2c92fe98ef8428a69e349,
2f9f54cb8df35b01cc2f9180fa30e1d0f8f6af5043d8d323ebc234e91a6d53aa, 963babalbcb33c21f2a3f839307cdc7f97770b23d14c56d7cdf2c51 cfebbfede,
654f0f7ae4f6649227296fd5a5febabe49110a2393e16107{8ac3204d051386a, 0€9244794279cf209149510£367f2b3{b38b{639bda31b33b9351e6429a2f1c8,
449991cc9b37e9627d0433ecb98alc2dc7130a815bc4a59b0a0457f924a8b068, bd265c4f8c50e8fcf3cd979f43ea52bfb054d9ac3adabd42al3bd85a8d60c779,
a2642e17a50eab9cd2991360f8fa56dfc46ace7ede1b4dd011acaeec5696cdb88, 769c797e66215b304237589ab0549ce0d996c80bc518a9a576f958ab3235b2¢1,
212741b658d5e5d14£8{b9592a7e699c2a308240e358d64850ca0879f0e201a8, 73cce3a6855{58ed8f2ce6d7a3928705c¢96eb96622a33239898cd1d585485adb,
€3626790faa9d6e76648ceddc80409acaac61c9df908555e53adabelff11dead, 7aa67e055f61aaal32b75e28a7267fe71388bfaa50488a48ed4722177987f7cb8,
7a3c59090078f01f01c11ae9d8bdb4defefbalbe2adac3a6bc7e7d8161a2bb742, 2ccf194a3cd7aa45¢7914085eaeelce76ee9c75258fd5374a519235af265bd8d,
22dd220fab7aed2d7026bd5ba6c41{9fal1712ee0597aac62fecaaf5985650b6, 4elaldd2fcd78b5{22cd234d4e9049a493dcfe3747060e2be27ecc759b971bb4,
1c0c63022313fd7cc40d862a5061f9ebdc712ab6{f671£f9fc15c104bb3842ca, afcfabc26b499f32ed7b51636446cc8999bab0al55fab59¢50c0b4d2f9125¢ab,
99£3956f39bdefflddac2b12129e3e689c1eb077e9f1d1389c7£43100919fd ff, ebf9a44bd59b2707957377255£527e87775bd33b37c4a6460edf6719ed0bSec,
707b1c4d9795250bea4c85692cf2e3ee9bad4d29493653414820522674d4bebce, bf193894bca2c6c66921a3086b29cb9a253173066445b6026a20f7d8540£674d,
58ac3266c78db9af325e48a8015e40dacddcb2d9cac979870ab6f8faac63a591, be235eecleb17463ab36b696b423dbe57fb5dbec8c8c653¢19915d43401c6026,
74c949dee2dc772fd76869a13d0aeb6fe0c154c9e840d25¢a34465cf72c84ab9, b7bbeld3a057cd7dc4cc404f0be69775b95835b9d75b5efa51d fc3924b6£69a,
€32f9fc06c501b0a1825b43f20189¢1bde9b85efa7e3e349f59da41fba8ab5a, 4e2ddaa0011103c36529¢4f9d0ff01ad2fb8681dd810baf84adac9fc6774bdb7,
70£3878b7c1a8522754bd0eadbd27f4a51b3b85ac61b8f123e561{568bed5e45, 87a3bc58c087752b57f018b49abe1a9d048555ef4f5de2874be0ada2cac2d202,
730f0a7a9927d0266¢f8d212ce8a9b41cb204466459d0081de829ccea582745d, 1176e9eb27e5d68d0b9ec0341a554c4{62b5475¢5223407a29cea2bb44db58f,
196276¢18f94d74df7b761c7a536b47270223c57369c7d389630aded28b2177b, 3da5bfb2b83381ea9a4452c83{9a06c52df3b5302c87b4a9625252d9e732a080,
4e3613290554¢39db23a931a9204ddbd 10b5{6872fbbccb509d8fd1481dc479a, 82b73d721e253eb4b7003b4dbd1af770009aec9£3033ba949c05e63550c1d64c,
505cca8cccc352889e17e2b8db7{0cc80ae918b34d808f2f96e9fbe935930be5, 04234b843b1402{8d67bec0970487531d1e8bc494ab4a7d47f93e26881ad31372,
8db8bca37b9ac2d69e5671de8f8964078bead9a480f86c4a3240fdf98d2d048f, 1fd2bf8a9e2251699ff14d7a060bc89976cf9eb86c2a8706654285921f08dc21,
22005efbe4fe85ec7fc420abafc94fe375138780e40d439647ae23d0560f8ca, a2faa46fdd5949c8141b5254a7ed22476cbfel15d b8c7f043£3f844346ae1b98,
c41a55f11f18f37f07b237b12df45112611bbf0986002fca07e7dd41d6abee25, bbc7dc45c87ebfdcdf856578454de8cfef6de85dd0688fece8ace57e15ed5d9b,
09£d90209e45f07217cal70e4868bcd919188004ab8ad10224946f084e3cfeea, 13b5278321eadec89bb09d9ffca795039c7f65211306d60c30d65e43cefcd7ab,
3fdc79b5058de9alad100dd6b4950e164615465019866{f439f540ccb7382625, 016a95fe5b53ced507dbab9ad0befa9dbcefcaab7f0cbf519883efd5aalc4c0ac,
c5b13£4b0f176366a20538e147328c42e18cded593f6aa877dfcba970852ecte, 96£58098068e582a581c199ad2771591c8346bff6fc8b341ccab63317c2b1b65,
41523ef717e66e740375cfd41b059a2af330e0aea7851bb62c5b0469917d76cd, 13925¢05482f45fe2a7deld55389be3097dfd21ab5f959f7af55c2£5228b4a07,
b8ba02a7efcb294b0ca570c52e5102281a6ce935b567ec1031d076110d5d0c58, 0883a3ae06b93ffdabc089b0e02cd653beSbdc6b0ab5bcbe7e90614ef79ac3b9,
acafd63b299dae636e114c26f1db4720b9c2d933475d6284782cf83c30e18a87

A.1.3 Popular Apps Collected from Baidu Store in 2021

Table A.3 shows hashes of 226 apps used in Section 3.5.5.

TABLE A.3: Hashes of 226 apps collected from Baidu Store in 2021.

952eecfeff057f61558ed46d1d1aeSabdfafd99c144f4b3130b691a7b9c0267a, b1097b786e8f925¢38b90fa57061e69a2b946cf8159598b2096b767cal62c1b9,
17b5e7ab76{d77dcd68bce9c3b38683c7054e3444270e714afd30505{82516d4, 60727583716e1357e7b884a2692649198fd5a3246ca6ca3103a8b791b9bce515,
d551edb189c¢8c4806342320aaf3a930dd809684667a0c151c8ade93ebd6d4a9dl, da6551950a3616ce2c203726a9100ce7 cfcacf9eca23b25e3c370b9a456165fc,
2116a434f2366435eb6fced09974451e1b8d34fd71b7e058c4c21ad2d9dde179, 97af283e983966d3c5b79829c8f5fa8734673058bfffd750852d7455c91a3354,
3f54240f78b136ebf40e224aabed2b5e186c331c6ff61e205fa2118acal38eea, f4cb8268010810ce7ae397a48fbbd7d1c858¢87cc4e8225197569436dbe3e34d,
ec13d78d58989bbd8c93cdb9db1d70d84ed48f61f533e6a7c2308481£701d6d8, a50323f345790b62cf7383cbecd5bbce045243d29d890a450a25afdb1da766c6,
57caab87014c3074d156cb7d1dc6fcb7689f8b59d793f16a7aff7b4c75316d4, 94aaa7b75e633da2c80c8a4e0b8b37ef0dcf8bedfe71897819d5541e94f16e09,
€773a08b17010aee8d23bd181a7b19a98a6d6585be7be8b0c2c906{8e74252¢cc, a9d207c1ebb3725591dfdcff43174405ec0000c5870{08c2db9359b1adc42£3,
653ceb349499¢900b19d17d50e09a166513b806c7ba85a454691b5d28d8ddefa, df758b0faf2eeefd84499aeb7369e0eb799cb96d69d9320559a65b722139d97¢,
952afcacalb38c968d63a06ccec83f741167480e3d1e5a9f5bbd81075a6a65b6, c7c9cd5b4f3d7b495bd154042103d6a97d518b27666f1129159abc5ae821366f,
6185613140efc658b79€9901158dd0efcaee534412d9eb0760c42f25¢9564d1, 1077799{517c50a7971de86¢52{3dad001103214551097d7ea04bbb95a035562,
94b524ebf7184be60c921a2243fa707790af767b2970e0450£3efb029e68eact, 8504cfd0addb20b802ealde32651e260e750b54613e04ba377b311140e508793,
2fa3f29c44d880e4cde54a8a5c5a200bf5b830c56298f62a3a84e2a2c28913c3, 81936b753c766bc6c8d4db9aedbe5ce461bf8fdcf920305c26a4bf5fb23e99ae,
b51986£88822dddb74387c987573e8e3a1dd214258{b4352c1d253434b27e580, £5f630ee3a6919el1eal76ab425dacb24e37ddce8b12b56dbbaadd6f83ba2cbs,
17c0ae61e915aea6dbd083ce5c40b0ebdec8f228407ead4473bf659321ccb8f0, c5bd0a569845af73db3f145efbSbef3fe92d78aefa24fb05fa0d 1badfb0a8cf8,
7586114a7da3cdfb699a0e7dfa22{57b7cf239258fc54e6b963999969f75a397, ab06bee172dd881b51b14f7dab8947509d7a437771£7704f49035f4030430404,
1962164850c9d37211949f69d8d3aa167dd7765d4255de2e6364c7253fe5(51, 94aaa7b75e633da2c80c8ade0b8b37ef0dcf8bedfe71897819d5541e94f16e09,
0ab42c872302cc14b36£8d0f0732ef11bf6e4f25461c2317cd8a05b995bb202, Oef73c18c10cccelc61c8913275262efc359d535f773e066c52bb7652b7dbate,
63be3b8406815a67¢276015dbfcbb04350ebbb37998c07edb2904162dd603c57, c92fb2a73f0a7f2db116e5bad4329c660ea56878a55a251cb6ba532389c6d02a,
57d20578315bb93439991e0ec6b127924{07dbb09{0c51373b3f93d1a5d57a0, 2fa3f29c44d880e4cde54a8a5c5a200bf5b830c56298{62a3a84e2a2c28913¢3,
c546f9baeef431a179301f93915c455e893a928ad695909ac015b4b7¢2151334, 2fb5504327dd43dcb23fafdeald634c9dafo86d7aecOb1e49882c38211fc9f5f,
6696d05{6e59f47d280bbabe26139ebc248424f3b47f70c8c18e296f58175378, 9127dc3a468e8aclee694d52fe3783babea25a47be865f04404f965cf9ad0ab3,
821a95ce6439d6b51240ffee134619bb73728877fb2ac915cb79511cd884b07d, 2cdb19167£52{63716b8eab1b894850134dd6f3373fe5da4903bfb7292d214e4,
cc427982bead017bb31846b2811af11c6b06d90fd7c9094562b2d9c23045e0e1, af03e908784fa7dc51fa6a3d0d7albadf358e53ece2764e6983c993ee7c5d284,
cf160460d51ec84092589fd0bee97b1fbab0acdb665c042db16287a9e41£8137, 9fadcbdf40174e0738c4bcae89d8eb41fcfIb7bb89067a04c104{7e4e2e64916,
808472e7ba33df781df0134af81bb70acfa6f05a713dd23986d9848c5aa417e2, eafd48c8b6b1b42d57b71de8dc7b37a4863002812f403d93bf067e5a912¢123a,
00d6£04b9b508608d9d54843a6711a340326606aeaa9ch81039e850a6d14a786, 2ec6cf031fe7b7633e375d364c55317ac9ca57f8e95746e5e88a963e4bedbe38,
13a51abd33521017e0b284a80a5f34238d6eabb4ff1d98b2cd18a2252fbb1317, d6a414045b75209ef10b01d85277170d9620d cc29264e2450f103e0fd83e8bcb,



98 Appendix A. Hashes of the Analyzed Apps

910b0f7a8cd2caa7f2786549d889478bed38b25eff50£3596297ab8c2faeb9a4, ad101f0bd1e541897c0bd8bb49321a738526995abd3cdaal252613763c00£696,
e473ce43721c5562d2796¢6761dd355bd070beaba06725d233b2d3344dd22¢9, 3612b2674a1878{0424a7649ae6f94620af4d6b44fa3e62c467a453b23432bdd,
8930aab838b74bc5308ae3d6fd4086049be16380416fb1b40524fe5dea653806, af03e908784fa7dc51faba3d0d7al6adf358e53ece2764e6983c993ee7c5d284,
6089f91b5e8{7e0c506b93b3ede270bd935a3¢890ca04730b98000d ff2ed507a, dac859e4b7dbaedebe20b8ddf97f465fc0daafacdOcec35392a78d7343c9bd 1c,
8a8260c9ae107c7d55f03f8d9848e33aa88371770d42{064f7ed88137315088a, ealc1c27717d37cbc584e4106baccff901148db81eae89bf6c87f452ac8e52¢,
10a2663a8dd991b0caa7809cd206fac6166ad4355¢2354578f7ab46bed380fe8, 380805419d1406d7c7bb2c4613falee0515e86e84dd005c1022eb0f34c2b4784,
11£304986e967fcad1ddca87018ee4322aed89c899a59fa990f0b68dbb22671d, £292dbc9f10ac7cc473fde545468ab626907a6672390c8b0c4a7d85d2d671d52,
€094d3d9440d371e39da62eaaa41f18cb9543247e82d1e9af327c4abbbe01e90, 75e0e8342eaf78d5bd9f846562b621ee9e8b56dab02ff69{650364066e55e3¢5,
5b3d2b38d894d2a1e8f795{4886a01039f1294da539fc6470a6e80f62842916d, c7aa9acf7918dd882ce22{8c7079¢2032¢ele2aba5afbe2bce65ed425362ad9ad,
a722d72490950ddbc15e18eff71e60d35270ace0d0f9cd1a422f92be84777689, Yef3afe6aa9a31b08d9343d3dddec56£8856703e9d0fef658c6997c¢9d955671b,
761363bf1bcdal2f908eleacle7f122ac102b0aebed773c4f1856c9cfcafe6d4, 60f285660dbf57636631d4163983fd1cbfbfb5fd39b7c27ae537c9c5c29deeb5,
8164305283bec40010c0d4289e0d3af62fd0fa5b2dd1bc440d5bc0141618cf61, 618561£3140efc658b79e9901158dd0efcaee534412d9eb0760c42{25¢9564d1,
3da7e02364e0f5a6704e690a8d5a563b492c366b0bad9f4e104a62304a127a6a, 2ae85b554f00d3179c5127d282a3042e4a8af6dd0938f41417802da7fe952731,
8504cfd0addb20b802ealde32651e260e750b54613e04ba377b311140e508793, d29f2b3c5b6afe5fce8cl1d4cc04526f4a2c1dda7f34b3b51920923dbd587fe3,
2{2b0d19684a0fc4139e1aab08c6d48c83361e8b71a0742e9dc7603c3eec76e4, 8e979e63a70cd8723ae91429b0£27550£08fe95d1dc4b191d04cd1513b23057,
2e7c471f3da635f8a8bfbc761£f2b6606ac2070cf608477e9aled3bbbe76edec, Oec71d2b1a806a952e10dec6036263148a0c61eb3053d25¢320b1b7e720eab97,
82398374a7471b7ed255b24c64697847bef076€229044203d09d24b2b8a733a6, c076c2df92638ceedcdf5e6e94d9c5a031a90292480d3ae772e5e¢085a2037345,
dfb193cd473c12d8e5ff68b7b6d3189a361ce9b9436d46518bff2806fe7d4232, 290cd67aa08e¢79982d296e196bc853e955527ddd22e1ef8410d1d17b58307502,
25df17£42ffa96c64f97c02d157ba587d294bb0de4aa90b2ef594b58aade2d28, 853a4ed8c6a9fa410b4d115916941£591980a6e0b8bbf06a5bcd9d87e3cc84dd,
c546f9baeef431a179301f93915c455e8932928ad695909ac015b4b7c2151334, a57659fe9344836a2467addb01fde979d7f6f5aef4e7e4ab501ed91f8c3581ec,
200e1£33340dd29{8a1327{3af76a6b16{2266bc3f4da641e36745d8ea839bac, 3711ddb5b71ef874a6fc708549a14177562797ae8161914beb772462da20e318,
8856ae294ec4al295acleelbac0f23aa067ae0cfb212a802a55d34fcfad56c17, e473ce43721c5562d2796c¢6761dd355bd070beaba06725d233b2d3344ddf22¢9,
82398374a7471b7ed255b24c64697847bef076¢229044203d09d24b2b8a733a6, 5550df0efb820578e0ee649dd99af944b6676e2948e6504c2c1f6d4e83a2c493,
32ef18172b8£056299ffc4e72{42a09cb59507451a9a84ecaa7700e6406882b6, e5e50df260bfaccd0e1079429fd3e28a459c94413f43cfcacafl0c111e75balf,
988e74e669d85cc11247653afd3c962c120daf9bel007aa58ab073544e86a90, 7fclab5a6{6dd068b940c3dd74cef96eeb74c7af8a16277540fb64e41£3ffd91,
0ef73c18c10cccelc61c8913275262efc359d535(773e066¢52bb7652b7dbabe, 28ef7765a314d46a6294aaf5c584be57b4282c0faef8086e71e134202aaa43b,
8759d816ca8333683dfffIb643df13edcce9f821f8bed254ed06b96ef29ebc7c, be7d34df81a8ae56751£3554d c43dbc2780b8cf3b749728088719de4078c35b8,
cf55e68d71cb610a8062c3dd5b58bbd5597b5e942f9d4bd1162f5f1dad9{76ed, 4bace749c19ebcc9fc431c35¢ff36bdb33d3615fd43b3{866a830512cc0063a4,
cela09dfdeelfb40b86b3302b9cd0febb4664d0£8286144bac05dacde0471722, 07cb754c25880e675a46b6accb0057322589c8afcc04a0c616a49b7a4d891bel,
861977515d6b8392eb330e9922fa26059d499d52265c6dbbfecd5b68d3afdd7, c9adcddecalc635102087a653b5617d943f40ebbaf9dc2633ec012de8e737c7c,
3e15f4b7eb3d1b012b539fabd612a5acb3047f9547ed5170c834f4bcc3166dd, {ff6282f06e51083e826ba61354acf728740ef834536ba860e8ablac62{97b17,
aa9ab040390245aaaad4c8a44d4ba568d29a9fc0d20123a13119cc51593feele, ca70c326d656a28e8fe84a0384cc2c2dbedde0684a90fe497fc070579ab6129d,
184f58af1264dfd95c25e9da33d34556be4a23324ed2461ef3b3cee9324d4e03, d234993129d0b2fd918bcdef3b582e197aae3e4ede833a519a811a696cba098,
ef9232d3c3fc8d5f11de3899233328d55cadbad78c4c58e6d8b6e43cb7e9597¢, c83411569ab299d818a3{754351a6bec62785aaadd10581e3c3716a15aebf09f,
83a5d84{3de0a06905bd28602e052db31b3465fdc1019a5e7a9c07fd57b3eb1f, 5b296f098c3cealb34c389¢32df26b94ba31cad45cc7a506a968c3be0f1a34b0,
2f32cc3e81cdf21684bba3e696b0cedb2bd05c831c5(8ffe36dc255f9bdd492, dff6fd5b4b70a19f15ac57e30cc4ceb7e3b450979d006d6b5b1af69a0f549bas,
36b62de99ac55498d5£c48349cde6c966d806b53d03{df27844a6e27a0725dea, 5159b131d956946b9e65b471156404c0722e85b0f93c0cc233226692b5ee0602,
01lcc7e88cfa05a48ae430499f201fddb8eb1b0b02596ccda789b9bf664b16604, 80c8cdcd621c4c7792336588b38fdec7c98del1alfd83113bca8122388a5a321,
f5e851ae738c1fdf365fbfcd8a4759e263804b7546a1193f7e71a3eba2697946, dfb9244579a695a13cc1509af81208b5833c85f9dbb6b20ab7f12fbe7bc81470,
b8da9188581982423b4e8e82787703d99f4e8cf0f987a175121dc6f9460861ea, 061ea82fc3baf2c38c2beaalfdf0ad03280818fba7c0e7e624db386e2798b163,
ed87c28a78d4385a5fc4274{82fc0435fb8e6ff4e5791df9efb2128d37£86899, 7414a9¢35c610f9012¢128d20dedda2f852960e44df367e599e5ed 247eccOaf,
14d7062cb09de35c8cd1830242247f03bb821c7f8d6467¢10bb834e1da9975ff, 32aaa27bb69a80435195659832f140f91ce8b3a08a9d7a6f63422cd6e85265e5,
6757e3a€296578c1ea733b607d50af05b8e9694b7061ba43230a914b3a59cd86, 0a136575db49ad5acch3fe546d568adfa5d9578ffa3617b87a109ce2f6¢7 cff4,
4£526cf1fecd4e051bcededb3e5cefd3c4528cb567a687c398dc2ad76542b6cc, a50323£345790b62cf7383cbecd5b6ce045243d29d890a450a25afdblda766c6,
3368b6668466b66921c5cc79b82312dcab2aea958a67680586e5b8e51feb1b31, 03f9ebc2a77dee3c4a7fe8db282d1f2743¢9d1472cc7e01c1b05a421703ba8c6,
859642a7be6524eb420470cc677b5620b8b45cc07cce8b8d43995728452b7366, e00af539be94d99bee287319a8bla6d9546a41fa28f2082ce3{649b36882358,
d6a414045b75209ef10b01d85277170d9620d cc29264e2450£f103e0fd83e8bc6, 2d39cab5f2aa58c18616cdba8e333b1c582415cd54849ca3d00933a69d164025,
7586114a7da3cdfb699a0e7dfa22f57b7cf239258fc54e6b963999969{75a397, f08f3d945ef1c8176£67fb133ae5ee314b943fcdccbb7c17ac5¢197022c1balb,
97af283e983966d3c5b79829c8{5fa8734673058bfffd750852d7455c¢91a3354, 46ea260d457b2ec76b5789f1c4397934c548cabed1d1aa2ff5bd6cabaa006c31,
5d41e8164027d68372d4aa930b178d9be138b5b98fa0a7e73e86306beef06fd, d80bd7fb8eb50e4bb2e0a84efb506bf6ecbb80eef8df70ccf73€94363756ec78,
3efd6fc7e4f6df29bc5a9cf7celd0a9e00737758da9254026¢72ec2e693a8dc6, 60727583716e1357e7b884a2692649198fd5a3246cabca3103a8b791b9bce515,
69cff743a8e97b576eea9d89bec87b88{8f0050f11ab2d9d1679a1966801eac2, bd9cb2e77651abbbbb8548d7dcd3fa60dd33ffa3b24f6de290e2686ab7edbaec,
2ff32cc3e81cdf21684bba3e696b0cedb2bd05¢831c5f8ffe36dc255f9bdd492, e8b4d1190129341eb85558baf46ca0866c9d9cd8e7111d690ded8449eb93e06c,
5b3d2b38d894d2a1e8f795f4886a01039f1294da539fc6470a6e8062842916d, eef81197e631a2d18a98789f764c915f7348383cc202cf639cadd9b50503201,
39fe53e5{241a1d5306¢324099fb12feab543fb01cleb7dc66375f03814eb346, a0bcd79670334£74£72bc7d9a6c221fe3ae163d2cd163bf39¢973bbaal2abbe3,
83677832db94681a03b8a457b06eb5e09dd4f1d1bbfa946bc8bfa27fd525{561, ff45a46£24e80bc36c488dcfe40aeccc270bdb10bd23404cb9c70aeladc6{34a,
6£8060612bf39cb7851d0b2d 1dbc28e33fef8739c70c6e3835762e38f4ef2£8, 24a3142e51d887939305546183137e60a41ab64fd99db66b2{35bc406bb7203¢,
2a052d1bd62668f3dd9ee8f6500d8ece67e7¢a3196990747b10eb627ba%ea475, 8edf7f731909eb0e26426fcabfa8844ccd1dd4940ab72baalb7b9dbc973582dd,
aa%ab040390245aaaa44c8a44d4ba568d29a9fc0d20123a13119cc51593feele, 96a3809ebffb1€5986c8917bb9£81680012{b51900f1a589¢c74ec794e2ac3399,
256b7£314£d572f0fdf92c8b3fd75a09581d4142ced6fe583fac9d9fa53515b7, 946a43746545720816bb842304148613ab8436b53ad14befbd052dc72b7fd 8e,
868120a6b536{7700924dd297f9bebaf1d6f65c5674a4bed697084e1167¢7652, 3d54d8cd63c8d344d38d13c5fb0alf171a25596¢34cce080e58014b43{75a079,
0798c2cc8b8a103d3b71acf1421561bc370637ea0b5a623f18f02cc8bdc27b7d, 80c8cdcd621c4c7792336588b38fdec7c98del1alfd83113bca8122388a5a321,
cffel1bbd2b90a24d562bcf0692b498b41d9e873e59{03eble194c4{5e7fa8b5, 88413ce715ea08967d23f06ba3cf82fb47f34b485fca04040db672a2fee5b716,
b5da24ecf85db79cab06{1b61f08c1e9d56e0773b768876fc9cad2b469facd56, 5b2db016bb8e087bae77152d29e6e94af2241559bfa656f5839934add3ebabbb,
933e128585b3fcdb9d0b1d16932389158d346da043f489deaa5f9b15d176b6f, 458829446adb90b9dal51£22003458920d57a3{767c3bbf87f093758e1c32c4f,
40399cd6a022c5a63148bf87e2157144e5a02261a6d0bf3fa97690e0ef5af184, f010046aa6d938853c1f14a5092fed50195e31b5819eb7e6c88a3ffd6dc9989,
1ee84£332694983dd7a034€973c7a15363eea00153db13335d{7e6e7def85384, 5b86e9290284ba6cd00741f3a231£8196b8553a225eb030e711ee8f9a1f23e17,
18e83ecc14cae83d8d1b7802b88b404326fe590da0f3786a8cdca8c993e9a077, 6eaa89e8b79610d5a0bea9e9aaa03a03c0625ed4381c7fbe46d40982f0fc75d7,
2a052d1bd62668f3dd9ee8f6500d8ece67e7ea3196990747b10eb627ba%ead?5, f7ec5a2e28b938e54abfacd8blbaeeaf39f2b9cd0f49819ceb4a24a39£327cc2,
6345f78a2aee9bbc23904ce0405¢38112d14d148{8b73397ed0a7c50ed5ad 93, bd9cb2e77651abbbbb8548d7dcd3fa60dd33ffa3b24f6de290e2686ab7ed6baec,
4101ac99a9f5a2efc904e314640ce25043ca60£227985036{69¢3072e769716d, 092d550428{8497aa475ec5fdea54c42d83298aclc9abblee035094eadb9b260,
6e6f2ddb7ae0da9471e8d5eee17d06c38c12df82005cf6fe92d495cbbca4387f, ad37a58995d7bd8d8727765df1b9d644472bc1ea8696337c3e29a48e5fc9f71e,
39f66b42788353a6d2832d29a2efea27d0ddea3ce7e15f462409e5d969fe8af2, c46488181ab9a92fc4c584984ee4b304a00alfb827ac2e9ae0228232e8c33912,
304e16f8d87374dc8e8b280ec533c6efad12584727 efee7828{45bb3cf1a84c8, 83841338e8{f48f10fa733b3118daacb5161a95757f5dfca3affae43acb963ea,
7a00e6b2b16e3f1bea8c832a2c72b80b6f7be8bd24b0055337f33a534a9e29¢, 48dc954dc40actb8b70953bcal105ad111¢270381d7e482edb86f1c3b3a480d6,
00d6£04b9b508608d9d54843a6711a340326606aeaa9cb81039¢850a6d14a786, 3c6fb66978dfa2f8f6426e807e96e45a32168584927e33c0bffab8fe4bbde714,
092d550428{8497aa475ec5fdea54c42d83298aclc9a6blee035094eadb9b260, 853a4ed8c6a9fa410b4d115916941£591980a6e0b8bbf06a5Sbcd9d87e3cc84dd,
11£304986€967fca41ddca87018ee4322aed89c¢899a59fa990f0b68dbb22671d, 4e118ae8f6f564a2991f5b1bdd7e57f6d5d4513d87921322838¢7c2d9609¢325,
46488181ab9a92fc4c584984ee4b304a00alfb827ac2e9ae0228232¢8¢33912, d9a0cb0db881836b9096c68d fc44a96e342054d79073070cf1d9dddfbec01b3b,



A.2. Apps Used in the T-Recs Evaluation 99

6494f7£849a0f86c7ed65cbcf270c05fd431c8ef3ceadcb8500aaa537eee53a, 4549d02bf830d3c0e3abbbbebdcde4b40884ee30aa83fa69b25ed8edb857fd7,
2d39cab5f2aa58¢18616cdba8e333b1c582415cd54849ca3d00933a69d164025, d9a0cb0db881836b9096c68dfc44a96e342054d79073070cf1d9dddfbec01b3b,
d234993129d0b2fd918bcde0f3b582e197aae3e4ede833a519a811a696cba098, 9512dabl1ee3518{8dd914dc49acce549a751d924707125cc33b304f2548(5d,
0901e6e32f647001faal938be2d8c34cb38c92da0d05f1c0e25494e4e03d2770, 418f2251bcef262087c1b6f05a4d07dbafadcb3f7eal 1bfc5e297¢590013730¢,
3f802f51f47b4f882aac7460e780ace2b32ee70f409{87a47301bbd3bbc3e95, 17c0ae61e915aea6dbd083ce5c40b0ebdec8 228407ea44473bf659321ccb8f0,
2ef132abf949b8352da49915915da8607a854bb1258¢2255d0ca62{8d55e576, €1396dc97410496fe2d70710b83fcd00ac643e8660003a7e5053afb93085dc54

A.2 Apps Used in the T-Recs Evaluation

This section presents hashes of the two sets of apps used in evaluating T-Recs explained in
Section 4.4.

A.2.1 Popular Apps Collected from Google Play Store in 2016

Table A.4 shows hashes of 96 apps used in Section 4.4.3. Note that Table A.4 contains all
apps shown in Table A.1.

TABLE A.4: Hashes of 96 apps collected from Google Play Store in 2016.

2319fd61edddb8f02c7f0656424a72bce98bebae60585488b04b21281c34578, 179af04e39¢220e908734c614d981492e9847a9260e3033cc8e97bb61ac176ee9,
57¢17£2076584b8387deallfee6a08fc015c3acd1{666dbed573779508905¢35, 1{54ca7489{7263294811cd2689a14506fc4b8cb3791fbcafa89ef08a8clc5cd,
385bd2a3e0e6c99e175fe131bcad9db89e60c341538556aa784c7a8fe5990422, f8c6dc0d8acbact7d091fa6d066d59d698a27868e76b9dc88{8ec621270b908b,
cdab4415a273d8e2f1779£8c22498e9a74929919f0a8388591{63a88055{8204, 0ad90fc12c3a647f01ec7cc6d41a295¢673b3106903be7bc30adc98d33835b1d,
41126€3999cb4d7a7910716260a8255d7754e7ddc945c68de6a089b1c0dd8ccc, 94539ba3ed777a1346bf595d74365fd6d5de6d6457d9b079{8b2d3fda3cab9a,
c7fbfb20eef40991713844ffc46ce074b527b354dc23225ad6136ab22b119¢2f, 328663f3ee60c1ab9e0c915892634b9bc80c2bb1142f47d74d39a0c4eball8f1,
428171da64f395b93840caf29{3ff82078b1f091ee7aae762eeb64fccb73227e8, 305f4e45d5fc1d5abae7563682f2bclcd79d46b4f5fa06d6f20d4d96bf8d4d25,
9£72¢7231285695695019¢5407e65d0cdb92d96cbdd32c37b506e6{b17{f91a3, 24€22029cdab3d406fc4d743e362d11b4fd897598a0bac8abb583edf810e9ae8,
35f51a54e3c8c27ee6804117c234cedfa37de7a3ddd0ab53049c308002f1939a, 1d6bfdb5bfe601b5a35cdd0c7be2320d5cd46180584fd51243b292626990decO,
9c4e0807ac1d830786dcb9b6731fb08eb047d81f1a42711471182205b8ea72df, 4980855fa6771ea680e070e944e802d34f7ed8f8e1e990ce781980a%e7591d1e,
66alaef7e5b94ab8adebl185baaf2f27097c6c75059982ba81c6472ac9c7c449d, d84df839ebfaf0c94979b4baae7b31d3dbc37bi5efa3a7ef8c80c65955447a7t,
e9ee29e9a92316e515ef226{9dfc75bab96dc86c183b680bf45b2edaf95ce5d5, 81f10d4313335521a2aa5c6eb18e9ed7030a054c69aef36b9b56a105b7fb0d99,
5d2a0f4ce04889e7f9c4ece7a525551577de064aed9e2f1cf5166db4479b8411, £7€336926c246dc2f3dbb831671c6154ed5f4bfdd99374a2209fb5fd83ddd8b4,
€180003d940b8675¢1035{0e8278399¢e544936921b29b6b77f212d c46fd 1ac3, 55807711bfc5ea942308b446ad6a6952d4756e7bcb0511dc819a8ad50e128e35,
33e3fd3e3a020addb9c7edfdf0b3b13bc382221dc1c967a81a7de702dc239ad, 21f8ade6be7d910e56dcf2b32e020bba228befebd2d7a07e44bc0012d5bbb1323,
€808b39c89a89dd4b90f1d610ad761f37afeb7b91117f0d57a07c84acc4eScaf, 5cc2c54283a13d1130ce341ec4e91a5919f83635cd2e238d88517238272¢af34,
2183e6282243269d7ab25a31b5{0b1fcfd15d73b0e24890fb5bace8c19657f53, f11d0ecc84f4731b2e93ee049997d925cb802a5b86¢1d30efd0ae6bb5132019f,
5dab984ca5fab1flcf54eac10a2d3bb2802c9dece336975792a8081c083d1a12, af7a3cc40ffb6930398048a86f1a2c4cd1368c966e5826534a7118a89d45eb28,
4cdbc97b6a0407b7f1fa2164815d10{35af6e91d4a8e5d93784f7aecf0f97175, 73c4ffaa5ca0e954e1443b6085e536a83219¢9a2e5d15292aaf1188a38592cfc,
b5d091f701ad668a49a37bebcb6e754cf2424{037bbe838f237178a2eb09c545b, 42adb7a21602e20d4fa060b58071bd148fe1f15506a39dd85935b12064497a3e,
0104a9cd91c8ca399b1728af04c3d9a5£543017028ce12b2c935af89bda8bedb, €9c4e909fdfd09dc5£38897e5f968efa571ff6d2{f31e105b3eb915abb690fe8,
2ab6ea68266066f476bc251ebfc5ac7e510bde98d3706d74d3feb5bc9dfceleb, 4e7abb31e72a286447ccec93ea5604bbbbc5e43f273d3301£312¢564d4071c02,
235010d4454a3dce9b334f99a26ddc7d4123737363a43823¢19d96{b970ba00f, 7600e01d616401987dbeb194adabe4bed0906fcd0f2063eb34{5a7f3cc6441dc,
8ef787a274f76b912ae2db389212ecf0cc0cf9d13c9cc34ec81f2b322a040415, efb39a8b64400c285£f41c90e0abb734c2f76059c8ae9b6631e533c841c7d7f6,
847192093 ef1£e98f0bce9f6ed24526bad9ae41392dba04c9e0395fbf92320ca, ddd767453987ebac2051f23b34000b68f60e6ec5cfc323a9dc9009d2874c789b,
73d6b0e87385e23f9ac6a58b19cc4cc840403c23ff7cfc7f4cae499859eb8a6f, 32b17a1d32d1153c14afabad0da5fb371735d1eb33e972dalec6a8921{80f47f,
eaellc32fadd6fb3eb171d1cf78aec84ec537a35bc15648b1a7b91b4af09deb2, 8676£515d008e5b35be1273af5a6a5abd77cbead9976fa92b4e5c61d90d95¢6f,
d382980561f78d4bd88b6da9618299ea975d7ec] fbfa4e33818a9dc751e588cd, 35c86dd4e5cd693c4efb18157e4357291aa0395da65428a678122d93ea422dal,
86501d9aa43b0843c19€29916{5c29ea9ba69724c9de48bc256ea0646686dcd4, 01c¢7213b17bf459{5b43c8e537e4{675da3292dc227d8ef241a95fb6ed5c98ad,
18b7b4917261614223e887b357fd4a8a150156cecce39f6a63582fbed83c76ca, 452a42dadb3865804f7c85cd24cd1af85¢203980581e41c60e3b6b4458ae36¢0,
15b51b8ace8fd51a92e571ea412b9774eb6f004c730ced69b9fbbla732ba3810, al4c4158898656abc08bcbf43df9299c5dec984068460d5826f2e8ef5f0b7c75,
12b1832c0ebd9fc13104b114de22db730bc37cc0d87bc82dc8b3144c44990736, albed39c64a7cfb692a1b42757ce5bb85dcf60355ca4b98109e3445df5d23bd,
668047b8393391a3682e5ef4291641242990£39f9d c3c9b130340862fd87436, ab4e31691b5625c99ed85d6f900b9a0c8b0b822dd1df7¢2265662ff19c21bbc,
44ac462{846¢ffcbe3d3156d00c9837a30228b12fa4b2287bfdf1767edbda3e?7, 6612bdb546869a15bb368cd959b0fa268d ff7a296af381f8c95b63abde07de5b,
401722b99fe626albabbbed8f5809135dbed706c061315d308e7284e4dbb91a7, 202c070d4e131e1585beafd7d9de38869b9b2d584656d2783ea2013d8a32f4%,
92ee7233b6bbfebff143a758c812fb51040496c36ce7c30b7dacd96d3525a6e4, fe303252e8ee6429097b79ddbad8b220ad20e42ac64bb4alel5df1a69e8cf98f,
b68bacbfa82639db8c7a2a9b767dd88643ff044ca869ed6e58792ddd4ff3cbf1, 9f4e11f58bc11a7691852366eacl05a6cebc286b1af166132065e8241271b114,
€521b71a39e450a0a9a386aeele9b3{c899cb663ccffI4ae68805094c1df8d3d, 9d919ba99629b8a061aab253135c186167b2ea6123d7d3830654869cafccd5(4,
8cf04193f124693a5643dcbaf1{0b969{9a481c6{f749acad8albd8el5fdblac, db853b9f2cafadfd5aedc9526de6fa597bf11994333e4e0eeb68c474adcadl16,
77930c6c5ec16e72664a95ebc00d36f682e37bbb9d4caad2cda2495ab3fc1831, 554730324c46d55c0ed84c74449b1faa9694f59ecf9c9dcaal6lale6cbebd7ae,
74181fb4e61f07c679250a8d963cf535fda0d0e4fd2db642d460a49226{29a56, 0dccd2823165f563ce10166a0b290b5d739a35035d8993fae4be253b7c53058,
dcc8c3616£020c35375d3c99a37fale5b504e8a2e6b4e7d6491d720db58d945b, a87798d319bdec04b6331a5feaafab2f23b84c6e90ead5bc1183118e7615ed2c,
fcef2e5635ccObaebbecb9d4cad6b1b2afec163a9f8da7dc23e728e2€2912990f9, 0002¢85941e05cede3bafbec9ed1£5d2c40b0b9f05e49e90074c24c5efd132€2,
9dddf7fe33db82640fac5e15d8d65b71ef1158066e326e54b9a4291add9a35b3, 5966cf6ff044d26fe49fd8906dab23e81cb9c9aacd2c33bd49925549db1d105,
0537de0f53edb736898da4919edb8e01c3049belee4dddec8b8f005323e5e86€, 98f7cbd948ddf41b112579600535da71{748394c1a6f61e9ebfeb6al58{5291ed,
7905242ba51fe30824b2cc3ccced60c63albf49a2065f7024a399c0e51572e68, a44626cbdc5d85d230d3afd7be29dd660d53e911e88fcd44e87e37145d462183,
dleb0e7e4faf16832adcbf3f2ac3341e3a4e8c98b22ee24b9b52526f0c11b82a, 2€0142dfb03c2f0c42d103ef52089407e34ed13ab2cb2ade47de8b0788108514,
548ed9f19181381c0440a1ef07937211a253799a32d92{77300967525da63a7e, 703b0f193ebc9713da8d56dcc3bf668683690e92d0ed7 ffa8ce9a85f9ba6d405




100 Appendix A. Hashes of the Analyzed Apps

A.2.2 Popular Apps Collected from Google Play Store in 2021

Table A.5 shows hashes of 158 apps used in Section 4.4.5. Note that this app set is a part of
the app set shown in Table A.2.

TABLE A.5: Hashes of 158 apps collected from Google Play Store in 2021.

93743bdd9ec9919446159fbdc4716505fb13776a5423572{85cd31887fea6057, aea9687feef84d6c5c45ba6828520b45d9320a50b8acbb3e00898b29b91ac751,
99ed3082155257d8def811c47b6fa1980a31750592dce33b7a22dc0fad50e45, 4db06f56dcfcec21cc1808e8954bf5272bbef4d2237a822963324d0d76b62a5¢,
e53b89177e697eff71776ab360727afee73f58e4492cd758a8cb47d3618bdc12, 3ffe2a52eda8f4eb3cc90d599aa7252bfe0759d1e7e¢6523221ef007797fa947,
882calbd7bc58d380ca3fcae3510891eeeadd75e37728a065e43d5d9013a5fed, 7680b4db799fccbfd639efefb6856b4e83a20c58f0733a52abed565bec76ee85,
4c5e1236595c81a04dbee97d374109e4f4df9cec990bc514bb2098e36473e00, e39ad0baeeld61246e17f7d3d213cf2c65cf3ee41c6851230f13d50224bcf0e4,
bba3d239fddd7bb1bc7b18204cfc0380alce519ffd08716cd65184e8cf86bd66, 8cl6ffae75fa7609626feb15b317486286bc752fb2dd9e05e3209758054133c4,
976£247bf4dd445d7b51f5db2daf439e1eb08297b6a4432332425f7cbd6ec27e, a595aff30bb60a8a8b583af6998fd4d13edc9ad4febff19b194d1c5d6d459e56,
dd7a2833705d79867531ec660e1c9441156fc61381£292f13bcad6b9677f6e2, 89faf29f3d81ded7e81d0adde7cac501f0ad645d68a420866f3531a7a50f292,
f0e1f423dfb50a5a0c7135fded2fdc777ele2fe14c9eb5d{099271e9b2e534bd, 0346{2e43613fe50be16c9fce9ad3ffa689a50773c353f19171a3e51704c4809,
d318a6994b74960bb85e3f454af59b2f03605db83f19732c6d 13928527848¢58, d5f4ad05fbfafel5bfd5b5d6c2a294e0a9¢250211a026fa090977£535d30eac3,
2{5ff3459¢73a2d168e8cf5{3339047b346dc82a044€262dd6820d8cbafc87b6, ce5365bc90d3b750a85ba5fb8eadf09c22a9b70d200ef77aa8c0970f6c31d16,
b66e0b731dcddd0f167bdfde4cIbleae31a86f242cb9f0be37988a7478eee521, e67f019b3aba4e8388837da735866b8e241882a2128a2db6d78a707d54ab31d0,
fe762b1bd71b2a9%ee80cd1a85e189¢21078b069fa921dd455¢0286¢f875abc10, 1b20f8305956e0ee245b488b2cb451746efb44793a00e03bb346280196c4c974,
ea9adc48032442£3779c04c084b2860d44cb16b5a33397b6c78£f59cc75b9fe8, f9bfal680d1b62178ab27bf1d6829cafd9e1af0097d7ee22b3677bf666e7bde6,
f998a13609ela2calab2eb76180dc3ed8970dee2{3{72bccf7a3e1fa9742¢226, db2c734d9041878ac99{32023b755a0af6566348e7925¢13267588edc734d967,
a3a434d95f0fec2e543328c85cd3fef412dfc465169b41979762ddf507f90680, 9c463392057c86{0ccce39e93ffeb8fb2f225ecec31cb84c2da8b60884245¢fc,
c808ef7e416c7db772840e66a8416e07e13a5b08d2e064c55665079fac9e4a5, f28ealb9f085339b4c664562377€7926d6a999ca81b768fa8286c53b5be90fde,
5ceab8764de790b3550c653d736d483b56afc459a7a5e49bffacd786ac7e00ca, €352f9d9d74bdd0c3578296ae4e80dd7b3722d24568a44ea5889e9d5¢13e4477,
20c224b1b12713b743326d89c4294bb54c6e47605a14395bf548a7672e42a3c3, 66044239eb7317c34bf1ecd8855bc26497dfdb32de68cf14b62f6916d74d1835,
99dc4b979f8499412a0e0£06d963f077f852b08bf066be28636105595da9d4f, 46a0aacacdbc403bafc692e55e71cf58ebf6adb156dc5cf159b5a29¢97f76d29,
b39f84e7146afed6074{96b90f56a2e621b26e835c9b2c1dc72{7b43be594a5, 91eec64749ac26af48a94cc352534dc658b5394d395{f26{68e1091bb0caa25d,
25678£286172670a72478b3418c6d99689923e47ecc5{5aa888782546e1a0233, 0b9f81c77fb6161e0c69cal8fae8e63d59bf07216d4f5cb559909a8717ef6ed1,
c5e41c76f0074ce833219d97bbd 16fe2caaeedd1fed92al6bfde53c42ea7ceee, ee2dcd56258aee6f7e17c76b682ed72e8388f020d6dbed0b7289c95fb2a691c7,
€669950a39ce73eb5336356bb32376a2a150a25e1472e¢98880a80e1fe279¢65d, fe80al8fa969879b5d8b0369d4d84f21ffaff024d4a20c572ab686b099df4b18,
b7149¢e223d8134a556099812{5af8a3b75f55ca511b9c2e3a4674dclec36d8e, 4alcSae33cc3aeed744a51038d1821f617c2dad19f9f50fe9f709d28821ead03,
88c8201b80ae5cf7cffd71f99d723a0a67668bef2f6b1bc03246cadc2f749¢65, e9c2bd1bc41d47b166f4020ccdda248263052c2ae4fdf09862ee7d7e8082ae31,
232022fa86dd20£310£096122e48472d9e8eeaeb1629a570133f436ca76d5edc, 66e2c24{55892790fdd042caf1{47bf0b16d85bae26693852e8730d6a8580ec3,
9alfe7ba72f9a04clcle5e7310301cf7al11dc2da6902e5deb302d0e119¢508d, 948bfa4ab9cad794394£fb156e6802856a7ae36933f91dd29109d59ad8210699,
a3a9101b94fae560bb2b7d1ef3c8616bc7771a44ca9c8bfd018eda3fa550b0b3, 832bed4187cc470e03c2db4f7e42f5adb53d68c280879¢701103b6bee3a0d8ba,
5709d451a6de4a070643721f4596b6b{fd5380f26da7a27d1d915f93753aeaeed, 769c60e4f420f13aa2c3ee62337a73{74011d5eaf8892b3ce873561e9c5a24cd,
61de7e4f717e13d7fd2056c2e222a8e7b9%e546babd528cfe6b2¢1852972¢15d6, 61f1c706b4aa72a9e64a25fd2a082181487969a373020c37a176800albeb99fe,
499427f1bd3c085082ffc1c23faf95540c6006d7daa70463aec51bb042ac2e8b, b2605b21f6eff598c7b446abcf4fel3ce74c6befdf2069aaaf859a967249cc38,
7859739908505860d {5166acac3c2e9f5e44clead4258a0ccfc2fd5e9aa677e90, a5113a4b8746b7ffd7d0b6d2f9fa77714a367c891518bfd341499364e4b7c0cd,
8154022d610dacdea08c7419f7baa45b4b62b2fd0533ff0d5bb5d6822d028110, 5aa93a29d{f4cd520e69c87e93ae32fb69aebed67227b5354442fc171cd92173,
463681 c66efbaca7ad1847b98fe3ecOee3afbe649f8740b0a568180e7ad72d95, 4bald318683e2711d5d98aadb368676b93b9b161ede80b84f3b4e99cf823a706,
7a7971d366a136f81e7ab43787184ebafa3577a2c40c1df413¢199f1d078253f, a0ec014e633bla0def25d523ecf81e5530e091be1c9075fad7af8aee97c86038,
389c7dec20d3cad1a873ada95c9036ef8d6e882023d7a1d0be3b962c76dcdd51, d82741954830656962418{043bbef70aa7e€920499b638e4c35b66100£2¢32d95,
cle64bd45bb1f812564c4fd788045a1f266d807ba95da7c9caelc991e0d367b7, 8a78d9c87011e54dd2fdf06c535b664544826510c8d8518b088bb992a36966ed,
9799204773¢27134d929bdb7c4{026451703717bb7c25a8668727a7212ecfd29, cf43f249f89390dabd5bf53b906f9d5fe20c5575b0313997bd7109d61d8418eb,
5648004fc4788b2dee4a64151£85fbd7e9831b82b9336e1bbbeacec0aa466827, badfb2b6d143c886f10b71219e384689aebf932316cb8af0480e5f9ac32a05b5,
4c227ceb66be3f17ea2c76b646263d943c5d1859254d717e97494c8647e1bldel, dac4ff226287d965cal27{f25ffc792f8c29baaa31392e29a4fbbc48f22e4fea,
fbc1432e9c0a84€9e878452825c3acaf3efbf9ff1fe489c4398e5d0ca7309370, 76€970b5d30f6dcb89225¢31d4004b3fc683ca58c86ac148b139a3638323e089,
175£81d73067caf0837d8a38a3e394bd74993e34e2658537b072814cd87785ac, 1d6239f165{9c40a6dd36054f99768272bc62a2054falc30{5af8085b36d902,
a296ebfe5c73251000bb0769569951336ae7d1cb6f443a2cc9d63f111b8c94d2, 1d80a31879¢87798cd9d578a8f510494bdebb7c43cdbe5ea326ce59f719ee327,
8b7046749d78a748dadc144355b1a21felc75317dac2818e9fe777a53f66ee5, e4e5174c1f429d198825d8bb72262a02c4050fca8df8ec59b73b2fb18b196e89,
2205316c04a1043e670fa9a8ba7f1{f427b8c9b7e0e265bec0bf32a3456521d2, 62100bd3a9ef310b12154c0c69be50d37ac3fa28871aeb45a289502525f2477¢,
464b61c19f409bc7035294b50d£365ddab4c61d5¢701c175c£56d023£f5e927f, 389902d32£67555{8bb9c959¢3654691c680d24e20b5b22698d2d9407e3c561,
c9b33c978ed9e3{65e71c451356226ed5fcc09480d dfa3b3c2872d9ef4al3a66, 3e56aalala38f49a7f2e84bd49ba3112d757a84b3al5a36507676acec64c78df,
3328b30707e39aaedb06fcd228cef56dc8875b05458f9e8b9eb03388bf1{0af8, 5303bd1ef5c54b43190ada36b47b6f14baf0d04a5ad93a184d3b8bedc2aabab?,
3093cafc048cb12699f9064ec50ca98c22e7bedaeee563b796a07ed8549fa561, 20439fadabdcbdflec975cae5417499a448e997d8aca32ba809b0c79735e88¢5,
f2e0c441a8f664aa7acd7acce35e861398a3ad63c208adcd0ae9dde056ae9645e, £35906d81b7e54a0c8b3c411a8b09f3e56a9d111a3999c9233b5fe61626e81af,
7a103c4ee48a9c2262388ee818303559{62967efad5c09862ea22fb913cd9d%e, 859ae9040b9925¢9479466075679fda54{7a7a48195e¢019a5¢13a44b9e23ab10,
01010528305b60a0a3ead5e74416fc540aba880£7c88e9029d5b8ala578ca, 919977e9bbe0c2bd1e5e91b8edfbfec8d4f22552d1e653a8a5cf038c01886349,
9936955360f4a06d638d18be5a8303486b82d27dd102a53e842d42a353ee079¢, 3ceee2eb7bd089d0204f9d89a43e4de15d5917bd9c8be87f46d15266e352a3b,
4400e2541abba700fd151bdf6aba01f1b5d9{6{80a5038acd6b37fbc9d2cbf59, 694d6cb8b81f030aaefb7f9c933b9bed8db177efb07c30e3dc8d937acdbBae5c,
1fde6f3ac7f84b86a5a83f968840cd1ee337c637e816c094bc3f006{539bde5, 4300a74faf8alea70c860855ce0a04defddbe354f4€5940869bc17e6726dc821,
91ccce773160477e02eed7562e7ed9ef97c24a5938e030b328f4fee83bd789e7, 1afdc983261fff19101c2dfa54b551e274cf007a8ceac606f92ec509db11ac3c,
3933c8ad78a684ae2596d95ccfe987ed7c57b4{f8da016c9alcdel3842229234, 91d785e0ee4782e1a0a2016d8e0df5ec698ad4fef21913405857877e9eac9513,
b0d3a791ccf357479924d8a415910bf0cdcc7cfele89c3efbd8a743858854b7 ¢, 7589736fbledac7{f6018d1021592b3f2abaa8fac0313a18d5315046a268bef1,
92e59fbe8337edc0e55b35bdalbd95dd26da82503b4ce3cee80be570319¢7fe2, 3ce537999fa73774ee8bdb181bf7d8e35b070b8aaa84094f80f2d30b601b3641,
6e57851e00491bdee27fd986¢14abbbc83584c775bba51f9dd59997ef853ccdc, 4cb502{81fba5{0bad91d2431d9f38b9bdf5b3f43ba5150547e23143038f88cb,
75fa06aa13657418fb8aeff47db7650b2{96943955cb5cea25974c2ed4a7c673, 9f4c9d990a2d2a126775a150d59cd7d05efe54b8a81fe07ce6dc61c0bbed0fb4,
253a6a66dc5a53f183baadc2580fa8cdb923d785669153a4d1f2deac8dealc5c, 7a34e40c2e0a1b1290095677cdd8878b89309ecc3652b7f4c436688312d4d21a,
€73e1e2d86286c4fb51c57e4ee0f2c4d091174c3658170844cffaecec093ace4, b7f6e9d744798b8040c5ad6631dcb5c25c0a28123364aec8d3b68aeeaf392286,
fdfd7208a48a559959e705806€55784958e571dc97d4570b9a58b51ac0ac9dc7, 0ca75ac7£632954b258a5e4ed504eb2882f2ba707a81b5cd8ab567fbbael2e7e,
a2234d128d1c260e34ba7098aa15c68126d8e077c51f55bd16724b5867b3fd34, df2eda61d01519febfc1d86f1aeecelab84ef6df5c612bd79abbd15e1520£95,
2a0d0ef7ddccdea78fd5ac94d2acce696fb3e2e3c7d4d66af59655baf29a73d6, 3771c601e10aaf060cf3f5e44fdc45e844950ecae8673469158b9737503c6967,
df3592ced9cb1b36953cb7d806fa56d3f580ea2d754c654ed67bdcd943173d4a, 76fd2604cb693d7ac93aaa55dab446bbc2e443a99d7006de03a0b2b9181f46ac,
69319bc8a6296465¢4981288104ec64954ba6c5b4c1b01159b4981eed559cca, a3d0f659a86bde22e3fc4bfb1db60637e2de715b63407ea4b49a61a0ed8bf83d,
6b6e04370acelfd74ee88404acf3069285aed0d3d6d1a478f35af70c84e6eble, 9f57aedd77a352c¢89065dc5166e60670db7cf681d6fff7cbfa97d074d8d71762,



A.2. Apps Used in the T-Recs Evaluation 101

dc5767ebbac4d8c31d2cb73db3b2237f08e776a35b84dfcedaef3310cc7bd659, 2af98ac89b277ba2a26e4211a751219407eb4a39a0fa07b8fa7d2f672eead7e9,
73fb069209933b5ac865869da56fd1ac55cb5145d3cf5bf27957cf7a9431037, 5e297f087b890f132ab5c1e59¢7c278cbe18e54044a5ed57910d281255019¢b,
3cc8e22493763c3f2c53609818fae023b6070f0cb7128ad429e387{836cddbal, Oea9a33bdea21236ce91cale223f51b4dabcba9489ea35c4c8b68775a18959b9f,
5a11c684f9cb6e59aeaa25400fe5e334c6a21763813e2e016d7eaed58169cfd3, 0861826e6fefb273d6423b5000d89843ee8f9ddaal73d0c3010fd2e864c767ef,
d17413aaf5f15ddc0cc42a43b08735cc9329f89d34925f3b7ca54737b2fbde18, afd77edf2db2f99dd2220b1cc2b64ddfda40f3c23¢39112194e7b60a28736a3f,
577acde222af8754bfc12¢3524fe080225ealdbc2d3a5b5dba3e1659634ab74c, 19dd32277da69516¢2{737372c¢552d101b4779742eb0add8e41df9d20bfdb815,
d1d966589bb0f3b51e6fe9e5b3992ba4d898d65b3390e3d07ebe54bc17f1f66b, 541cb9b45045168255c2ed611cfdc84765¢64408d94238b29d c4d 216451399,
e8f16593dblaefaecb1442f0fa410314076a8dc7c96{79c54111daled76cc543, fc544835cdf7blallbc09a039ae7a43ea827c6d9dd7803f8112133f598941291,
ba4808d35396a7b11a3f49cac3b962f19a49eal51c44812fd1fd87b919a4c292, 0b940f64f775f70fdbcf68c16d1d611326948810fb7d308dc1eb0e08ac5c43cf







103

Appendix B

Details of DroidBench 3.0 Analysis
Results

This chapter shows the analysis results for each case in the 13 categories of DroidBench 3.0:
Aliasing (Table B.1), Android Specific (Table B.2), Arrays and Lists (Table B.3), Callbacks
(Table B.4), Emulator Detection (Table B.5), Field and Object Sensitivity (Table B.6), General
Java (Table B.7), Inter Component Communication (Table B.8), Lifecycle (Table B.9), Reflec-
tion (Table B.10), Reflection_ICC (Table B.11), Threading (Table B.12), and Unreachable Code
(Table B.13).

TABLE B.1: Analysis result for each case in the category Aliasing.

Test (#) E T-Recs FlowDroidc3 FlowDroid Amandroid DroidSafe DroidRAF DroidRA 4 DroidRAp IecTA TaintDroid IntelliDroid
TP FP FN | TP FP P FP FN |TP FP FN | TP FP FN|TP FP FN |TP FP FN | TP FP FN | TP FP FN | TP FP FEN | TP FP FEN
FlowSensitivityl | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (U] 0 0 0 0 0 0 0 0 0 0 0o 0 0 0 0 0
Mergel 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
SimpleAliasing1 | 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0
StrongUpdatel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0o 0 0 0 0 0 0 0 0 0 0 0 (U] 0 0 0 0
Sum (4) ‘ 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0

TABLE B.2: Analysis result for each case in the category Android Specific.

Test (#) E T-Recs FlowDroid;c3 | FlowDroid Amandroid DroidSafe DroidRAF DroidRA 4 DroidRAp IecTA TaintDroid IntelliDroid

TP FP FN | TP FP FN |TP FP EN |TP FP FN |TP FP FN | TP FP FN |TP FP EN |TP FP EN |TP FP EN | TP FP FN | TP FP FN
ApplicationModelingl | 0 0o 0 0 0 1 0 0 1 0 (U 0 0 1 0 0 1 0 (U] 0 0 1 0 0o 0 0 0o 0 0 0o 0 0
DirectLeakl 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
InactiveActivity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Library2 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
LogNoLeak 0 0 0 0 0o 0 0 0 0 0 0o 0 0 (U 0 0o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Obfuscation 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0
Parcell 1 1 0 0 1 0 0 1 0 0 (U 1 1 0 0 1 0 0 (U 1 1 0 0 1 0 0 0o 0 1 (U] 1
PrivateDataLeak3 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0
PublicAPIField1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1
PublicAPIField2 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1
Viewl 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0
Sum (11) ‘ 8 ‘ 8 0 0 ‘ 7 1 1 7 1 1 4 0 4 7 1 1 7 1 1 4 0 4 7 1 1 6 0 2 5 0 3 5 0 3

TABLE B.3: Analysis result for each case in the category Arrays and Lists.

Test (#) E| TRes |FlowDroidic; | FlowDroid | Amandroid | DroidSafe | DroidRA; | DroidRA, | DroidRAp IecTA TaintDroid | IntelliDroid
TP FP EN|TP EP EN|TP FP EN|TP FP EN|TP FP EN|TP FP EN|TP FP EN |TP FP EN |TP FP EN|TP FP EN |TP FP EN

ArrayAccessl ol o o ofo0o 1t of0 1 0[O0 1 0[O0 1 O[O0 1 0[O0 1 0[O0 1 0[O0 1 00 0 0[O0 0 0
ol o o oo 1t ofo 1 ofo0o 1 ofo 1 of0 1 ofo0o 1 0fl0 1 of0 1 0oflo0 0o 0[O0 0 o0

1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ArrayAccess5 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
ArrayCopyl 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1
ArrayToString1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1
HashMapAccess1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
ListAccess1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
MultidimensionalArrayl | 1] 1 0 0| 1 0o ol 1 0o of 0o o 1/ 1 0o o/ 1 0o ofo o 1|1 0o of1 0o ofo o 10 0 1
Sum (10) 4 4 0 0 4 3 0 4 5 0 1 4 3 4 4 0 4 5 0 1 4 3 4 4 0 3 5 1 1 0 3 1 0 3




104 Appendix B. Details of DroidBench 3.0 Analysis Results

TABLE B.4: Analysis result for each case in the category Callbacks.

Test (#) E T-Recs FlowDroid ;3 FlowDroid Amandroid DroidSafe DroidRAp DroidRA 4 DroidRAp TccTA TaintDroid IntelliDroid
TP FP FN | TP FP FEN |TP FP FN | TP FP FN |TP FP FN |TP FP FEN |[TP FP FN | TP FP EN | TP FP FN | TP FP FEN |TP FP FN
AnonymousClass1 2 2 0 0 1 0 1 1 0 1 0 0 2 2 0 0 1 0 1 0 0 2 2 0 0 1 0 1 0 0 2 0 0 2
Buttonl 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1
Button2 3 3 0 3 1 0 3 1 0 1 2 3 0 3 1 0 1 0 2 3 1 3 1 0 3 0 3
Button3 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1
Button4 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1
Button5 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1
LocationLeakl 2 2 0 0 2 0 0 2 0 0 0 0 2 2 0 0 2 0 0 0 0 2 2 0 0 2 0 0 0 0 2 0 0 2
LocationLeak2 2 2 0 0 2 0 0 2 0 0 0 0 2 2 0 0 2 0 0 0 0 2 2 0 0 2 0 0 0 0 2 0 0 2
LocationLeak3 2 2 0 0 1 0 1 1 0 1 0 0 2 2 0 0 1 0 1 0 0 2 2 0 0 1 0 1 0 0 2 0 0 2
MethodOverridel 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
MultiHandlers1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ordering1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
RegisterGloball 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1
RegisterGlobal2 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1
Unregisterl 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
Sum (15) 18 118 0 0 15 2 3|15 2 3 2 1 16| 18 4 0| 15 2 3 2 1 16| 18 4 0| 16 2 2 1 0 17 1 0 17
TABLE B.5: Analysis result for each case in the category Emulator Detection.
Test (#) E T-Recs FlowDroid 3 FlowDroid Amandroid DroidSafe DroidRA¢ DroidRA 4 DroidRAp IccTA TaintDroid IntelliDroid
TP FP FN |TP FP FN |TP FP FN |TP FP FN |TP FP FN |TP FP FN |TP FP FN |TP FP FN |[TP FP FN |TP FP FN | TP FP FN
Batteryl 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0
Bluetooth1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Build1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1
Contactsl 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
ContentProviderl 2 2 0 0 2 0 0 2 0 0 2 0 0 0 0 2 2 0 0 2 0 0 0 0 2 2 0 0 2 0 0 2 0 0
Deviceldl 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Filel 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
IMEI1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1r1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1
P 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1
PlayStorel 2 2 0 0 2 0 0 2 0 0 2 0 0 0 0 2 2 0 0 2 0 0 0 0 2 2 0 0 0 0 2 0 0 2
PlayStore2 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1
Sensorsl 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Subscriberld1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
VoiceMaill 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1
Sum (15) 16 [116 0 0| 16 0 0| 16 0 0 15 0 1|11 0 5 |16 0 0] 15 0 1|11 0 5 116 0 0 9 0 7 9 0 7
TABLE B.6: Analysis result for each case in the category Field and Object
Sensitivity.
Test (#) E T-Recs FlowDroid,c3 FlowDroid Amandroid DroidSafe DroidRAf DroidRA 4 DroidRAp IccTA TaintDroid IntelliDroid
TP FP FN | TP FP TP FP FN | TP FP FN P FP FN | TP FP FN FP FN | TP FP FN | TP FP FN |TP FP FN | TP FP FN
FieldSensitivityl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FieldSensitivity2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FieldSensitivity3 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
FieldSensitivity4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
InheritedObjects1 | 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
ObjectSensitivityl | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ObjectSensitivity2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Sum (7) 2 2 0 0] 2 0 o0[2 0 02 0 0]2 2 0[2 0 0 2 0 0/2 2 0[2 0 0 2 0 0]2 0 0
TABLE B.7: Analysis result for each case in the category General Java.
Test (#) E T-Recs FlowDroidc3 FlowDroid Amandroid DroidSafe DroidRAf DroidRA 4 DroidRAp TecTA TaintDroid IntelliDroid
TP FP FN | TP FP FN FP TP FP FN | TP FP FN FP TP FP FN FP FN FP FN | Tl FP FN | TP FP FN
Clonel 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1
Exceptionsl
Exceptions2
Exceptions3
Exceptions4

Exceptions5
Exceptions6
Exceptions?
FactoryMethods1
Loopl

Loop2

Serializationl
SourceCodeSpecificl
StartProcessWithSecret1
StaticInitializationl
StaticInitialization2
StaticInitialization3
StringFormatter1
StringPatternMatching1
StringToCharArray1
StringToOutputStream1
UnreachableCode
VirtualDispatch1
VirtualDispatch2

SmmommmrroO~RO~ROCONOOCOOoCOoCoO
CmmommmrrOoORORrOOOOO0O0O0OOO

CoCCoCoCoCooORRORORRNO - - o

P
0
1
1
0
1
1
1
0
0
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0

=
SRR OoRmROORORRRRRNO RO R oS
R N
[ T O

o X L RS

=

1
1
0
1
1
1
0
2
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0

e . L o
comcocococococococo~ocooOoOROOO R
S S S

slocococcoco~rorococococococococococoooR
hloccococococoorrorooooococoococococooR
slocococococoorrorcocococococococococcoo R

1
0
0
0
1
1
0
0
2
1
1
1
0
1
1
1
1
1
1
1
1
0
0
1
0
7

Slcccococococcccococococococococoooooo
odcccococococccccococococococococococoocoo
hlmmmoocoocoococcccococococococoooo=oo0
wlmrrococococoocoococococococococococococoroo
N|ococococoocoocococooooooo~o0oO~oO
Qlerocomrmrrrrrrorrrnoomrocoo
Noocoooooocococooooo0OO~0o0O=OO
cloccococoococococccocococococococooooooo
hlmmmooocoocoocccococococococooooo=0o0
Vlcorococococoococococo~oo00o~00o R
Njooocooocoocoocooccocococococococo~ooomoO
Njoococoocoocoocoocoocococococococococomooomo0O
clococococococcccccococococococococooooo
Gl roococoococcocccococococo—o0o—00
slocococcoco~rorocorococococococococooo
cloccococococococococococococococococococococoo
clocccococococococoococococococococococococoo

VirtualDispatch3
Sum (25) | 22 22 | 18 | 18 | 5 17 | 22 | 18 | | 2 | 18 | 10 12 12 10
TABLE B.8: Analysis result for each case in the category Inter Component
Communication.
Test (#) E T-Recs FlowDroid;c3 FlowDroid Amandroid DroidSafe DroidRAp DroidRA 4 DroidRAp IecTA TaintDroid IntelliDroid
TP FP FN |TP FP FN |TP FP FN |TP FP FN |TP FP FN |TP FP FN |TP FP FN |TP FP FN |TP FP FN |[TP FP FN |TP FP FN
ActivityCommunicationl 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0
ActivityCommunication2 2 2 0 0 1 0 1 1 0 1 2 1 0 2 0 0 1 0 1 2 1 0 2 0 0 2 0 0 2 0 0 2 0 0
ActivityCommunication3 2 2 0 0 2 0 0 1 0 1 2 1 0 1 0 1 1 0 1 2 1 0 1 0 1 1 0 1 2 0 0 2 0 0
ActivityCommunication4 2 2 0 0 2 0 0 1 0 1 2 1 0 2 0 0 1 0 1 2 1 0 2 0 0 2 0 0 2 0 0 2 0 0
ActivityCommunication5 2 2 0 0 2 0 0 1 0 1 2 1 0 1 0 1 1 0 1 2 1 0 1 0 1 1 0 1 2 0 0 2 0 0
ActivityCommunication6 2 2 0 0 0 0 2 1 0 1 2 1 0 1 0 1 1 0 1 2 1 0 1 0 1 1 0 1 2 0 0 2 0 0
ActivityCommunication7 2 2 0 0 2 0 0 1 0 1 2 1 0 1 0 1 1 0 1 2 1 0 1 0 1 1 0 1 2 0 0 2 0 0
ActivityCommunication8 2 2 0 0 1 0 1 1 0 1 2 1 0 2 0 0 1 0 1 2 1 0 2 0 0 2 0 0 2 0 0 2 0 0
BroadcastTaintAndLeak1 2 2 0 0 2 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 2 0 0 2
ComponentNotInManifest1 1 1 0 0 1 0 0 1 0 0 1 1 o 0 o0 1 1 0 0 1 1 0| 0 0 1 1 0 0 1 0 0 1 0 0
EventOrderingl 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0
IntentSink1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
IntentSink2 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 1
IntentSourcel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
ServiceCommunication1 1 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1
SharedPreferences1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1
Singletons1 1 1 0 0 1 0 0 1 0 o 0 o0 1 1 0 0 1 0 0| 0 0 1 1 0 o 0 0 1 0o 0 1 0 0 1
UnresolvableIntentl 3 3 0 0 1 0 2 1 0 2 3 0 0 3 0 0 1 0 2 3 0 0 3 0 0 2 0 1 2 0 1 2 1
Sum (18) 27 |R27 0] 18 9| 14 0 13| 23 9 4|21 2 6| 14 0 13| 23 9 4|21 2 6| 19 1 8| 18 0 9| 20 0 7




Appendix B. Details of DroidBench 3.0 Analysis Results

105

TABLE B.9: Analysis result for each case in the category Lifecycle.

Test (#)

FlowDroid;c3
TP FP FN

FlowDroid
TP FP FN | TP

Amandroid
FP FN

DroidSafe
TP FP FN

DroidRA;
TP FP FN

Droi
™

idRA 4
FP EN

Droi
TP

idRAp
FP FN

TccTA
™

FP FN

TaintDroid
TP FP FN

IntelliDroid
TP FP FN

ActivityEventSequencel
ActivityEventSequence2
ActivityEventSequence3
ActivityLifecyclel
ActivityLifecycle2
ActivityLifecycle3
ActivityLifecycled
ActivitySavedStatel
ApplicationLifecyclel
ApplicationLifecycle2
ApplicationLifecycle3
AsynchronousEventOrderingl
BroadcastReceiverLifecyclel
BroadcastReceiverLifecycle2
BroadcastReceiverLifecycle3
EventOrderingl
FragmentLifecyclel
FragmentLifecycle2
ServiceEventSequencel
ServiceEventSequence2
ServiceEventSequence3
ServiceLifecyclel
ServiceLifecycle2
SharedPreferenceChanged1

e O e e e e e e e O e O

i O i e i e i e e O R O

1

oRrmocoCCORmRmORRERERORORROO

0

crocococoro
coococcocococococcoo—~ocoooo
cocoroccoomoo

momroocorocooo

)

i O e i e e e e e O e O

corococoro

mNumrooroococoo

crmoo

o oo

morroocoroCOCOOROOORROO

o

cmmmoo

e O e e e e e e e e O e O

cooc—ococoro

mNmhocoroocooo

0

LU UG SN S
cocococococococcococo~ooo

U

cococococor

cormrroorococoo

oo

coccococcococococoo

cocoo

cromcomro~moR~coO~oO

U

memhOORO—OCO—R—RORORRrOOOROO

Sum (24)

~|lococcococcococococoococococococo~ooooo

Glmocoromroocoro
o|lmomrroccococcocomroococococoooo

~|lccoccs

Nl=e

N|ocococorcoocooocococococoocoooro

Glomocoommr e e e O o

o|low

o|lococcococcococccoocococococococococoooo

S|lomrmoco

®|—c

o|~om~moocoocococo~rmrooococoocooo

N|ocococorcoocooocococococoocoooro

Glomococommrmrmrmrro

o|low

o|lcccococcooccocococococococoococooooo

~|lecocos

w|loo

o|loccococorororrocoromoooRrroOR

o|lcococos

o|lcoccocorornorrocororocoorRro
o|lococcococcococcocoococococococoococoooo

TABLE B.10: Analysis result for each case in the category Reflection.

Test (#) E T-Recs

g

FP EN

FlowDroid;c3

g

FP

FN

FlowDroid

TP FP EN

Amandroid
TP FP EN

DroidSafe
FP EN

TP

DroidRAF

g

FP

FN

DroidRA 4

g

FP

FN

DroidRAp
EN

FP

TP

IccTA

FP FN

TaintDroid

TP

FP

FN

IntelliDroid
TP FP EN

Reflectionl
Reflection2
Reflection3
Reflection4
Reflection5
Reflection6
Reflection7
Reflection8
Reflection9d

0 0 0

O e

cooco

cocococoo

0

V=) SN
O [ =
ollcoccococococoo

Sum(9) |

Slccoccocococoo

| R ROl

o|loccocococooo

m|locorocococoo

P =R

clcococcoocco
~r|lcorocoocooo
~lcooccooco
clcococcoocco
0|

m|loocococor

co|lcoococococooo

G|mmrrmmoocoo

o|looco

~|locorocoococoo

o|lococormmrmmm

o|locococococooo

=
o|lococormrmmrmmn|

o|loccococococoo

mlococococococoo
o|lcocococococoo
[ [ SRRy

1| SRR

Slcccococococo

olcccococococoo

1| [ SRR
olcococococococoo
Slcccocococoo

TABLE B.11: Analysis result for each case in the category Reflection_ICC.

Test (#)

‘TP

T-Recs

FP

FN

‘ FlowDroid;c3

FP

FN

FlowDroid
TP FP

TP

Amandroid
FP FN

DroidSafe

DroidRA;
TP FP FN | TP

FP FN

‘TP

DroidRA ,
FP FN

‘ DroidRAp

FP FN

IccTA
FP

Fi

Z

TP

FP

‘ TaintDroid

IntelliDroid
TP FP FN

ActivityCommunication2
AllReflection

Onlylntent
OnlylntentReceive
OnlySMS
OnlyTelephony
OnlyTelephony_Dynamic
OnlyTelephony.
OnlyTelephony_Substring
SharedPreferences]

PRRORNNRRR

0

coocococoo

oo

MRR LRSS

0

coocococoo

oo

cmmrvmcooo

[ R R S

coococomoo

oo

SRR WRNNNNR

0

coocococoo

SRR LRNNNRR

~

Sum (10)

Slccocococcococoo

dlccocococcocococo

Njcocococororoo

clccococococococoo

Blomwmwn—n=nn
p|oocococomon

olcccocccococoo
Blommwn—n=nn
slocococo—omon
olcccococcoccoos

Slempww_weno

Glommrnmococooo

clccococococococoo

[

N|ococooco~moroo

s|loccoco—oron

Slemmwnwmweane

clocccoococoooo

clocccoocococooo
Slomwnwnnnonn

cloccocococococooco

N|Ncoooocoooo

clccococococococoo

TABLE B.12: Analysis result for each case in the category Threading.

E

=
=

Test (#)
FP

T-Recs

FN

FlowDroid;c3

TP

FP

FlowDroid

™

FP  FN

Amandroid
TP FP FN

DroidSafe

FP F

roidRAp
FP  FN

‘TP

DroidRA 4
FP F

roidRAp
FP

IccTA
FP  Fi

TaintDroid

T

FP

FN

IntelliDroid
TP FP FN

AsyncTask1
Executorl
JavaThread1
JavaThread2
Looperl
TimerTask1

1

S

0 0

0
0
0
0

0o 0
0

=

0

0
0

0

0

=

0

FN
0

cCom =

1 0

[ [N
-]
S|lcoococoo

Sum (6) |

0
0
0
0
0
0
0

c|lococoo

—|lmroocococo

Glommm e

o|lococococo
—|mroocoo
~|loocoro
G|m e m o

0

I ESRSRE,

~|lcooro

Njmroocool|Z

Di
P
1
1
1
1
1
0
5

o|lococococo

0
0
0
1
1

~|lococoro

o|lcocococo

[ I

D
P
1
1
1
1
0
0
4

—~|cocor~o

N|lmroo

o|lcoococoo
W|lrrroool|Z

- T

o|lcocococoo

o|lcocococoo

N T p—.
o|lcocococoo
S|lcocococo

TABLE B.13: Analysis result for each case in the category Unreachable Code.

Test (#) ‘

T-Recs

FP

F

FlowDroid;c;
TP FP

mandroid

FlowDroid
TP FP Fi FP

DroidSafe DroidRAF
TP FP FN | TP FP F

Dro

idRA 4
FP F

Droi
TP

idRAp
FP F

TccTA
TP FP H

TaintDroid
TP FP Fl

IntelliDroid
TP FP Fi

SimpleUnreachablel
UnreachableBoth
UnreachableSink1
UnreachableSourcel

0
0
0
0

0

coco

0

coco

0

coco

oo

0

coco

0

I

oo

0

coco

0

coco

0 0

coco
coco

olocoo
olococoo

Sum (4)

o

olococoo|Z

o

0
1
1
1
3

o

=
olcocoo|TP

0 0
0 1
0 1
0 1
0 3

o

o

o

0
1
1
1
3

0
0
0
0
0

0
0
0
0
0

®

0
0
0
0
0

=
oloocoo|®

0
1
1
1
3

0
0
0
0
0

olooco

0
0
0
0
0

o
[0 RN,
o|loocoo|Z

o

o

N
0
0
0
0
0

o
o







107

Bibliography

[1] Statcounter. Mobile Operating System Market Share Worldwide. https://gs.statcounter.
com/os-market-share/mobile/worldwide. (Visited on 08/2023).

[2] Google. Google Play. https://play.google.com/store. (Visited on 01/2021).
[3] Aptoide. Aptoide. https://en.aptoide.com/. (Visited on 09/2023).
[4] F-Droid. F-Droid. https://f-droid.org/en/. (Visited on 09/2023).

[5] Statista. Number of available applications in the Google Play Store from December 2009 to
June 2023. https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/. (Visited on 08/2023).

[6] CNIL. Mobile games: the CNIL fined VOODOO 3 million euros. https://www.cnil.fr/
en/mobile-games-cnil-fined-voodoo-3-million-euros. (Visited on 07/2023).

[7] FTC. Ovulation Tracking App Premom Will be Barred from Sharing Health Data for Adver-
tising Under Proposed FTC Order. https://www.ftc.gov/news-events/news/press-
releases/2023/05/ovulation-tracking-app-premom-will-be-barred-sharing-

health-data-advertising-under-proposed-ftc. (Visited on 07/2023).

[8] Google. Changes to Device Identifiers in Android O. https : //android-developers.
googleblog.com/2017/04/changes-to-device-identifiers-in.html. (Visited on
09/2023).

[9] Google. Privacy changes in Android 10. https://developer.android. com/about/versions/
10/privacy/changes. (Visited on 08/2022).

[10] I.Reyes, P. Wijesekera, ]. Reardon, A. Elazari, A. Razaghpanah, N. Vallina-Rodriguez,
and S. Egelman. ““Won’t Somebody Think of the Children?” Examining COPPA
Compliance at Scale”. In: Proc. Privacy Enhancing Technologies Symp. http://dx.doi.
org/10.1515/popets-2018-0021, July 2018, pp. 63-83.

[11] R.Slavin, X. Wang, M. B. Hosseini, ]. Hester, R. Krishnan, J. Bhatia, T. D. Breaux, and
J. Niu. “Toward a Framework for Detecting Privacy Policy Violations in Android Ap-
plication Code”. In: Proceedings of the International Conference on Software Engineering.
https://doi.org/10.1145/2884781.2884855. 2016.

[12] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S. Wilson, N. Sadeh,
S. M. Bellovin, and ]. Reidenberg. “Automated Analysis of Privacy Requirements
for Mobile Apps”. In: AAAI Fall Symposium Series: Privacy and Language Technologies
Technical Report FS-16-04. 2016.

[13] D. Bui, Y. Yao, K. G. Shin, ]J.-M. Choi, and J. Shin. “Consistency Analysis of Data-
Usage Purposes in Mobile Apps”. In: Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. https://doi.org/10.1145/3460120.3484536, Nov. 2021.



108

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

K. Zhao, X. Zhan, L. Yu, S. Zhou, H. Zhou, X. Luo, H. Wang, and Y. Liu. “Demystify-
ing Privacy Policy of Third-Party Libraries in Mobile Apps”. In: Int. Conf. Softw. Eng.
https://doi.org/10.1109/ICSE48619.2023.00137, May 2023.

B. Andow, S. Y. Mahmud, ]. Whitaker, W. Enck, B. Reaves, and S. Egelman. “Actions
Speak Louder than Words: Entity-Sensitive Privacy Policy and Data Flow Analysis
with PoliCheck”. In: USENIX Secur. Symp. Aug. 2020, pp. 985-1002.

X. Zhang, X. Wang, R. Slavin, T. Breaux, and ]. Niu. “How Does Misconfiguration of
Analytic Services Compromise Mobile Privacy?” In: Int. Conf. Softw. Eng. https://
doi.org/10.1145/3377811.3380401, 2020, pp. 1572-1583.

R. Khandelwal, A. Nayak, P. Chung, and K. Fawaz. Unpacking Privacy Labels: A Mea-
surement and Developer Perspective on Google’s Data Safety Section. arXiv.2306.08111.
2023.

J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-Rodriguez.
“Bug Fixes, Improvements, ... and Privacy Leaks A Longitudinal Study of PII Leaks
Across Android App Versions”. In: Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS).
http://dx.doi.org/10.14722/ndss.2018.23143. San Diego, CA, USA, Feb. 2018.

A. Bosu, F. Liu, D. ( Yao, and G. Wang. “Collusive Data Leak and More: Large-Scale
Threat Analysis of Inter-App Communications”. In: Proc. 2017 ACM Asia Conf. Com-
put. Commun. Secur. (ASIA CCS). https://doi.org/10.1145/3052973.3053004, Abu
Dhabi, UAE, Apr. 2017, pp. 71-85.

M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. “Unsafe Exposure Analysis of
Mobile In-App Advertisements”. In: Proc. ACM Conference Security Privacy Wireless
Mobile Networks. https://doi.org/10.1145/2185448.2185464, 2012, pp. 101-112.

A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand, C. Kruegel, and
G. Vigna. “Obfuscation-Resilient Privacy Leak Detection for Mobile Apps Through
Differential Analysis”. In: Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS). http://dx.
doi.org/10.14722/ndss.2017.23465. San Diego, CA, USA, Mar. 2017.

J. Reardon, A. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez, and S. Egelman.
“50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention of the Android
Permissions System”. In: USENIX Security Symposium. 2019, pp. 603-620.

M. H. Meng, Q. Zhang, G. Xia, Y. Zheng, Y. Zhang, G. Bai, Z. Liu, S. G. Teo, and J. S.
Dong. “Post-GDPR Threat Hunting on Android Phones: Dissecting OS-level Safe-
guards of User-unresettable Identifiers”. In: Proc. Netw. Distrib. Syst. Secur. Symp.
(NDSS). https : //dx.doi.org/10.14722/ndss.2023.23176, San Diego, CA, USA,
Mar. 2023.

Q. Zhao, C. Zuo, B. Dolan-Gavitt, G. Pellegrino, and Z. Lin. “Automatic Uncov-
ering of Hidden Behaviors From Input Validation in Mobile Apps”. In: Proc. 2020
IEEE Symp. Secur. Privacy (SP). https : //doi.org/10.1109/SP40000.2020.00072.
San Francisco, CA, USA, July 2020, pp. 1106-1120.

Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and G. Vigna. “Trig-
gerScope: Towards Detecting Logic Bombs in Android Applications”. In: IEEE Sym-
posium on Security and Privacy. https://doi.org/10.1109/8P.2016.30. May 2016.



Bibliography 109

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

Y. Feng, S. Anand, I. Dillig, and A. Aiken. “Apposcopy: Semantics-Based Detection
of Android Malware through Static Analysis”. In: Proc. ACM SIGSOFT International
Symp. Foundations Software Engineering. https://doi.org/10.1145/2635868.2635869,
Nov. 2014, pp. 576-587.

D. Gallingani, R. Gjomemo, V. Venkatakrishnan, and S. Zanero. “Static Detection and
Automatic Exploitation of Intent Message Vulnerabilities in Android Applications”.
In: IEEE Symp. Secur. and Privacy Workshops Mobile Secur. Technologies (MoST). May
2015.

X. Cui, J. Wang, L. C. K. Hui, Z. Xie, T. Zeng, and S. M. Yiu. “WeChecker: Efficient and
Precise Detection of Privilege Escalation Vulnerabilities in Android Apps”. In: Proc.
ACM Conference Secur. Privacy Wireless Mobile Networks. https://doi.org/10.1145/
2766498 .2766509, 2015.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. “FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-
aware Taint Analysis for Android Apps”. In: Proc. 35th ACM SIGPLAN Conf. Program.
Language Des. Implement. (PLDI). https://doi.org/10.1145/2594291.2594299. Ed-
inburgh, U. K,, June 2014, pp. 259-269.

M. L. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard. “Information-
Flow Analysis of Android Applications in DroidSafe”. In: Proc. Netw. Distrib. Syst.
Secur. Symp. (NDSS). San Diego, CA, USA, Feb. 2015. URL: http://dx.doi.org/10.
14722/ndss.2015.23089.

F. Wei, S. Roy, X. Ou, and Robby. “Amandroid: A Precise and General Inter-Component
Data Flow Analysis Framework for Security Vetting of Android Apps”. In: ACM
Trans. Privacy Secur. 21.3 (Apr. 2018). Art. no. 14. URL: https://doi.org/10.1145/
31835765.

L. Li, A. Bartel, T. F. Bissyandé, ]J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bod-
den, D. Octeau, and P. McDaniel. “IccTA: Detecting Inter-Component Privacy Leaks
in Android Apps”. In: Proc. 2015 IEEE/ACM 37th IEEE Int. Conf. Softw. Eng. (ICSE).
https://doi.org/10.1109/ICSE.2015.48, Florence, Italy, May 2015, pp. 280-291.

D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel. “Composite Constant
Propagation: Application to Android Inter-Component Communication Analysis”.
In: Proc. 2015 IEEE/ACM 37th IEEE Int. Conf. Softw. Eng. (ICSE). https://doi.org/
10.1109/ICSE.2015. 30, Florence, Italy, May 2015, pp. 77-88.

J. Samhi, A. Bartel, T. F. Bissyandé, and J. Klein. “RAICC: Revealing Atypical Inter-
Component Communication in Android Apps”. In: Proc. 2021 IEEE/ACM 43rd IEEE

Int. Conf. Softw. Eng. (ICSE). https://doi.org/10.1109/ICSE43902.2021.00126, Madrid,
ES, May 2021, pp. 1398-1409.

W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer. “Android Taint Flow Analysis
for App Sets”. In: Proc. 3rd ACM SIGPLAN Int. Workshop State Art Java Program Anal.
(SOAP). Art. no. 5. Edinburgh, UK., June 2014. URL: https : //doi.org/10.1145/
2614628.2614633.



110

Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and Y. Chen.
“EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through the
Android Framework”. In: Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS). San Diego,
CA, USA, Feb. 2015. URL: http://dx.doi.org/10.14722/ndss.2015.23140.

S. Rasthofer, S. Arzt, and E. Bodden. “A Machine-learning Approach for Classifying
and Categorizing Android Sources and Sinks”. In: Proceedings of Network and Dis-
tributed System Security Symposium. https://doi.org/10.14722/ndss.2014.23039.
2014.

S. Arzt and E. Bodden. “StubDroid: Automatic Inference of Precise Data-Flow Sum-
maries for the Android Framework”. In: Proc. 2016 IEEE/ACM 38th Int. Conf. Softw.
Eng. (ICSE). https : //doi.org/10.1145/2884781.2884816. Austin, TX, USA, May
2016, pp. 725-735.

P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. d’Amorim, and M. D. Ernst. “Static
Analysis of Implicit Control Flow: Resolving Java Reflection and Android Intents”.
In: Proc. 2015 IEEE/ACM 30th Int. Conf. Aut. Softw. Eng. (ASE). https://doi.org/10.
1109/ASE.2015.69, Lincoln, NE, USA, Nov. 2015, pp. 669-679.

L. Li, T. F. Bissyandé, D. Octeau, and J. Klein. “DroidRA: Taming Reflection to Sup-
port Whole-Program Analysis of Android Apps”. In: Proc. 2016 Int. Symp. Softw. Test-
ing Anal. (ISSTA). https://doi.org/10.1145/2931037.2931044, Saarbriicken, Ger-
many, July 2016, pp. 318-329.

X. Sun, L. Li, T. E Bissyandé, J. Klein, D. Octeau, and J. Grundy. “Taming Reflec-
tion: An Essential Step Toward Whole-Program Analysis of Android Apps”. In: ACM
Trans. Softw. Eng. Methodol. 30.3 (Apr. 2021). Art. no. 32. URL: https://doi.org/10.
1145/3440033.

X. Xiao, N. Tillmann, M. Fahndrich, J. De Halleux, and M. Moskal. “User-Aware Pri-
vacy Control via Extended Static-Information-Flow Analysis”. In: Proc. IEEE/ACM
International Conference Automated Software Engineering. https://doi.org/10.1145/
2351676.2351689, 2012, pp. 80-89.

Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. “Applntent: Analyz-
ing Sensitive Data Transmission in Android for Privacy Leakage Detection”. In: Proc.
ACM SIGSAC Conference Computer Communications Security. https: //doi.org/10.
1145/2508859.2516676, 2013, pp. 1043-1054.

X. Chen and S. Zhu. “DroidJust: Automated Functionality-Aware Privacy Leakage
Analysis for Android Applications”. In: Proc. ACM Conference Security Privacy Wireless
Mobile Networks. https://doi.org/10.1145/2766498.2766507, 2015.

K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee, and G. Jiang.
“Checking More and Alerting Less: Detecting Privacy Leakages via Enhanced Data-
flow Analysis and Peer Voting”. In: Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS). San
Diego, CA, USA, Feb. 2015. URL: http://dx.doi.org/10.14722/ndss.2015.23287.

S. Rahaman, I. Neamtiu, and X. Yin. “Algebraic-Datatype Taint Tracking, with Ap-
plications to Understanding Android Identifier Leaks”. In: Proc. ACM Joint Meeting
European Software Engineering Conference Symposium Foundations Software Engineering.
https://doi.org/10.1145/3468264.3468550, 2021, pp. 70-82.



Bibliography 111

(47]

(48]

(49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

M. Benz, E. K. Kristensen, L. Luo, N. P. Borges, E. Bodden, and A. Zeller. “Heaps'n
Leaks: How Heap Snapshots Improve Android Taint Analysis”. In: Proc. ACM/IEEE
International Conference Software Engineering. https : //doi.org/10.1145/3377811.
3380438, 2020, pp. 1061-1072.

L. Luo, E. Bodden, and J. Spath. “A Qualitative Analysis of Android Taint-Analysis
Results”. In: IEEE/ACM International Conference Automated Software Engineering. https://
doi.org/10.1109/ASE.2019.00020, Nov. 2019, pp. 102-114.

W. Huang, Y. Dong, A. Milanova, and J. Dolby. “Scalable and Precise Taint Analysis
for Android”. In: Proc. 2015 Int. Symp. Softw. Testing Anal. (ISSTA). https://doi.org/
10.1145/2771783.2771803, Baltimore, MD, USA, July 2015, pp. 106-117.

F. Wei, X. Lin, X. Ou, T. Chen, and X. Zhang. “JN-SAF: Precise and Efficient NDK/JNI-
Aware Inter-Language Static Analysis Framework for Security Vetting of Android
Applications with Native Code”. In: Proc. 2018 ACM SIGSAC Conf. Comput. Commun.
Secur. (CCS). https: //doi.org/10.1145/3243734.3243835, Toronto, Canada, Oct.
2018, pp. 1137-1150.

S. B. Andarzian and B. T. Ladani. “Compositional Taint Analysis of Native Codes for
Security Vetting of Android Applications”. In: Proc. 2020 10th Int. Conf. Comput. and
Knowledge Eng. (ICCKE). https://doi.org/10.1109/ICCKE50421.2020.9303643, Mash-
had, Iran, Oct. 2020, pp. 567-572.

J. Samhi, J. Gao, N. Daoudi, P. Graux, H. Hoyez, X. Sun, K. Allix, T. F. Bissyandé,
and J. Klein. “JuCify: A Step towards Android Code Unification for Enhanced Static
Analysis”. In: Proc. 44th Int. Conf. Softw. Eng. (ICSE). https : //doi.org/10.1145/
3510003.3512766, Pittsburgh, PA, USA, May 2022, pp. 1232-1244.

C. Sun, Y. Ma, D. Zeng, G. Tan, S. Ma, and Y. Wu. “uDep: Mutation-Based Depen-
dency Generation for Precise Taint Analysis on Android Native Code”. In: IEEE Trans-
actions on Dependable and Secure Computing 20.2 (Mar.—Apr. 2023), pp. 1461-1475. DOIL:
https://doi.org/10.1109/TDSC.2022.3155693.

W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. D. McDaniel, and A. Sheth. “Taint-
Droid: An Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones”. In: Proc. 9th USENIX Symp. Operating Syst. Des. Implement. (OSDI).
https : //doi.org/10.1145/2619091. Vancouver, BC, Canada, Oct. 2010, pp. 393—
407.

O. Tripp and J. Rubin. “A Bayesian Approach to Privacy Enforcement in Smart-
phones”. In: USENIX Secur. Symp. Aug. 2014, pp. 175-190.

Z. Wei and D. Lie. “LazyTainter: Memory-Efficient Taint Tracking in Managed Run-
times”. In: Proc. ACM Workshop Secur. and Privacy Smartphones Mobile Devices. https://
doi.org/10.1145/2666620.2666626, 2014, pp. 27-38.

V. Rastogi, Y. Chen, and W. Enck. “AppsPlayground: Automatic Security Analysis of
Smartphone Applications”. In: Proc. ACM Conference Data Application Secur. Privacy.
https://doi.org/10.1145/2435349.2435379, 2013, pp. 209-220.

Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang. “Vet-
ting Undesirable Behaviors in Android Apps with Permission Use Analysis”. In:
Proc. ACM SIGSAC Conference Computer Communications Secur. https : //doi.org/
10.1145/2508859 . 2516689, 2013, pp. 611-622.



112 Bibliography

[59] M. Y. Wong and D. Lie. “IntelliDroid: A Targeted Input Generator for the Dynamic
Analysis of Android Malware”. In: Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS). San
Diego, CA, USA, Feb. 2016. URL: http://dx.doi.org/10.14722/ndss.2016.23118.

[60] S.Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden. “Harvesting Runtime Values in
Android Applications That Feature Anti-Analysis Techniques”. In: Proc. Netw. Distrib.
Sys. Secur. Symp. (NDSS). San Diego, CA, USA, Feb. 2016. URL: http://dx.doi.org/
10.14722/ndss.2016.23066.

[61] Google. Android Runtime (ART) and Dalvik. https://source.android.com/devices/
tech/dalvik. (Visited on 01/2021).

[62] M. Sun, T. Wei, and J. C. Lui. “TaintART: A Practical Multi-Level Information-Flow
Tracking System for Android RunTime”. In: Proc. 2016 ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS). https://doi.org/10.1145/2976749.2978343. Vienna, Aus-
tria, Oct. 2016, pp. 331-342.

[63] M. Backes, S. Bugiel, O. Schranz, P. V. Styp-Rekowsky, and S. Weisgerber. “ARTist:
The Android Runtime Instrumentation and Security Toolkit”. In: Proc. 2017 IEEE Eur.
Symp. Secur. Privacy (EuroS&P). https://doi.org/10.1109/EuroSP.2017.43. Paris,
France, Apr. 2017, pp. 481-495.

[64] W. You, B. Liang, W. Shi, P. Wang, and X. Zhang. “TaintMan: An ART-Compatible
Dynamic Taint Analysis Framework on Unmodified and Non-Rooted Android De-
vices”. In: IEEE Trans. Dependable Secure Comput. 17.1 (Jan.—Feb. 2020). https://doi.
org/10.1109/TDSC.2017.2740169, pp. 209-222.

[65] J. Schiitte, A. Kiiechler, and D. Tltze. “Practical Application-Level Dynamic Taint
Analysis of Android Apps”. In: Proc. 2017 IEEE Int. Conf. Trust, Secur. Privacy Com-
put. Commun. (Trustcom/BigDataSE/ICESS). https : //doi.org/10.1109/Trustcom/
BigDataSE/ICESS.2017.215. Sydney, NSW, Australia, Aug. 2017, pp. 17-24.

[66] AOSP. Dalvik bytecode. https://source.android. com/devices/tech/dalvik/dalvik-
bytecode. (Visited on 01/2021).

[67] L.K. Yanand H. Yin. “DroidScope: Seamlessly Reconstructing the OS and Dalvik Se-
mantic Views for Dynamic Android Malware Analysis”. In: Proc. 21st USENIX Secur.
Symp. Bellevue, WA, USA, Aug. 2012, pp. 569-584.

[68] C.Qian, X. Luo, Y. Shao, and A. T. S. Chan. “On Tracking Information Flows through
JNIin Android Applications”. In: 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. https://doi.org/10.1109/DSN.2014.30, June
2014, pp. 180-191.

[69] L. Xue, C. Qian, H. Zhou, X. Luo, Y. Zhou, Y. Shao, and A. T. S. Chan. “NDroid: To-
ward Tracking Information Flows Across Multiple Android Contexts”. In: IEEE Trans.
Inform. Forensics Secur. 14.3 (Mar. 2019). https://doi.org/10.1109/TIFS.2018.2866347,
pp- 814-828.

[70] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu. “Malton: Towards On-Device Non-
Invasive Mobile Malware Analysis for ART”. In: USENIX Security Symposium. Aug.
2017, pp. 289-306.

[71] L. Cavallaro, P. Saxena, and R. Sekar. Anti-Taint-Analysis: Practical Evasion Techniques

Against Information Flow Based Malware Defense. Tech. rep. Stony Brook University,
2007.



Bibliography 113

[72]

(73]

(74]

[75]
[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]
(84]

(85]

(86]

G. Sarwar, O. Mehani, R. Boreli, and M.-A. Kaafar. “On the Effectiveness of Dynamic
Taint Analysis for Protecting against Private Information Leaks on Android-based
Devices”. In: Proceedings of the 10th International Conference on Security and Cryptogra-
phy. https://doi.org/10.5220/0004535104610468. 2013.

G.S. (Babil), O. Mehani, R. Boreli, and M.-A. Kaafar. AntiTaintDroid (a.k.a. ScrubDroid).
https://github.com/gsbabil/AntiTaintDroid. (Visited on 12/2020).

W. You, B. Liang, J. Li, W. Shi, and X. Zhang. “Android Implicit Information Flow De-
mystified”. In: Proceedings of the ACM Symposium on Information, Computer and Com-
munications Security. https://doi.org/10.1145/2714576.2714604. 2015.

C. Collberg. the tigress ¢ obfuscator. https://tigress.wtf/. (Visited on 11/2023).

M. Graa, N. Cuppens-Boulahia, F. Cuppens, J.-L. Lanet, and R. Moussaileb. “De-
tection of Side Channel Attacks Based on Data Tainting in Android Systems”. In:
ICT Systems Security and Privacy Protection. https://doi.org/10.1007/978-3-319-
58469-0_14. 2017.

F. Pauck, E. Bodden, and H. Wehrheim. “Do Android Taint Analysis Tools Keep Their
Promises?” In: Proc. 2018 26th ACM Joint Meet. Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng. (ESEC/FSE). https://doi.org/10.1145/3236024.3236029, Lake Buena
Vista, FL, USA, Oct. 2018, pp. 331-341.

J. Zhang, Y. Wang, L. Qiu, and ]J. Rubin. “Analyzing Android Taint Analysis Tools:
FlowDroid, Amandroid, and DroidSafe”. In: IEEE Trans. Softw. Eng. 48.10 (Oct. 2022).
https://doi.org/10.1109/TSE.2021.3109563, pp. 4014-4040.

Secure Software Engineering. DroidBench 3.0. URL: https : //github.com/secure -
software-engineering/DroidBench/tree/develop (visited on 03/2022).

B. Reaves, J. Bowers, S. A. Gorski III, O. Anise, R. Bobhate, R. Cho, H. Das, S. Hussain,
H. Karachiwala, N. Scaife, B. Wright, K. Butler, W. Enck, and P. Traynor. “*droid: As-
sessment and Evaluation of Android Application Analysis Tools”. In: ACM Comput.
Surveys 49.3 (Oct. 2016). Art. no. 55. URL: https://doi.org/10.1145/2996358.

H. Inayoshi, S. Kakei, E. Takimoto, K. Mouri, and S. Saito. “Value-utilized Taint Prop-
agation: Toward Precise Detection of Apps °~ Information Flows across Android API
Calls”. In: Int. Journal Information Secur. 21 (Aug. 2022). https://doi.org/10.1007/
$10207-022-00603-9, pp. 1127-1149.

H. Inayoshi, S. Kakei, and S. Saito. “Execution Recording and Reconstruction for De-
tecting Information Flows in Android Apps”. In: IEEE Access 11 (Jan. 2023). https://
doi.org/10.1109/ACCESS.2023.3240724, pp. 10730-10750.

Anzhi. URL: http://www.anzhi. com (visited on 09/2021).

D. E. Denning and P. J. Denning. “Certification of Programs for Secure Information
Flow”. In: Communications of the ACM 20 (1977). https://doi.org/10.1145/359636.
359712.

A. Sabelfeld and A. C. Myers. “Language-based Information-flow Security”. In: IEEE
J.Sel. A. Commun. (2006). https://doi.org/10.1109/JSAC.2002.806121, pp. 5-19.
J.-C. Wang, H.-M. Lee, C.-W. Chen, and A. B. Jeng. “Estimating intent-based covert
channel bandwidth by time series decomposition analysis in Android platform”. In:
IEEE Conference on Application, Information and Network Security. https://doi.org/
10.1109/AINS.2017.8270420. 2017.



114

Bibliography

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

J. Han, C. Huang, F. Shi, and J. Liu. “Covert timing channel detection method based
on time interval and payload length analysis”. In: Computers & Security 97 (2020).
https://doi.org/10.1016/j.cose.2020.101952.

U. Kargén, N. Mauthe, and N. Shahmehri. “Characterizing the Use of Code Obfusca-
tion in Malicious and Benign Android Apps”. In: Proc. Int. Conf. Availability Reliability
Secur. https://doi.org/10.1145/3600160.3600194, 2023.

D. King, B. Hicks, M. Hicks, and T. Jaeger. “Implicit Flows: Can’t Live with ‘Em,
Can’t Live without “‘Em”. In: Proc. 4th Int. Conf. Inform. Syst. Secur. (ICISS). https://
doi.org/10.1007/978-3-540-89862-7_4, Hyderabad, Andhra Pradesh, India, Dec.
2008, pp. 56-70.

S. T. A. Rumee, D. L. (Deceased), and Y. Lei. “MirrorDroid: A framework to detect
sensitive information leakage in Android by duplicate program execution”. In: An-
nual Conference on Information Sciences and Systems. https://doi.org/10.1109/CISS.
2017.7926086. 2017.

M. G. Kang, S. McCamant, P. Poosankam, and D. Song. “DTA++: Dynamic Taint
Analysis with Targeted Control-Flow Propagation”. In: Proc. Network and Distributed
System Secur. Symp. 2011.

E. J. Schwartz, T. Avgerinos, and D. Brumley. “All You Ever Wanted to Know about
Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been
Afraid to Ask)”. In: IEEE Symposium on Security and Privacy. https://doi.org/10.
1109/SP.2010.26. 2010.

E. Stinson and ]. C. Mitchell. “Characterizing Bots” Remote Control Behavior”. In:
Detection of Intrusions and Malware, and Vulnerability Assessment. https://doi.org/
10.1007/978-3-540-73614-1_6. 2007.

D. A. Lelewer and D. S. Hirschberg. “Data Compression”. In: ACM Computer Surveys
(1987). https://doi.org/10.1145/45072.45074.

W. Gasior and L. Yang. “Exploring Covert Channel in Android Platform”. In: In-
ternational Conference on Cyber Security. https://doi.org/10.1109/CyberSecurity.
2012.29. 2012.

L. Georgiadis, R. F. Werneck, R. E. Tarjan, S. Triantafyllis, and D. I. August. “Finding
Dominators in Practice”. In: European Symposium on Algorithms. https: //doi.org/
10.1007/978-3-540-30140-0_60. 2004.

Y. Fratantonio, A. Machiry, A. Bianchi, C. Kruegel, and G. Vigna. “CLAPP: Charac-
terizing Loops in Android Applications”. In: Proceedings of the Joint Meeting on Foun-
dations of Software Engineering. https://doi.org/10.1145/2786805.2786873. 2015.

T. Wei, J. Mao, W. Zou, and Y. Chen. “A New Algorithm for Identifying Loops in
Decompilation”. In: International Static Analysis Symposium. https : //doi.org/10.
1007/978-3-540-74061-2_11. 2007.

C.-A. Staicu, D. Schoepe, M. Balliu, M. Pradel, and A. Sabelfeld. “An Empirical Study
of Information Flows in Real-World JavaScript”. In: Proceedings of the 14th ACM SIGSAC
Workshop on Programming Languages and Analysis for Security. https://doi.org/10.
1145/3338504 .3357339. 2019.



Bibliography 115

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]
[114]

M. Graa, N. C. Boulahia, F. Cuppens, and A. Cavalliy. “Protection against Code Ob-
fuscation Attacks Based on Control Dependencies in Android Systems”. In: IEEE
Eighth International Conference on Software Security and Reliability-Companion. https://
doi.org/10.1109/SERE-C.2014.33. 2014.

V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar. “Provably Correct Run-
time Enforcement of Non-interference Properties”. In: Information and Communica-
tions Security. https://doi.org/10.1007/11935308_24. 2006.

J. Stephens, B. Yadegari, C. Collberg, S. Debray, and C. Scheidegger. “Probabilistic
Obfuscation Through Covert Channels”. In: IEEE European Symposium on Security and
Privacy. https://doi.org/10.1109/EuroSP.2018.00025. 2018.

S. Rasthofer, S. Arzt, S. Triller, and M. Pradel. “Making Malory Behave Maliciously:
Targeted Fuzzing of Android Execution Environments”. In: IEEE/ACM 39th Interna-
tional Conference on Software Engineering. https://doi.org/10.1109/ICSE.2017.35.
2017.

J. Schiitte, R. Fedler, and D. Titze. “ConDroid: Targeted Dynamic Analysis of Android
Applications”. In: IEEE 29th International Conference on Advanced Information Network-
ing and Applications. https://doi.org/10.1109/AINA.2015.238. 2015.

S. Chandra, Z. Lin, A. Kundu, and L. Khan. “Towards a Systematic Study of the
Covert Channel Attacks in Smartphones”. In: International Conference on Security and
Privacy in Communication Networks. https://doi.org/10.1007/978-3-319-23829-
6_29. 2015.

J.-E. Lalande and S. Wendzel. “Hiding Privacy Leaks in Android Applications Us-
ing Low-Attention Raising Covert Channels”. In: Int. Conf. Availability, Reliability and
Secur. https://doi.org/10.1109/ARES.2013.92. 2013.

D. Schreckling, J. Kostler, and M. Schaff. “Kynoid: Real-time enforcement of fine-
grained, user-defined, and data-centric security policies for Android”. In: Information
Security Technical Report 17.3 (2013). https : //doi.org/10.1016/j.istr.2012.10.
006.

G. Barbon, A. Cortesi, P. Ferrara, M. Pistoia, and O. Tripp. “Privacy Analysis of An-
droid Apps: Implicit Flows and Quantitative Analysis”. In: Computer Information Sys-
tems and Industrial Management. https://doi.org/10.1007/978-3-319-24369-6_1.
2015.

Google. Ul/Application Exerciser Monkey. URL: https : //developer.android.com/
studio/test/monkey (visited on 03/2022).

V. Balachandran, Sufatrio, D. J. Tan, and V. L. Thing. “Control flow obfuscation for
Android applications”. In: Comput. Secur. 61 (Aug. 2016). https://doi.org/10.1016/
j.cose.2016.05.003, pp. 72-93.

Google. Enable multidex for apps with over 64K methods. URL: https : //developer.
android.com/studio/build/multidex (visited on 04/2022).

Google. Dalvik bytecode. URL: https://source.android.com/devices/tech/dalvik/
dalvik-bytecode (visited on 03/2022).

Apktool. URL: https://ibotpeaches.github.io/Apktool/ (visited on 03/2022).

JesusFreke. Smali. https://github.com/JesusFreke/smali. (Visited on 01/2021).



116 Bibliography

[115] J. Zhang, Y. Wang, L. Qiu, and J. Rubin. Supplementary Materials. URL: https : //
resess.github.io/artifacts/StaticTaint/index (visited on 03/2022).

[116] K. Allix, T. E. Bissyandé, J. Klein, and Y. L. Traon. “AndroZoo: Collecting Millions of
Android Apps for the Research Community”. In: Proc. 2016 IEEE/ACM 13th Working
Conf. Mining Softw. Repositories (MSR). Austin, TX, USA, May 2016, pp. 468—471.

[117] Google. AndroidX. URL: https://developer.android. com/jetpack/androidx (vis-
ited on 04/2022).

[118] Secure Software Engineering. FlowDroid. URL: https://github.com/secure-software-
engineering/FlowDroid (visited on 02/2022).

[119] Argus Group. Argus-SAF. URL: https://github.com/arguslab/Argus-SAF (visited
on 02/2022).

[120] MIT-PAC. droidsafe-src. URL: https://github.com/MIT-PAC/droidsafe-src (visited
on 02/2022).

[121] SerVal Research Group. DroidRA. URL: https://github.com/serval-snt-uni-lu/
DroidRA (visited on 11/2022).

[122] LiLi.IccTA. URL: https://github.com/1ilicoding/soot-infoflow-android-iccta
(visited on 12/2022).

[123] J.Samhi. RAICC. URL: https://github.com/JordanSamhi/RAICC (visited on 11/2022).
[124] TaintDroid. URL: https://github.com/TaintDroid (visited on 02/2022).

[125] M. Wong. IntelliDroid. URL: https://github.com/miwong/IntelliDroid (visited on
02/2022).

[126] H. Inayoshi, S. Kakei, E. Takimoto, K. Mouri, and S. Saito. “VTDroid: Value-based
Tracking for Overcoming Anti-Taint-Analysis Techniques in Android Apps”. In: Proc.
Int. Conf. Availability, Reliability Secur. Art.no.29, https://doi.org/10.1145/3465481.
3465759. Vienna, Austria, Aug. 2021.

[127] MIT-PAC. Droidsafe-src. URL: https://mit-pac.github.io/droidsafe-src (visited
on 02/2022).

[128] Google. Best practices for unique identifiers. URL: https : //developer.android.com/
training/articles/user-data-ids (visited on 03/2022).

[129] A.Merlo, A. Ruggia, L. Sciolla, and L. Verderame. “You Shall not Repackage! Demys-
tifying Anti-Repackaging on Android”. In: Comput. Secur. 103 (Apr. 2021). https://
doi.org/10.1016/j.cose.2021.102181,

[130] A.Mordahl and S. Wei. “The Impact of Tool Configuration Spaces on the Evaluation
of Configurable Taint Analysis for Android”. In: Proc. 2021 Int. Symp. Softw. Testing
and Anal. (ISSTA). https://doi.org/10.1145/3460319.3464823, Virtual, Denmark,
July 2021, pp. 466-477.

[131] A.P. Fuchs, A. Chaudhuri, and J. S. Foster. SCanDroid: Automated security certification
of Android applications. Tech. rep. University of Maryland, Nov. 2009. URL: http: //
hdl.handle.net/1903/11847.



117

Publications

1.

10.

11.

H. Inayoshi, S. Kakei, E. Takimoto, K. Mouri, and S. Saito: “Prevention of Data Leakage
due to Implicit Information Flows in Android Applications”, In: Proc. 14th Asia Joint
Conf. Information Secur. (Asia]CIS), pp. 103-110, Kobe, Japan, Aug. 2019.

. Y. Hayashi, H. Inayoshi, S. Kakei, E. Takimoto, K. Mouri, and S. Saito: “Effects of Com-

piler Optimization on Taint Analysis and its Performance Enhancement”, (in Japanese),
In: Comp. Secur. Symp., pp. 990-997, Nagasaki, Japan, Oct. 2019.

. H. Inayoshi, S. Kakei, E. Takimoto, K. Mouri, and S. Saito: “VTDroid: Value-based

Tracking for Overcoming Anti-Taint-Analysis Techniques in Android Apps”, In: Proc.
16th Int. Conf. Availability, Reliability Secur. (ARES), Art. no. 29, Vienna, Austria, Aug.
2021.

. M. Ohnishi, H. Inayoshi, S. Kakei, and S. Saito: “Improving the Accuracy of Con-

straints on Exceptions in Static Taint Analysis of Android Applications”, (in Japanese),
In: Comp. Secur. Symp., pp. 952-959, virtual, Oct. 2021.

. M. Ohnishi, H. Inayoshi, S. Kakei, and S. Saito: “Computing Constraints of Leakage

due to Exception Handling in Android Applications”, (in Japanese), In: IPS] SIG Tech.
Rep. SPT, Art. no. 13, virtual, Jul. 2022.

. H. Inayoshi, S. Kakei, E. Takimoto, K. Mouri, and S. Saito: “Value-utilized Taint Prop-

agation: Toward Precise Detection of Apps’ Information Flows across Android API
Calls”, In: Int. Journal Information Secur. 21, pp. 1127-1149, Aug. 2022.

. H. Inayoshi, S. Kakei, and S. Saito: “Plug and Analyze: Usable Dynamic Taint Tracker

for Android Apps”, In: Proc. 22nd IEEE Int. Working Conf. Source Code Anal. Manipula-
tion (SCAM), pp. 24-34, Limassol, Cyprus, Oct. 2022.

. H. Inayoshi, S. Kakei, and S. Saito: “Study on Collecting Hardware Identifiers in Us-

ing Earlier Android Versions”, (in Japanese), In: Comp. Secur. Symp., pp. 532-539,
Kumamoto, Japan, Oct. 2022.

. H. Inayoshi, S. Kakei, and S. Saito: “Execution Recording and Reconstruction for De-

tecting Information Flows in Android Apps”, In: IEEE Access 11, pp. 10730-10750, Jan.
2023.

H. Inayoshi, S. Kakei, and S. Saito: “Semi-automatic Detection of Inconsistencies be-
tween Guidance and Actual Behavior of Third-party SDKs in Android Apps”, (in
Japanese), In: Comp. Secur. Symp., pp. 849-856, Fukuoka, Japan, Nov. 2023.

H. Inayoshi, S. Kakei, and S. Saito: “Detection of Inconsistencies between Guidance
Pages and Actual Data Collection of Third-party SDKs in Android Apps”, In: Proc.
11th Int. Conf. Mobile Softw. Eng. Syst. (MOBILESoft), Lisbon, Portugal, Apr. 2024.



