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Abstract

Traffic collisions pose a significant global concern, necessitating innova-
tive solutions to enhance safety. Post-collision, it becomes crucial for the
police to determine the responsibilities of the involved parties, distinguishing
between criminal acts and non-criminal incidents. Insurance companies also
rely on such investigations to compensate victims. Assessing responsibility
after a crash is a complex task requiring advanced knowledge of road rules.
For straightforward scenarios like crashes with traffic lights, decisions are
fast and easy. However, in situations such as crashes without any traffic
signs, expert knowledge is essential. Automating such tasks demands inno-
vative approaches, representing a necessity for the future of the automobile
and insurance industries. Despite these critical needs, there has been lim-
ited research in the domain. This study introduces a system that is capable
of detecting vehicle collisions within crash videos and implements an origi-
nal responsibility assessment process to assess drivers’ responsibilities. This
system aims to provide accurate and timely evaluation of collision incidents,
facilitating fair responsibility attribution. It employs object detection for col-
lision detection along with an original algorithm and process that associate
a knowledge rule-based system and open data for responsibility assessment.
The entire responsibility assessment process involves four steps: (1) detecting
the crash time within a crash video, (2) identifying all traffic lights within the
video, (3) obtaining road information from the OpenStreetMap API, such as
road width and the presence of other traffic signs if necessary, analyzing and
processing the information, and (4) utilizing a rule-based knowledge system
of road rules, vehicle speed, and orientation to deduce the probable responsi-
bility of each party involved. The system focuses on head-on (front impact)
collisions and angle collisions (left and right-side impacts) involving two cars
and facilitates the seamless sharing of evaluation results with the police and
insurance companies within minutes of a collision. By employing advanced
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image processing techniques, the system enables prompt detection and anal-
ysis of collision incidents. The integration of open data enhances the contex-
tual understanding of the road environment, contributing to more accurate
responsibility assessments by improving the performance of responsibilities
evaluation mainly during nighttime with traffic lights. The first prototype of
the system supported only head-on/angle crash scenarios with traffic lights
within two weather conditions groups (bad weather/good weather). The sec-
ond prototype was improved to support three types of head-on/angle crash
scenarios without traffic lights (priority roads/one-way roads/roads with the
same width) within three distinct weather conditions (sunny/cloudy/rainy),
in addition to those with traffic lights. In its current version, the system now
accommodates six different types of head-on/angle crash scenarios without
traffic lights (priority roads/one-way roads/roads with the same width/roads
with stop signs/roads with speed limit signs/roads with flashing red or yellow
signals) within six harsh weather conditions (sunny/cloudy/rainy/stormy/s-
nowy/foggy). The support of these additional scenarios and weather de-
manded retraining crash detection and traffic light detection models, adding
more rules to the knowledge-based system, and enhancing the algorithm and
process of responsibility assessment built in the first prototype. Additionally,
extensive experiments are conducted with results showing that the system
performs better than its previous versions, mainly during nighttime without
traffic lights (up to 93% accuracy against up to 82.5% obtained previously).
The significant difference and advantage of this system over existing ones Pis
its automation of responsibilities evaluation for the police, claims adjusters,
and victims themselves as well as its applicability for autonomous vehicles.
Moreover, through case studies and comparisons with existing research, the
effectiveness and superiority of this system are demonstrated. This study
is among the first to enable machines to automatically assess the respon-
sibility of drivers within a crash. It can serve as one of the precursors and
foundations for automatic responsibility assessments in autonomous vehicles.
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論文要旨

交通事故は重要で世界的な懸念事項であり，安全性を向上させるため
には革新的な解決策が必要である．交通事故の発生後，警察にとって当
事者の責任を判断し，犯罪行為と非犯罪の事例を区別することが非常に
重要である．また，保険会社も被害者に対する補償のために警察の判断
に頼っている．事故後の責任の評価は、道路規則の高度な知識を必要と
する複雑なタスクである．道路と交通信号機のみのシンプルなシナリオ
の場合，その評価は迅速で容易である．しかし，交通標識のない状況にお
ける事故では，専門的な知識が不可欠である．こうしたタスクの自動化
には，未来の自動車および保険業界のために必須の革新的なアプローチ
が求められる．しかし，これらは重要なニーズにもかかわらず，この分野
では研究が限られている．本研究では，クラッシュ動画内の車両衝突を
検出し，運転者の責任を評価するためのオリジナルの責任評価プロセス
を実装できるシステムを紹介する．本システムは，衝突事件の正確で迅
速な評価を提供し，公正な責任の帰属を容易にすることを目指す．本シ
ステムは，衝突検出に対してオブジェクト検出を使用し，知識ベースの
ルールシステムと責任評価のためのオリジナルのアルゴリズムとプロセ
スを組み合わせによって構成される．責任評価プロセス全体は次の 4 つ
のステップからなる．：（1）クラッシュ動画内での衝突時刻の検出，（2）
クラッシュ動画内のすべての交通信号機の識別，（3）OpenStreetMap API
からの道路情報の取得（必要に応じて道路の幅や他の交通標識の存在な
ど），情報の分析と処理，および（4）道路規則，車両速度，および方向を
もとに知識ベースシステムを使用して各当事者の責任を推定します．本
システムは，2 台の車が関与する対向衝突を対象とし，衝突発生後数分
以内に評価結果を警察と保険会社とシームレスに共有することを目指す．
高度な画像処理技術を使用することで，本システムは迅速に衝突事件を
検出し，分析する．オープンデータの統合により，道路環境の文脈をより
考慮し，特に夜間の交通信号機のない状況での責任評価の性能を向上さ
せた．本システムの最初のプロトタイプは，悪天候/良い天候の 2 つの天

5



候条件グループ内の交通信号機付きの対向衝突シナリオのみをサポート
する．2 番目のプロトタイプは，交通信号機のない 3 つの対向衝突シナ
リオ（優先道路/一方通行道路/同じ幅の道路）をサポートするように改
良され，最終的に，交通信号機のあるシナリオに加えて、晴れた日/曇り
の日/雨の日の 3 つの異なる天候条件で、交通信号機のない 6 つの異な
る対向衝突シナリオ（優先道路/一方通行道路/同じ幅の道路/停止標識の
ある道路/速度制限標識のある道路/赤または黄色の点滅信号のある道路）
をサポートする．これらの追加のシナリオと天候のサポートには，クラ
ッシュ検出および交通信号検出モデルの再トレーニング，知識ベースシ
ステムへの追加のルール，責任評価のアルゴリズムとプロセスの向上が
必要であった．さらに，多くの実験が行われ，結果として，本システム
が以前のバージョンよりも特に夜間の交通信号機のない状況で優れた性
能を発揮していることを示した（以前の 82.5% に対して 93% の正確性）．
本システムの既存のものに対する重要な違いと利点は，警察・損害調整
者・被害者自身のための責任評価の自動化だけでなく，車載システムと
して適用可能であることである．さらに，事例研究や既存研究との比較
を通じて，このシステムの有効性と優位性を実証した．本研究は，機械が
自動的にクラッシュ動画内で運転者の責任を評価することを初めて実現
するものの 1 つであり，自動車の自動責任評価の先駆けと基盤の一部と
して機能することが期待される．
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8 CHAPTER 1.

1.1 Background of this Research

Vehicle collisions, also known as road traffic crashes, are global social is-
sues that communities worldwide face on a daily basis. According to a recent
report from the World Health Organization (WHO) (World Health Organi-
zation 2018), approximately 1.3 million lives are tragically cut short each
year due to road traffic crashes. Additionally, between 20 and 50 million
people suffer non-fatal injuries, many of whom are left with disabilities as a
result. These incidents not only cause significant personal and familial hard-
ships but also lead to substantial economic losses for individuals, families,
and nations. Unfortunately, as long as vehicles exist, vehicle collisions will
continue to occur.

Vehicle collisions can occur due to various factors and circumstances
(Bucsuházy et al. 2020), involving multiple actors and transpiring in dif-
ferent situations (Buss, Abishev, and Baltabekova 2019). Following a colli-
sion between two vehicles, it becomes crucial to investigate the causes of the
event and determine the responsibilities of each involved party. Typically,
the police, responsible for conducting investigations, and claims adjusters,
internal experts within insurance companies, proceed manually by visiting
the crash site, gathering data (including collision videos recorded by driving
recorders, if available), assessing responsibilities based on their knowledge of
road rules, and finally generating crash reports. Unfortunately, this process
typically takes between three (3) and fifteen (15) days to complete. Sub-
sequently, insurance companies assign claims to their claims adjusters, who
require approximately thirty (30) days to evaluate the insurance claims and
determine the compensation amounts. Similar to the police, claims adjusters
may gather their own data and evidence on the collision causes (including
the collection of collision videos from driving recorders) to ascertain liability
before giving compensation to the victims. Consequently, victims must pa-
tiently await the completion of this entire process before receiving their right-
ful compensation. This highlights the crucial need for innovative solutions
that can shorten decision time and help victims obtain their compensations
faster. Despite these critical needs, there has been limited research dedicated
to evaluating responsibility in the aftermath of vehicle collisions.
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1.2 Traditional Method of Road Accident
Responsibilities’ Evaluation

When an accident occurs, the police conduct an investigation to deter-
mine the responsibilities of the individuals involved. Various methods are
employed for this purpose, with one commonly used approach being the de-
gree of negligence (or percentage of fault). The degree of negligence
or percentage of fault in an accident refers to the extent to which each party
involved contributed to the occurrence of the accident. This determination
is crucial for legal and insurance purposes, as it helps allocate responsibility
and liabilities among the involved parties. The police employ various meth-
ods to assess the degree of negligence in a traffic accident. The process may
include:

• Eyewitness Statements: Gathering statements from witnesses to
understand their perspectives on the events leading to the accident.

• Traffic Violation Analysis: Examining whether any party violated
traffic laws, such as running a red light or exceeding the speed limit.

• Vehicle Damage Analysis: Assessing the extent of damage to each
vehicle involved, which can provide insights into the force and angles
of impact.

• Skid Marks and Road Conditions: Analyzing skid marks on the
road and considering weather and road conditions to understand how
the accident unfolded.

• Statements from Involved Parties: Obtaining statements from
the drivers and passengers involved to gather their perspectives on the
incident.

Consider a scenario where Driver A fails to yield at a stop sign, colliding
with the vehicle of Driver B, who has the right of way. The police inves-
tigation may find that Driver A’s failure to yield constitutes negligence. If
Driver B was exceeding the speed limit, contributing to the severity of the
collision, both parties might be assigned a percentage of fault. However, to
further refine the determination of negligence, correction factors may be ap-
plied. These factors account for additional circumstances that could affect
the degree of fault, such as:
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• Pre-existing Conditions: If either driver had a pre-existing condi-
tion affecting their ability to drive safely.

• Mechanical Failures: If one of the vehicles experienced a mechanical
failure that contributed to the accident.

• Road Maintenance Issues: If the accident was influenced by poor
road maintenance or inadequate signage.

• Emergency Situations: Whether either driver was responding to an
emergency, influencing their actions.

The determination of the degree of negligence or percentage of fault in
an accident is a complex process that involves a thorough investigation by
the police. By considering various factors and correctional elements, author-
ities aim to assign responsibility fairly and accurately, contributing to the
resolution of legal and insurance matters related to the accident.

1.3 Problem Statement
As previously mentioned, assessing responsibility after a crash is a com-

plex task requiring advanced knowledge of road rules. For straightforward
scenarios like crashes with traffic lights, decisions are fast and easy. How-
ever, in situations such as crashes without any traffic signs, expert knowledge
is essential. Automating such tasks demands innovative and high-level ap-
proaches.

The problem addressed in this research is as follows: How can a ma-
chine automatically assess actors’ responsibilities after a vehicle
collision based on a crash video? There are two main challenges that
arise when attempting to solve this problem:

• The first challenge is how to automatically detect the crash time within
a crash video: Prior to responsibility assessments, the machine must
determine whether the input video depicts a crash or not. Further-
more, driving recorder videos are typically lengthy, making it crucial
to establish a reference point within the crash video for an effective
responsibility assessment. In this context, the crash time refers to the
reference point.
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• After determining the crash time, the second challenge is how to auto-
matically evaluate actors’ responsibilities.

To answer these questions, this study went through multiple iterations and
approaches, requiring thinking outside the box to find a reliable, performant,
and fast-response solution.

1.4 Purpose of this Research
The objective of this work is to automate the responsibility evaluation

process for the police, claims adjusters, and victims themselves by developing
a support system that utilizes driving recorders’ videos to swiftly and auto-
matically determine fault in the event of a vehicle collision. This automation
aims to simplify and expedite the process, thereby reducing decision times
for the police and insurance companies. For victims, it provides immedi-
ate clarity regarding their responsibility in the collision and minimizes the
waiting period for compensation from insurance companies.

1.5 Structure of this Paper
The rest of this paper is organized as follows. Related work is explained

in Chapter 2. The first approach to solve automatic responsibility predic-
tion is presented in Chapter 3, the second approach in Chapter 4, and the
improvement on the second approach in Chapter 5. Evaluation and results
are reported and discussed in Chapter 6, and the limitations of the system
as well as encountered difficulties discussed in Chapter 7. Conclusion and
future work are finally stated in Chapter 8.
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2.1 Basic Technologies

2.1.1 Car Accident Report
A car accident report is a comprehensive document used to record details

of a road incident involving vehicles. Within this report, a crucial aspect
is the assessment of drivers’ responsibilities. This assessment is essential
for legal documentation, insurance claims, and determining the appropriate
party at fault. The report includes the following components related to
drivers’ responsibility:

• Date and Time: Precise details of when the accident occurred.

• Location: Exact location, including street names and landmarks.

• Driver Details: Names, addresses, contact numbers, and driver’s li-
cense details of individuals involved.

• Vehicle Identification: Maker, model, year, color, and license plate
numbers of vehicles.

• Collision Description: A narrative detailing how the accident oc-
curred, with a focus on actions taken by each driver.

• Traffic Violations: Notation of any observed or reported traffic vio-
lations by involved drivers.

• Drivers’ Responsibility Assessment: Detailed evaluation of each
driver’s actions leading to the accident.

• Witness Information: Statements and contact details of witnesses
regarding the drivers’ actions.

• Reporting Officer: Details of the responding police officer, including
observations and assessment of drivers’ behavior.

• Injuries and Damages: Assessment of injuries sustained and dam-
ages incurred, contributing to responsibility determination.

• Diagram and Photographs: Visual aids, such as diagrams and pho-
tographs, illustrating the accident scene and supporting responsibility
assessment.
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2.1.2 Deep Learning
Deep learning is a subfield of machine learning that focuses on the de-

velopment and application of artificial neural networks, particularly deep
neural networks. It involves training complex models with multiple layers
(deep architectures) to learn hierarchical representations of data, enabling
the automatic extraction of features and patterns. Key concepts in deep
learning include:

• Neural Networks: The fundamental building blocks of deep learning,
neural networks consist of interconnected layers of nodes (neurons) that
transform input data into meaningful output.

• Deep Neural Networks: Models with multiple layers (deep architec-
tures) that enable the learning of hierarchical representations. Com-
mon architectures include feedforward neural networks and convolu-
tional neural networks (CNNs).

• Backpropagation: The training process in which the model adjusts
its weights based on the difference between predicted and actual out-
puts, minimizing the error.

• Activation Functions: Non-linear functions applied to the output
of neurons, introducing non-linearity into the model and allowing it to
capture complex patterns.

• Loss Functions: Objective functions that measure the difference be-
tween predicted and actual outputs, guiding the training process.

Deep learning architectures are:

• Convolutional Neural Networks (CNNs): Specialized for pro-
cessing grid-like data, such as images. CNNs excel in tasks like image
classification and object detection.

• Recurrent Neural Networks (RNNs): Designed to handle sequen-
tial data, RNNs have connections that form directed cycles. They are
suitable for tasks like natural language processing and time-series pre-
diction.
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• Generative Adversarial Networks (GANs): Comprising a gen-
erator and a discriminator, GANs are used for generating new data
instances. They find applications in image synthesis and data genera-
tion.

Deep learning has various applications among which the are the following:

• Computer Vision: Deep learning powers image and video analy-
sis, enabling tasks like image recognition, object detection, and facial
recognition.

• Natural Language Processing (NLP): Deep learning models ex-
cel in language-related tasks, including sentiment analysis, language
translation, and chatbot development.

• Speech Recognition: Deep learning algorithms are used for accurate
speech-to-text conversion, enabling applications like virtual assistants.

• Healthcare: Deep learning contributes to medical image analysis, dis-
ease diagnosis, and drug discovery.

Deep learning has revolutionized machine learning by enabling the develop-
ment of sophisticated models capable of learning intricate representations
from data. Its applications span various domains, and ongoing research con-
tinues to advance the field, addressing challenges and unlocking new possi-
bilities.

2.1.3 Object Detection
Object detection is a computer vision task that involves identifying and

locating objects within an image or video. Unlike image classification, which
assigns a label to an entire image, object detection goes further by outlining
the precise location of each object and associating it with a corresponding
class label. Key components of object detection are:

• Bounding Box Generation: Object detection typically involves draw-
ing bounding boxes around detected objects, specifying their spatial
extent in the image.

• Class Labeling: Each detected object is assigned a class label, indi-
cating the type of object it represents (e.g., person, car, dog).
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• Feature Extraction: Convolutional Neural Networks (CNNs) are
commonly used for extracting features from images, allowing the sys-
tem to learn discriminative features for object recognition.

• Non-Maximum Suppression: To refine the results and avoid du-
plicate detections, non-maximum suppression is often applied, keeping
only the most confident bounding box for each object.

There are two object detection approaches:

• Two-Stage Detectors: These detectors first propose potential re-
gions containing objects (region proposals) and then classify and refine
these proposals. Examples include Faster R-CNN (Region-based Con-
volutional Neural Network) and R-FCN (Region-based Fully Convolu-
tional Networks).

• One-Stage Detectors: These detectors directly predict bounding
boxes and class probabilities for each region of the image in a sin-
gle pass. Examples include YOLO (You Only Look Once) and SSD
(Single Shot Multibox Detector).

Some applications of object detection are:

• Autonomous Vehicles: Object detection is crucial for identifying
pedestrians, other vehicles, and obstacles in the environment.

• Surveillance and Security: In video surveillance, object detection
helps identify and track people, objects, or unusual activities.

• Medical Imaging: Object detection assists in locating and analyzing
specific structures or abnormalities in medical images.

• Retail and Inventory Management: Object detection is used for
tracking product movements and managing inventory in retail environ-
ments.

Object detection plays a vital role in various computer vision applications,
enabling machines to perceive and interact with their visual environment.
As technology advances, the accuracy and efficiency of object detection al-
gorithms continue to improve, opening up new possibilities for innovative
applications.
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2.1.4 Open Data
Open Data refers to data that is made available to the public without

restrictions on its use, distribution, or modification. The philosophy behind
Open Data is rooted in transparency, collaboration, and the belief that shared
information can lead to social, economic, and technological advancements.
Key characteristics of Open Data are:

• Accessibility: Open Data should be easily accessible to the public,
fostering inclusivity and promoting equal opportunities for information
access.

• Reuse: Users have the right to reuse the data for various purposes,
including commercial and non-commercial activities.

• Redistribution: Open Data can be freely shared and distributed,
enabling widespread dissemination of knowledge.

• Formats: Data should be available in machine-readable formats, en-
hancing its usability and interoperability across different platforms and
applications.

The benefits of Open Data are multiple including:

• Transparency: Open Data promotes transparency in government op-
erations, corporate activities, and various sectors of society.

• Innovation: Access to diverse datasets encourages innovation by en-
abling the development of new applications and solutions.

• Collaboration: Open Data fosters collaboration among individuals,
organizations, and communities, leading to shared insights and collec-
tive problem-solving.

OpenStreetMap (OSM) is a prominent example of an Open Data initiative
that focuses on mapping and geospatial data. OSM allows users to view,
edit, and use map data collaboratively. Key aspects of OSM include:

• User-Generated Mapping: OpenStreetMap relies on contributions
from a global community of mappers who voluntarily add, edit, and
verify geographic information. This approach results in a constantly
evolving and detailed map of the world.
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• Versatility of Data: OSM provides a wide range of geospatial data,
including information about roads, buildings, points of interest, and
natural features. This versatility makes it a valuable resource for vari-
ous applications, from navigation to urban planning.

• Open Data Principles: OSM follows the principles of Open Data,
allowing users to freely use, modify, and distribute the map data. This
openness has led to the integration of OSM data into countless projects
and applications.

• Community Collaboration: The success of OpenStreetMap is at-
tributed to the collaborative efforts of its community. Mappers, devel-
opers, and users work together to improve the accuracy and complete-
ness of the map.

2.1.5 Knowledge System
Knowledge Systems, also known as Knowledge-Based Systems (KBS),

are a type of artificial intelligence system designed to represent, store, and
apply knowledge to solve complex problems. These systems leverage explicit
knowledge, often in the form of rules and facts, to emulate human reasoning
and decision-making processes. The key components of knowledge systems
are :

• Knowledge Base: The central repository that stores domain-specific
knowledge, including facts, rules, and heuristics. This knowledge is
used by the system to draw inferences and make decisions.

• Inference Engine: The component responsible for reasoning and
drawing conclusions based on the information stored in the knowledge
base. It applies logical rules and heuristics to solve problems or answer
queries.

• User Interface: The interface through which users interact with the
Knowledge System. This can be a graphical user interface (GUI), a
command-line interface, or integration with other applications.

• Explanation Facility: Knowledge Systems often include mechanisms
to explain their reasoning processes and the logic behind specific deci-
sions. This enhances transparency and user understanding.
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• Knowledge Acquisition System: The process of capturing and in-
putting knowledge into the system. This may involve interviews with
experts, documentation review, or automated methods for extracting
information.

There are different types of Knowledge Systems:

• Expert Systems: Designed to emulate the decision-making ability of
a human expert in a specific domain. Expert Systems use a knowledge
base of rules and facts to provide expert-level advice.

• Decision Support Systems (DSS): Assist individuals or groups in
making decisions by providing relevant information and analysis. DSS
often integrate data-driven and knowledge-driven components.

• Knowledge Management Systems: Focus on capturing, organiz-
ing, and sharing organizational knowledge. These systems facilitate
knowledge creation, storage, retrieval, and collaboration among em-
ployees.

Applications of Knowledge Systems are multiple:

• Medical Diagnosis: Expert Systems in healthcare assist in diagnos-
ing medical conditions based on patient symptoms and historical data.

• Financial Decision-Making: Decision Support Systems help in fi-
nancial analysis, risk assessment, and investment decision-making.

• Troubleshooting and Maintenance: Expert Systems are used to
troubleshoot technical issues and provide maintenance recommenda-
tions in various industries.

• Natural Language Processing: Knowledge Systems play a crucial
role in natural language understanding and generation, enabling appli-
cations like chatbots and language translation.

Knowledge Systems represent a significant advancement in artificial intel-
ligence, contributing to problem-solving, decision-making, and knowledge
management across diverse domains. The ongoing development of these sys-
tems holds promise for addressing increasingly complex challenges in various
fields.
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2.1.6 Rule-based Knowledge System
A rule-based knowledge system, also known as an expert system, is a type

of artificial intelligence system designed to emulate human decision-making
processes. It utilizes a knowledge base consisting of explicitly defined rules
to make inferences, solve problems, and provide recommendations within a
specific domain. Key components of a rule-based knowledge system are:

• Knowledge Base: The central repository that stores domain-specific
knowledge in the form of rules, expressed as ”if-then” statements.

• Inference Engine: The reasoning mechanism responsible for applying
rules to draw inferences and make decisions.

• Rule-Based Reasoning: The system uses rule-based reasoning to
reach conclusions by matching conditions in rules with the current state
of facts.

• Forward and Backward Chaining: Forward chaining starts with
available facts, while backward chaining starts with a goal and works
backward to determine necessary facts.

• Knowledge Acquisition: The process of capturing and inputting
knowledge into the system, often facilitated by knowledge engineers
working with domain experts.

• Explanations: Mechanisms for providing explanations of the system’s
reasoning processes, enhancing transparency.

Rule-based knowledge systems play a vital role in emulating human decision-
making processes within specific domains. Advances in artificial intelligence
continue to enhance the capabilities and applications of these systems, con-
tributing to problem-solving and decision support.

2.2 Related Work

2.2.1 Causes and Contributing Factors of Car Crashes
Numerous studies and research endeavors have been dedicated to iden-

tifying the causes and factors behind car crashes as well as exploring road
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accident likelihood and severity (Jianyu Wang et al. 2023; Mondal et al.
2023; Bhuiyan et al. 2022; Akin et al. 2022; F. Wang et al. 2022; Shahsavari
et al. 2022; Kamalasekar et al. 2022; Tsala et al. 2021; Borucka et al. 2021;
Casado-Sanz, Guirao, and Attard 2020; Cai 2020; Jima 2019; Belloumi and
Ouni 2019; Rolison et al. 2018; Ditcharoen et al. 2018; Oralhan and Göktolga
2018). Jianyu Wang et al. 2023 explore risk factors influencing the at-fault
party in traffic accidents and analyzes their impact on traffic accident sever-
ity. The study shows that travel mode, season, and road speed limit are
more important risk factors for traffic accidents, with motor vehicle drivers
as the at-fault parties. Another study (Bhuiyan et al. 2022) reveals that
significant features associated with crash severities include driver character-
istics (gender, license type, seat belts), vehicle characteristics (vehicle type),
road characteristics (road surface type, road classification), environmental
conditions (day of crash occurred, time of crash), and injury localization.
From Tsala et al. 2021, it appears that, of the 382 accidents recorded dur-
ing a period, six factors were identified and classified as follows: causes of
accidents related to speed and carelessness, location of the accident, type of
vehicle at fault, day the accident occurred, time of the accident and the age
of drivers involved. A comprehensive study conducted by Ditcharoen et al.
2018 provides an overview of the various elements that influence the severity
of car crashes. The paper also reviews commonly employed techniques such
as logistic regression and power models utilized in previous studies. Accord-
ing to this research, the most frequently cited factors contributing to car
crash severity are the speed at which the vehicle is traveling, followed by
human characteristics. Additionally, significant factors include vehicle type,
weather conditions, alcohol consumption, and driver fatigue.

2.2.2 Multi-Agent Systems
Multi-agent systems are widely recognized as a flexible and extensible

system architecture for developing computer programs that address various
problems. Multi-agent systems have been used as a solution to the vehicle
collision avoidance control problem (C. Yuan et al. 2023; Muzahid et al. 2023;
Sanogo et al. 2023), obstacle avoidance (Xiong, Z. Liu, and Y. Luo 2023), and
autonomous delivery vehicles optimization problem (Ergün 2023). C. Yuan
et al. 2023 provide a multi-agent coordinated control system to improve the
real-time performance of intelligent vehicle active collision avoidance. The
multi-agent coordinated control system can handle the conflict between the
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decisions of different agents according to the rules. Comparing with exist-
ing control strategies, the proposed system can realize multi decisions and
planning at the same time; thus, it will reduce the operation time lag during
active collision avoidance. Xiong, Z. Liu, and Y. Luo 2023 conduct research
on collision and obstacle avoidance of multi-agent systems without mapping
ability, while the constrained agent can only detect obstacles within a limited
distance, then a velocity programming strategy is proposed considering the
lack of a high-resolution map and the challenge of the modeling of complex
obstacles. Kitajima et al. 2019 introduce a multi-agent traffic simulation
methodology to estimate the potential improvements in road safety resulting
from automated vehicle technologies. Their system applies traffic simulations
to a designated area in Tsukuba city, Japan, by integrating road infrastruc-
ture data with a large number of vehicles, drivers, and pedestrians.

2.2.3 Crash Detection and Vehicle Identification
The automatic detection of car crashes through traffic monitoring cam-

eras can significantly reduce response time, improve rescue efficiency, en-
hance traffic safety, and save lives. YOLO (“You Only Look Once”), a
sophisticated convolutional neural network (CNN) for real-time object de-
tection, has emerged as a powerful tool for achieving such detection. It is a
widely adopted system for object detection in videos and images. Numerous
studies have focused on detecting car crashes in real-time video feeds from
traffic monitoring cameras utilizing YOLO (Mane et al. 2023; Adewopo et al.
2023; Pawar and Attar 2022; Lee et al. 2021; Naik et al. 2021; Hsu, Huang,
and Han 2020; Tian et al. 2019; Gour and Kanskar 2019; Machaca Arceda
and Laura Riveros 2018) or using other techniques (Ghahremannezhad, H.
Shi, and C. Liu 2022; Hozhabr Pour et al. 2022; J. G. Choi et al. 2021;
Boukerche and Hou 2021; Radu et al. 2021; C. Wang et al. 2020; Yao et al.
2019; S. Sharma and Sebastian 2019; Sultani, C. Chen, and Shah 2018; H.
Sharma, Reddy, and Karthik 2016). Mane et al. 2023 propose an ensem-
ble model that uses the YOLOv8 approach for efficient and precise event
detection. The model framework’s robustness is evaluated using YouTube
video sequences with various lighting circumstances. Pawar and Attar 2022
propose a deep learning approach for automatic detection and localization
of road accidents by formulating the problem as anomaly detection. The
method follows one-class classification approach and applies spatio-temporal
autoencoder and sequence-to-sequence long short-term memory autoencoder
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for modeling spatial and temporal representations in the video. Some other
works have focused on vehicle identification and detection (Kutlimuratov et
al. 2023; Sindhu 2021) and classification of traffic incidents (Basheer Ahmed
et al. 2023). Kutlimuratov et al. 2023 propose a system that can identify and
track objects inside the region of interest and count detected vehicles using
a YOLOv5 model for vehicle identification. Basheer Ahmed et al. 2023 pro-
pose a real-time traffic incident detection and alert system that is based on
computer vision. The proposed framework consists of three models, each of
which is integrated within a prototype interface to fully visualize the system’
s overall architecture. This study employed an innovative parallel comput-
ing technique for reducing the overall complexity and inference time of the
AI-based system to run the proposed system in a concurrent and parallel
manner.

2.2.4 Crash Risk Prediction and Anticipation
Some works have predominantly focused on crash risk prediction (Hu et

al. 2023; Banerjee et al. 2022; Z. Luo et al. 2021; P. Li, Abdel-Aty, and J.
Yuan 2020; Fawcett et al. 2017; Kumar and Toshniwal 2016; Park, Kim, and
Ha 2016; L. Lin, Q. Wang, and Sadek 2015; Q. Shi and Abdel-Aty 2015), or
crash anticipation (Bao, Yu, and Kong 2020; Suzuki et al. 2018; Chan et al.
2017; You, Junhua Wang, and Guo 2017; Y. Gu, Qian, and F. Chen 2016; D’
Andrea et al. 2015). For instance, Hu et al. 2023 presents a novel method to
predict crash risk proactively by combining these interactive factors: drivers’
attention and environmental complexity. More than 200 high-risk zones
and 300 noncrash zones were screened out through social media data. Cor-
responding environmental information was collected using the street view
map. Spectral saliency mapping was applied to depict the driver’s attention
distribution toward images. A featured vector was then constructed by fuz-
ing the visual attention model and image semantics. The gradient boosting
decision tree algorithm was applied to analyze the relationship between the
multitype crash data and featured vectors.

2.2.5 Assessing Responsibility in Car Crashes
Human factors tend to rank highest in terms of being the main causes of

crashes. Challenges arise when attempting to determine human responsibility
during crash investigations and accurately assigning fault percentages to each
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party involved. Dirnbach et al. 2020 propose a new technical and analytical
approach for handling expert reports on car crashes at intersections, specif-
ically focusing on traffic light scenarios. In this work, a simulation program
application is utilized to conduct a precise analysis of car crashes. Another
approach involves employing a possibility theory-based classifier, specifically
a possibility rule-based classifier that employs function approximation, to
capture the uncertainty inherent in expert knowledge due to incompleteness.
This approach infers a model from the 100-Car naturalistic driving dataset,
showcasing the inherent uncertainty involved in making decisions based on
expert evaluations.

To date, there have been limited studies, such as Sanjurjo-de-No et al.
2021; Dirnbach et al. 2020; Garcia et al. 2019; Chandraratna and Stama-
tiadis 2009, focusing on evaluating responsibility after vehicle collisions. In
their work (Sanjurjo-de-No et al. 2021), the visual clustering technique of
self-organizing maps (SOM) has been applied to better understand the mul-
tivariate structure in the data, to find out the most important variables for
driver liability, analyzing their influence, and to identify relevant liability
patterns. Garcia et al. 2019 estimate responsibility through a data-driven
process with explicit rules. They compare various statistical learning meth-
ods (e.g., logistic regression with L1 penalty, random forests, and boosting)
using cross-validation to provide responsibility attributions made by experts
(considered as the gold standard) based on data routinely recorded by the
police.

2.2.6 Positioning of this research
This study addresses the limitations of existing methods by expanding the

scope of accident management beyond simple collision detection or prediction
and responsibility attributions made by experts. It introduces a system that
is capable of detecting vehicle collisions within crash videos and implements
an original responsibility assessment process to assess drivers’ responsibili-
ties. This system aims to provide accurate and timely evaluation of collision
incidents, facilitating fair responsibility attribution. It employs object de-
tection for collision detection along with an original algorithm and process
that associate a knowledge rule-based system and open data for responsi-
bility assessment. The entire responsibility assessment process involves four
steps: (1) detecting the crash time within a crash video, (2) identifying all
traffic lights within the video, (3) obtaining road information from the Open-
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StreetMap API, such as road width and the presence of other traffic signs
if necessary, analyzing and processing the information, and (4) utilizing a
rule-based knowledge system of road rules, vehicle speed, and orientation to
deduce the probable responsibility of each party involved. The system focuses
on head-on and angle crashes involving two cars and facilitates the seamless
sharing of evaluation results with the police and insurance companies within
minutes of a collision. The decision to focus on head-on and angle collisions
is influenced by the technical specifications of driving recorders, primarily
designed to capture the frontal view of vehicles. However, the usability and
applicability in real-world situations of such a system supporting only head-
on and angle collisions is broad, since according to a study 1, these two
collision types collectively account for more than 70% of all car collisions.

By employing advanced image processing techniques, the system enables
prompt detection and analysis of collision incidents. The integration of open
data enhances the contextual understanding of the road environment, con-
tributing to more accurate responsibility assessments by improving the per-
formance of responsibilities evaluation mainly during nighttime with traffic
lights. The first prototype of the system supported only head-on and angle
crash scenarios with traffic lights within two weather conditions groups (bad
weather/good weather). The second prototype was improved to support
three types of head-on/angle crash scenarios without traffic lights (prior-
ity roads/one-way roads/roads with the same width) within three distinct
weather conditions (sunny/cloudy/rainy), in addition to those with traf-
fic lights. In its current version, the system now accommodates six dif-
ferent types of head-on/angle crash scenarios without traffic lights (prior-
ity roads/one-way roads/roads with the same width/roads with stop sign-
s/roads with speed limit signs/roads with flashing red or yellow signals)
within six harsh weather conditions (sunny/cloudy/rainy/stormy/snowy/-
foggy). The support of these additional scenarios and weather demanded
retraining crash detection and traffic light detection models, adding more
rules to the knowledge-based system, and enhancing the algorithm and pro-
cess of responsibility assessment. Additionally, extensive experiments are
conducted with results showing that the system performs better than its
previous versions, mainly during nighttime without traffic lights (up to 93%
accuracy against 82.5% obtained previously). The significant difference and
advantage of this system over existing ones is its automation of responsibili-

1https://www.iii.org/table-archive/21904
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ties evaluation for the police, claims adjusters, and victims themselves as well
as its applicability for autonomous vehicles. Moreover, through case studies
and comparisons with existing research, the effectiveness and superiority of
this system are demonstrated. In addition, the detection models, the image
dataset as well as the video dataset that were used to implement the system
will be made publicly available to the scientific community. These resources
can be used in the future by other researchers to implement more advanced
systems in related fields. This study is among the first to enable machines
to automatically assess the responsibility of drivers within a crash. It can
serve as one of the precursors and foundations for automatic responsibility
assessments in autonomous vehicles.
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3.1 Introduction

This chapter introduces a system based mainly on image processing that
can support the police in evaluating actors’ responsibilities automatically
within a crossroad crash (one of the most common car crashes). The system
uses the crash video recorded by the driving recorder of one of the vehicles
involved in the crash as the input data source. It then assesses and outputs
the evaluation of each actor’s responsibility within the crash thanks to a
rule-based knowledge system, which was introduced to make the reasoning
about responsibility assessment explainable and enable users to understand
the results easily. To assess responsibilities, the system is equipped in to-
tal with three different modules and goes through three different steps: (1)
detecting crash time within the crash video thanks to the first module, (2)
detecting all traffic signs within the crash video thanks to the second mod-
ule, and (3) using a rule-based knowledge system of road rules to deduct each
party’s probable responsibility thanks to the third module. A head-on/angle
crash is not an object on its own that a common vehicle detection model can
recognize. Therefore, applying existing vehicle detection models such as (Z.
Chen et al. 2022; Dong, Yan, and Duan 2022; Song and W. Gu 2021) will
fail or output wrong results with many false positives. To solve the issue,
we made our proposed model assume that if there is ahead-on/angle crash
in an image with the angle of view of the driving recorder inside one of the
vehicles involved in the crash, the crash can be recognized by taking into
consideration only the collided vehicle, its shape, and its position within the
video.

During the evaluation, the performance of each module of the system was
tested with different parameters and under different road conditions (daytime
and nighttime with good and bad visibility). The experiment’s results show
how the system performs in (1) detecting the crash time within a video using
different vehicle types (cars, vans, and trucks), (2) detecting traffic signs
within a crash video using different view distances (far, close, very close),
and (3) assessing each party’s responsibility.

3.2 Responsibilities’ Evaluation within a
Crossroad Crash with Traffic Lights

Using previously occurred car crash data with artificial intelligence, In-
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ternet of Things (S. Sharma and Sebastian 2019; Z. Yuan, Zhou, and Yang
2018), or machine learning (Theofilatos 2017) to predict future crashes or to
detect factors leading to those fatalities is very important.

In this section, a heuristic approach was proposed to solve the problem
of actors’ responsibility determination when a crash occurs thanks to the
usage of the driving recorder video of the crash as the data source. A system
that helps evaluate each actor’s responsibility within a car crash, especially
a crossroad crash with traffic lights was implemented. The system consists
of three different modules with a set of five distinct steps.

In an accident, there are many factors that should be taken into consider-
ation. Some of these factors can be detected automatically, while some will
need human input in the system. Here are some of the manual inputs, and
some of the automatically detected factors, as well as some assumptions we
made during the implementation of the system:

• Automatically detected factors: Crash time; Traffic light state; Day-
time/Nighttime.

• Manual input factors: Road width; Vehicles’ speed; Vehicles’ direc-
tion; Accident location; Drivers’ information (name, age...); Exact time
(hh:mm:ss).

• Assumptions: Both actors involved in the crash are cars; Vehicle A is
the car from which the crash video was recorded; Both actors come
from different ways.

It is also important to note that the current version of the system is only
for crossroad crashes with traffic lights that involve two cars and taking as
input only one crash video at a time.

3.2.1 Design of the System
To implement a system that can evaluate actors’ responsibilities within

a crash using the crash video as the input data source, there is a need to
implement distinct modules that can work together to achieve the final goal.
The system is a set of three different modules, each having a specific job
and working independently to achieve one sub-goal of the entire system. The
first module is a module that can detect the crash time in a video and split
the crash interval in that video into images for object detection. The second
module is a module that can detect, in an image, crucial information used to
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evaluate responsibilities in a crash (such as traffic lights). The third and last
module is a module based on a rule-based knowledge system of road rules that
can use an inference engine to derive actors’ responsibilities within a crash.
Figure 5.1 shows the architecture of the system with the three modules.
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Figure 3.1: The architecture of the system with the collaboration between
the three modules.

All of these three modules contribute to having a complete system that
passes through five distinct steps to evaluate the responsibilities of actors
within a crash: (1) The detection of the crash time in the video recorded by
the driving recorder of the vehicle; (2) the split of that video into a 10 s video
(5 s each, before and after the crash time); (3) the split of the 10 s video,
frame by frame, into images that can be used by a model for object detection;
(4) the detection of important objects in the video, such as traffic lights and
cars; (5) the evaluation of the percentage of fault (degree of negligence) of
each actor based on road rules using a rule-based knowledge system.

We implemented an easy-to-use and ergonomic user interface that allows
the user to upload his crash video and get the result of the responsibilities’
evaluation in three steps. Figure 3.2 shows a screenshot of the interface with
the steps that the user must follow to get the final result of the evaluation.
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2-Selected best result 1-Top-20 results 

Figure 3.2: Screenshot of the graphic interface of the system with the steps
the user has to follow to get the final result of the responsibilities’ evaluation
with the list of the top-20 results displayed on the right side as thumbnails
within a scrollable panel and the selected best result displayed on the left
side.
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3.2.2 Crash Time Detection Module
This module is the first one and the starting point of the system. It

detects the time of the crash in the crash video, splits that video into a 10 s
video (5 s each before and after the crash), and splits that 10 s video, frame
by frame, into images. It consists of three main tasks: the detection of the
crash time in the crash video, the split of the crash video into a 10s video,
and the split of the 10 s video into images.

Detection of the Crash Time in the Crash Video

To detect the crash time in a video, we created a custom object detection
model that can detect a crash using YOLOv5 (https://doi.org/10.5281/
zenodo.7002879 (accessed on 8 September 2022)). YOLOv5 is a family of
object detection architectures and models pretrained on the COCO dataset
(T.-Y. Lin et al. 2014). It is one of the fastest versions in the YOLO series.
YOLO (Redmon et al. 2015) an acronym for ’You only look once’, is a convo-
lutional neural network for performing object detection in real time. It is an
object detection algorithm that divides images into a grid system. Each cell
in the grid is responsible for detecting objects within itself. YOLO is one of
the most famous object detection algorithms due to its speed and accuracy.
Many works related to car traffic have used YOLOv5 to detect traffic signals
(Snegireva and Perkova 2021; W. Liu et al. 2021), obstacles (Murthy et al.
2022), traffic flow (Sun, Zhuoshen Li, and Zhuolin Li 2021), or to classify
vehicles (Snegireva and Kataev 2021).

In this study, YOLOv5 was used to detect a crash within a video. We
used 1530 images of head-on and angle crashes to train our YOLOv5 model
and get it ready for crash detection.

Dataset Building

Our dataset has a particularity because of some criteria it has to meet:

• The images in the dataset have to be related to a head-on/angle crash;

• The dataset’s images have to be from a video recorded by the driving
recorder of one of the vehicles involved in the crash.

To build a custom dataset with enough images that meet these criteria,
we had to extract these images from videos. We used YouTube as a source
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of data. YouTube is a well-known online platform where we can find many
kinds of crash videos, including the ones of interest to us. However, it re-
quires a manual and long job to get the ones that meet our dataset criteria.
We started by searching compilation videos of crossroad accidents recorded
by driving recorders that we could collect manually. The major part of the
compilation videos we found was not dedicated only to head-on/angle crashes
in the context of crossroad accidents. Most of them were a compilation of all
kinds of car crashes that occurred in the United States of America, Thailand,
Russia, and India with the driving recorders, not necessarily the ones of the
vehicles involved in the crash. Therefore, we had to watch all the videos and
select the parts containing the kinds of crashes and angles of recording of
interest to us. In total, we watched 103 videos (each one having an average
of 15 min in length) and finally selected 68 of them. We selected those com-
pilation videos based on acceptable image quality (480 p and above), the fact
that they have at least one video related to a head-on/angle crash in a cross-
road accident context, and the fact that the crash details are clear enough
to use the images during the labeling step. After collecting the compilation
videos, we had to extract and resize the frames (images) of the parts that we
were interested in. We used the library OpenCV (Open Source Computer Vi-
sion) to extract the frames and scikit-image (https://scikit-image.org/
(accessed on 11 May 2022)) to modify and resize them so that they have the
same size and structure. For homogeneity and consistency in the data, the
frames of the videos were converted to a lower width (500 pixels). Figure 3.3
shows an example of one of the head-on crash images we finally got after the
extraction and the resizing steps.

After all these steps, we got a total of 1530 crash images from differ-
ent countries, such as the United States of America, Russia, and India,
to train our model. To annotate the images, we used LabelImg (https:
//github.com/tzutalin/labelImg (accessed on 11 May 2022)) a graphical
image annotation tool, and label object bounding boxes in images written
in Python. We imported all of our images into the software and manually
annotated them one by one, by creating rectangle bounding boxes around
the crash. A crash is not an object on its own that an object detector can
recognize. Therefore, we assumed that if there is a head-on/angle crash in an
image with the angle of view of a driving recorder inside one of the vehicles
involved in the crash, we can recognize the crash by taking into consideration
the collided car. The shape and the position of the collided car can tell us if
there is a crash or not. Therefore, we created annotation bounding boxes to
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Figure 3.3: Example of one of the head-on crash images obtained after the
extraction and the resizing phase.

surround collided objects (mainly cars, trucks, and vans) in the images. Labe-
lImg allows for the creation of two types of annotation formats: PascalVOC
(XML file-based format) and YOLO (TXT file-based format). We chose the
YOLO format and exported our labeled images (with their corresponding
annotation TXT files) to a directory ready to be split into training/valida-
tion/test data. We separated our annotated images into training data (1071
images equivalent to 70% of the dataset), validation data (306 images equiv-
alent to 20% of the dataset), and test data (153 images equivalent to 10% of
the dataset).

Model Training and Validation

After setting up the dataset, we then created the necessary configuration
files and trained our custom detection model. To train the model, we used
Google Colab (a Jupyter notebook environment created by Google to help
disseminate machine learning education and research) because of its ease of
use and its fast processing. We set the batch size to 16 and the number of
training epochs to 100. After the training and validation steps, we exported
the trained weights that can be used for future inferences for crash detection
in any other videos and on devices that do not have a powerful processing
unit.

In the early version of our system (Yawovi, Tadachika Ozono, and Shin-
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tani 2020), we implemented a service that can be used by the system to
request the detection of a crash in a given video using the model inference.
The service output is the list of the top-20 crash detection results with de-
tails about each detection’s accuracy, the frame in which each detection was
made, and the link to the image containing the bounding box for the corre-
sponding detection. To be able to create such a service, we had to modify the
detection algorithm of YOLOv5 to output the data we needed. The YOLOv5
detection algorithm outputs the result of the detection directly into videos
or images. However, in our case, we needed to get the detection details in an
array. Therefore, we created our custom detection algorithm based on the
initial detection code of YOLOv5. We added features and methods to ex-
tract details about the detection’s accuracy, the frame number in the image
sequence of the video in which the detection was made, and the exportation
of the image in which the crash was detected with the detection bounding
box. Thanks to that service, the system was able to show the list of the top
20 results of the crash time detection to the user, who can manually select
the best result to use for the next steps of the responsibilities evaluation.

In the current version of the system, to speed up the whole process and
make things easier for users, we removed that manual selection step. Thanks
to additional training in the crash time detection model, now the system
automatically uses the best first result and processes to the next steps without
asking the user for manual selection.

Split the Crash Video into a 10 s Video with Image Extraction

Generally, driving recorders record long sequences of videos. Depending
on the brand and the available memory of the driving recorder, the raw
recorded video can have an initial length of 30 min or more. When a crash
occurs, we do not need the full-length recorded video. We only need a few
seconds before and after the crash. Therefore, after the detection of the crash
time within a video, the system splits that video automatically into a 10 s
video (5 s each before and after the crash time).

After getting the 10 s video (which reduces processing time considerably),
the module automatically extracts the frames from that short video to have
a total of 240 images (1 s in a video may have 24 frames or images). Then, it
modifies and resizes each of the frames to get frames with the same size and
structure and makes all of them ready to be used by any object detection
library. The output of this module is images of the environment of the crash
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a few seconds before and after the crash. This output will be used by the
second module to detect traffic lights and other crucial information used to
evaluate responsibilities within crashes.

3.2.3 Traffic Sign Detection Module

This module is the traffic sign detection module that helps the system
know what to evaluate in the responsibilities’ evaluation phase. The final
purpose of this module is to detect any kind of traffic signs (stop signs,
traffic lights, speed limit signs…), but in its current version it can only detect
traffic lights. It is an intermediary module and serves as a middleware for the
first module and the last module. To implement this module, whose main
task is object detection, we used again the object detector YOLOv5 and the
library Open CV. We trained a YOLO custom object detection model with
a dataset of thousands of images of green, red, and yellow traffic lights.

Dataset Building

To build a custom dataset with enough images of traffic lights, we inves-
tigated and downloaded them one by one on Google Image Search. In addi-
tion, fortunately, we found a ready-to-use labeled traffic light image dataset
on the public dataset of Roboflow.com (https://public.roboflow.com/
object-detection/self-driving-car (accessed on 11 May 2022)). The
dataset is a set of 15,000 images taken on roads in the United States of
America. It contains not only signs for traffic lights, but also signs for pedes-
trians, bikers, and cars. Needing only traffic lights annotations, we extracted
1300 images of traffic lights from the original dataset (red, green, yellow, red
left, green left, and yellow left). We finally got a total of 3000 images of
traffic lights after adding the ones we downloaded manually from Google.

For labeling the dataset’s images, we used LabelImg, to annotate them.
We then separated the annotated images into training data (2100 images
equivalent to 70% of the dataset), validation data (600 images equivalent
to 20% of the dataset), and test data (300 images equivalent to 10% of the
dataset).
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Model Training and Validation

After the dataset building phase, we created the necessary configuration
files and trained the model in Google Colab as we did previously for crash
time detection module.

The output of this module is the list of all traffic lights detected in the
crash environment’s images a few seconds before and after the crash. This
output is used by the third module to evaluate actors’ responsibilities through
an inference on a rule-based knowledge system.

3.2.4 Responsibility Evaluation Module
This module is the last module of the system. It uses the results of the

previous module (detected traffic signs) to evaluate the responsibilities. To
enable users to easily understand the reasons for the results, this module
was implemented using a rule-based knowledge system and uses an inference
engine to determine whether the first driver in the crash (the driver of the
vehicle whose crash video was recorded by the driving recorder and inputted
into the system via the first module) is responsible or not.

Usually, after a crash, the police determine responsibilities based on the
evaluation of each actor’s degree of negligence (or percentage of fault). In
Japan, legal books on negligence offset rates in civil traffic proceedings are
widely used to determine the degree of negligence. In these books, there are
predefined degrees of negligence with different kinds of crashes. Since our
system is based on Japanese traffic rules, we use those predefined degrees
of negligence to obtain responsibilities (like the police generally do). For
example, let’s consider a crossroad crash involving two vehicles: Vehicle A
(let XA) and Vehicle B (let XB) at an intersection (let P ) with traffic lights
(let T ) as illustrated in Figure 3.4.

In such a case, according to Japanese traffic rules, we have basic degrees
of negligence (let N) for each vehicle depending on the situation (Let the
predicates is_intersection to check if a crash spot is an intersection or not,
is_green to check if a traffic light is green or not, is_yellow to check if a
traffic light is yellow or not, and is_red to check if a traffic light is red or
not.):

Situation 1: “In case the traffic light is green for Vehicle A and red for
Vehicle B, the degree of negligence for Vehicle A is 0, and the one of
Vehicle B is 100.”
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Figure 3.4: Illustration of a crash involving two vehicles at an intersection
with traffic lights in Japan (left side driving).
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In first-order logic, this can be expressed as:

(is_intersection(P ) ∧ is_green(XA, T ) ∧ is_red(XB, T ))

=⇒ (N(XA) = 0 ∧N(XB) = 100)

Situation 2: “In case the traffic light is yellow for Vehicle A and red
for Vehicle B, the degree of negligence for Vehicle A is 20, and the one
of Vehicle B is 80.”
In first-order logic, this can be expressed as:

(is_intersection(P ) ∧ is_yellow(XA, T ) ∧ is_red(XB, T ))

=⇒ (N(XA) = 20 ∧N(XB) = 80)

Situation 3: “In case the traffic light is red for Vehicle A and red for
Vehicle B, the degree of negligence for Vehicle A is 50, and the one of
Vehicle B is 50.”
In first-order logic, this can be expressed as:

(is_intersection(P ) ∧ is_red(XA, T ) ∧ is_red(XB))

=⇒ (N(XA) = 50 ∧N(XB) = 50)

The responsibility evaluation module of the system uses this logic to
deduct the corresponding degree of negligence of each actor involved in a
crash and to output responsibilities. In some cases (such as low accuracy in
detections, no result after multiple deductions from the knowledge system,
or if the crash did not occur at a crossroad), the module outputs ”unknown,”
which is set for unknown results. This is the output in case of failure in the
responsibility prediction by the system.

3.3 Future Work
As mentioned in previous sections, our current system is specific to cross-

road crashes with traffic lights only. To have more impact and contribu-
tion to solving problems related to responsibility assessment within vehicle
crashes, we are currently working on improving the system to handle more
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crossroad cases. In addition, because not all law systems have clear rules for
all car crash situations, the system (mainly the third module) will need some
modifications when used with some law systems.
3.3.1 Other Crossroad Crash Cases to Handle

There are a wide variety of car crashes that occur every day with differ-
ent scenarios, in different environmental conditions, and in different areas.
Therefore, our system cannot handle all types of car crashes. We chose to
focus only on crossroad crashes because of the fact that they have a variety
of cases and they are the most recorded ones with driving recorders

Here is the list of other crossroad crash cases that we plan to implement
to improve the system:

• Crossroad crash involving a car and a pedestrian: The handling of this
case at/not at a pedestrian crossing involved taking into consideration
different scenarios such as when there is a traffic light, when there is
a safe zone, when there is no traffic light, when there is a traffic light
near the pedestrian crossing, and when the collision occurs in front of
the pedestrian crossing (as illustrated in Figure 3.5).

Figure 3.5: Illustration of a crash involving a car and a pedestrian at
an intersection in front of the pedestrian crossing. From https://jiko-
online.com/wp/kasitu/jiho-oudan/ (accessed on 8 September 2022).

• Crossroad crash involving two cars: This involved taking into con-
sideration different scenarios such as intersection with a traffic light,
intersection without traffic lights when there is a one-way violation
when there is a stop sign or a red blinking/yellow blinking signal, and
when there is a priority road;
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• Crossroad crash involving a car and a motorcycle: This involved taking
into consideration scenarios such as an intersection with a traffic light
(as illustrated in Figure 3.6), an intersection of the same width without
traffic lights, the motorcyclist clearly driving on a wide road, the car’s
driver clearly driving on a wide road the motorcyclist driving on a
priority road, the car’s driver driving on a priority road, the car’s driver
violates one way, and the motorcyclist violates one way.

Figure 3.6: Illustration of a crash involving a car and a motorcycle at an in-
tersection with traffic lights. From https://jiko-online.com/wp/kasitu/jiba-
tyoku/ (accessed on 8 September 2022)

.

3.3.2 Data Collection
The improvement on our system is to enable it to handle more cross-

road crash cases, we, therefore, need to collect data and train our models to
recognize more elements in a given crash video dashcam footage. The data
collection will be divided into four phases:

• Data collection for the crash time detection model: There are
some existing car crash video datasets that were made from YouTube
videos such as CCD (Bao, Yu, and Kong 2020), DAD (Chan et al.
2017), and A3D (Yao et al. 2019). These datasets contain all kinds of
accidents with many scenarios. The ones of interest to us (containing
crashes at intersections involving two cars /a car and a pedestrian
/a car and a motorcycle with the vehicle from which the video was
recorded involved) are very few. Therefore, because we can get only
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a few videos from these datasets, as we did before, we will look for
additional crossroad crash videos on YouTube to have more data.

• Data collection for the traffic sign detection model: We will
also collect data to train the existing traffic sign detection model to
recognize not only traffic lights but also other traffic signs such as stop
signs, pedestrian crosswalks, and speed limit signs.

• Data collection for the knowledge system: To enable the system
to evaluate responsibilities within the new cases that will be imple-
mented, we will need to collect more road rules and degree of negligence
assessment logic to improve our knowledge base. A simple example may
be:

“When the crash occurs near the pedestrian crossing with a
traffic light, the degree of negligence is 70% for the pedestrian
crossing in red and 30% for the car with green traffic light”.

• Data augmentation for all the collected data.

3.3.3 Crash Simulation Sandbox Implementation
Getting video data of different crash cases with various scenarios is a

complex and time-consuming task. Some crash cases’ video data are easily
available because they usually occur. On the other hand, some others are
rare or very difficult to get because of their low level of occurrence. To have
enough data in our dataset that are related to cases that our system will
handle, we have to simulate some crashes for some cases that we cannot
find enough data for. Therefore, we plan to add to our system a simulation
sandbox that will enable a user to simulate a crash in 3D and generate a
crash video that can be used to train our crash time detection model.

3.4 Conclusions
With the objective of shortening the decision time for the police and

claims adjusters when a car crash occurs, we have developed a support sys-
tem based on object detection and a rule-based knowledge system. The
system can recognize a crash within a video, detect and list all traffic signs
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within that video and finally assess the responsibilities of actors within the
crash. The reasoning for responsibility assessment should be explainable.
Therefore, with the implementation of a rule-based knowledge system in the
system, users can easily understand the responsibility assessment’s reasons
and confirm the results. To detect a crash within a video, we discovered
that the simple application of existing vehicle detection models would result
in wrong detections with many false positives. To solve the issue, we made
our proposed model to take into consideration only the collided vehicle, its
shape, and its position within the video. Moreover, because most of the ex-
isting sources of datasets related to car crashes or publicly available datasets
are generally from surveillance cameras or from driving recorders of vehicles
that are not necessarily involved in the crash, we built a custom dataset that
fulfilled all the system’s requirements. It was one of the most time-consuming
tasks to complete the system’s implementation. During the experimentation,
results showed that the system performs well when the light’s condition and
the visibility of collided objects are good, and when traffic lights’ view dis-
tances are close. That makes the system depends on the visibility of objects
to perform well.

For improvement, we plan to train our crash time detection model with
more data in different crossroad crash cases and train the traffic sign detection
model with more traffic signs (stop signs, speed limit signs, etc.).
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4.1 Introduction
Nowadays, there is an increase in the usage of driving recorders (also

called dashcams) by vehicle owners. There are even some insurance compa-
nies that make their usage mandatory for their customers. Videos recorded
by driving recorders are valid proof of a collision and help to determine re-
sponsibilities faster. In addition, the usage of smartphones as recorders are
becoming a cheap and best alternative because of their ability to do more
than just recording and the fact that they can handle more complex or ad-
vanced features compared to traditional recorders.

In this chapter, we introduce a system based on object detection, knowl-
edge system, and open data from OpenStreetMap API 1 a free, open geo-
graphic database updated and maintained by a community of volunteers via
open collaboration. The system is composed of a mobile application and a
server, and currently only supports head-on and angle crashes involving two
cars at a crossroad.

In the previous chapter, we described one of the early versions of the
system based mainly on image processing and a rule-based knowledge sys-
tem. The system uses the crash video recorded by and taken from a real
driving recorder of one of the vehicles involved in the crash as the input data
source. It then assesses and outputs the evaluation of each actor’s responsi-
bility within the crash thanks to its rule-based knowledge system. The main
limitations of this previous system are the fact that (1) it only supports head-
on/angle crossroad crashes with traffic lights, (2) important details such as
vehicle speed and crash location are missed and should be manually input
by the user, and (3) its performance is totally dependent on the visibility
of objects within the crash video. Toward realizing a general responsibility
evaluation system, we examined the possibility of using open data to solve
these limitation issues. This study proposes a novel approach of combining
image detection (head-on/angle crash detection and traffic signs detection),
open data from OpenStreetMap API, and a knowledge system to assess ac-
tors’ responsibilities more efficiently from a crash video recorded by a mobile
device. With this new approach, the system can handle more accident cases
such as accidents without traffic lights, can perform better even during the
night, and can get automatically information such as vehicle speed, crash
location, and weather which are important for responsibility evaluation.

1https://wiki.openstreetmap.org/wiki/API
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In this work, the research question we want to answer is: How improved
can a computer vision-based system be, by associating open data
to assess automatically responsibilities after a head-on/angle vehi-
cle collision occurs? Through this study we answer this question by (1)
making a review of related and existing works, highlighting their limitations,
(2) describing our approach to the solution, experimenting how it performs
better than a previously proposed solution, (3) highlighting its limitations
and explaining our future work.

4.2 Vehicle Collision Responsibility
Evaluation System

4.2.1 Design of the system
In a previous study, we implemented a system that uses the crash video

recorded by a real driving recorder of one of the vehicles involved in the crash
as the input data source. The system uses image detection to detect crash
time, and traffic lights and uses a rule-based knowledge system to assess
each actor’s responsibility within the crash. This method was successful and
helped evaluate responsibilities quickly for head-on/angle crossroad crashes
with traffic lights during day time. However, it quickly reached its limits
while using the system during the night or while expanding the system to
support other crossroad head-on/angle crashes such as crashes with no traf-
fic lights. To solve these limitation issues, we changed the architecture and
working flow of the system and associated the usage of open data from Open-
StreetMap API that helps to get information about roads and traffic signs
independently of the weather, visibility, and time. With such a change, the
system can handle more accident cases such as accidents without traffic lights,
can perform better even during the night, and can get automatically informa-
tion such as vehicle speed, crash location, and weather which are important
for responsibility evaluation. The new system’s architecture is based on a
mobile application (the front end) and a server (the back end), each having a
specific job and working independently to achieve one sub-goal of the entire
system. The mobile application (as shown in Figure 5.2) is a vehicle recorder
application that can be installed on a mobile device (a smartphone or tablet)
and used to record driving experiences. It streams in real-time the recorded
video to the server which saves it as a sequence of individual images and
uses them later for responsibility assessment in case of incident. It also sends
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in real-time to the server information about the speed, the GPS location,
and the orientation of the vehicle. The server receives in real time the video
streams from the mobile application and saves them as sequences of individ-
ual data-tagged images (containing data about the speed, the GPS location,
and the orientation of the vehicle) in the user’s personal folders. Therefore,
when the user sends a request for responsibilities evaluation through the mo-
bile app, the server first uses its crash detection model to detect the crash
time in the saved data-tagged images. It then uses its traffic light detection
model to detect all traffic lights within the data-tagged images. After decod-
ing the data-tagged images and getting back the data they contain about the
speed, the GPS location, and the orientation of the vehicle, it uses the GPS
location to retrieve road information from OpenStreetMap API such as road
width, and the presence of other traffic signs (such as stop signs, pedestrian
crosswalks, and speed limit signs). Finally, it uses a rule-based knowledge
system of road rules and the vehicle’s speed and orientation to deduct each
party’s probable responsibility for its explainability.

 

Figure 4.1: A screenshot of the Dashcam screen in the mobile app

4.2.2 Crash time detection and responsibility
assessment

Once the mobile app starts streaming, the server receives in real-time
the video streamed by the mobile app. It saves the video streams as se-
quences of individual data-tagged images (containing data about the speed,



4.2. 51

the GPS location, and the orientation of the vehicle) in the user’s personal
folders. To tag images and save additional data into them, we use their Exif
(Exchangeable image file format) properties. Exif is a standard that spec-
ifies formats for images, sound, and ancillary tags used by digital cameras
(including smartphones), scanners, and other systems handling image and
sound files recorded by digital cameras. For crashes without traffic lights,
the system gets from the images to process, the saved metadata (Exif header
data about the vehicle’s speed, its GPS location, and its orientation) and
uses it to retrieve road information (see Table 4.1) from the OpenStreetMap
API before accessing responsibilities. When a head-on/angle crash occurs,
and a responsibility assessment request is sent by the mobile app, the server
goes through three processes to get responsibilities.

Crash Time Detection

To detect the crash time in images, we retrained, updated, and used a
previously created custom object detection model that can detect a crash
using YOLOv5 a convolutional neural network for performing object detec-
tion in real time2. We used our previously created custom dataset (Yawovi,
Kikuchi, and Tadachi Ozono 2022) of 1530 images of head-on/angle crashes
to retrain our updated YOLOv5 model and get it ready for crash detection.
The output of this process is images of the environment of the crash a few
seconds before and after the crash.

Traffic Light Detection

This process is the traffic light detection phase. We retrained, updated,
and used a previously trained YOLO custom object detection model with a
dataset of thousands of images of green, red, and yellow traffic lights that we
described in a previous work (Yawovi, Kikuchi, and Tadachi Ozono 2022).
The output of this process is the list of all traffic lights detected in the crash
environment’s images a few seconds before and after the crash. This output
is used by the third process to evaluate actors’ responsibilities through an
inference on a rule-based knowledge system.

2https://doi.org/10.5281/zenodo.7002879
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Responsibility Evaluation

Usually, after a crash, the police determine responsibilities based on the
evaluation of each actor’s degree of negligence (or percentage of fault). Our
system also uses this degree of negligence’s logic to evaluate responsibilities.
In Japan, legal books on negligence offset rates in civil traffic proceedings
are widely used to determine the degree of negligence. In these books, there
are predefined degrees of negligence with different kinds of crashes. Since
our system is based on Japanese traffic rules, we use those predefined de-
grees of negligence to obtain responsibilities. For example, let’s consider two
crossroad head-on/angle crashes involving two vehicles Vehicle A (let XA)
and Vehicle B (let XB) at an intersection (let P ), one with traffic lights and
the other without traffic lights. In such cases, according to Japanese traffic
rules, we have basic degrees of negligence (let N) for each vehicle depending
on the situation:

• Situation 1 (with traffic lights): “In case the traffic light is green
for Vehicle A and red for Vehicle B, the degree of negligence for Vehicle
A is 0, and the one of Vehicle B is 100. In case the traffic light is yellow
for Vehicle A and red for Vehicle B, the degree of negligence for Vehicle
A is 20, and the one for Vehicle B is 80. In case the traffic light is red
for Vehicle A and red for Vehicle B, the degree of negligence for Vehicle
A is 50, and the one for Vehicle B is 50.”
In first-order logic, this can be expressed as:
Let T be traffic light, the predicates is_intersection to check if a crash
spot is an intersection or not, is_green to check if a traffic light is green
or not, is_yellow to check if a traffic light is yellow or not, and is_red
to check if a traffic light is red or not.

(is_intersection(P ) ∧ is_green(XA, T ) ∧ is_red(XB, T ))

=⇒ (N(XA) = 0 ∧N(XB) = 100)

(is_intersection(P ) ∧ is_red(XA, T ) ∧ is_red(XB))

=⇒ (N(XA) = 50 ∧N(XB) = 50)

• Situation 2 (without traffic lights): “If Vehicle B was going straight
on a priority road and Vehicle A was coming from a small road, the
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degree of negligence for Vehicle A is 90, and the one for Vehicle B is
10.”
In first-order logic, this can be expressed as:

Let R be the road, the predicates is_intersection to check if a crash
spot is an intersection or not, is_priority_road to check if a road is a
priority road or not, is_small_road to check if a road is a small road
or not.

(is_intersection(P ) ∧ is_priority_road(XA, R)∧
is_small_road(XA, R)) =⇒ (N(XA) = 90 ∧N(XB) = 10)

In Situation 1, there is only one piece of information needed to evaluate
responsibilities: the status of the traffic light. Therefore, this situation can be
easily handled if the traffic light status (either green, yellow, or red) is known.
Our current system, as well as our previously proposed system, thanks to
computer vision (its traffic light detection model) can detect the presence and
status of the traffic light and evaluate responsibilities. However in Situation
2 in which there is no traffic light, there is a new type of information needed:
the type of the road (priority road) and its width (small road). In such a
situation, computer vision cannot be of any help, inducing the fact that our
previously proposed system will fail to evaluate responsibilities. That is why
the current system, instead of relying only on object detection to evaluate
responsibilities, has an additional layout that fetches and uses open data
from OpenStreetMap API.

The two situations described above are only a few of many scenarios of
crossroad head-on/angle crashes that can occur (such as overtaking in an in-
tersection where overtaking is prohibited and passing in intersections where
passing is allowed), and all of them can not be handled by the current system.
For each currently supported scenario (crossroad head-on/angle crashes in an
intersection with/without traffic lights on a priority road, one-way road, or
roads with the same width), the system fetches any necessary additional data
(such as stop signs and speed limits) from OpenStreetMap API. Table 4.1
summarizes the type of information needed for supported crash scenarios and
shows their availability and accessibility in our current system in compari-
son with the previous one. In addition, Table 4.2 describes all information
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required by the system for responsibility evaluation and it’s source in the cur-
rent system using the first-order logic representation where T, P,R,X, S,N
represent traffic light, crash spot, road, vehicle, vehicle’s speed and degree of
negligence respectively and the predicates is_intersection to check if a crash
spot is an intersection or not,is_t_junction to check if a crash spot is a T-
junction or not, is_priority_road to check if a road is a priority road or not,
is_small_road to check if a road is a small road or not, is_one_way_road
to check if a road is a one-way road or not, road_width to get the width
of a road, is_green to check if a traffic light is green or not, is_yellow to
check if a traffic light is yellow or not, is_red to check if a traffic light
is red or not, is_flashing_red to check if a traffic light is flashing-red
or not, is_flashing_yellow to check if a traffic light is flashing-yellow or
not, is_right_turn_green to check if a traffic light is right-turn-green or
not, has_sign to check if there is a traffic sign or not, using the domain
SN = {STOP,NONE}, speed_limit to check if there is a speed limit sign
or not, turn to check if a vehicle turns right or left or not, using the domain
DIR = {LEFT,RIGHT,NONE}, direction to get the side a vehicle is
coming from, using the domain SD = {LEFT,RIGHT}, orientation to get
the orientation of a vehicle.

Table 4.1: List of information needed for responsibility evaluation and their
accessibility/availability in our current and previous system

Information needed Accessibility & Availability
for crashes Previous system Current system*

Situations with traffic lights
Traffic lights presence Yes 3 Yes 3

Traffic lights status Yes 3 Yes 3

Situations without traffic lights
Road width No 7 Yes 3

Road type No 7 Yes 3

Direction No 7 Yes 3

Stop signs presence No 7 Yes 3

Speed limit signs presence No 7 Yes 3
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Table 4.2: List of information required by the system for responsibility eval-
uation and it’s source in our current system

Information Information Source
Needed Detection model OpenStreetMap API Vehicle

T, P,R,X, S,N represent traffic light, crash spot, road, vehicle, vehicle’s speed
and degree of negligence respectively. The domains used in

has_sign, turn, direction are respectively SN = {STOP,NONE},
DIR = {LEFT,RIGHT,NONE}, SD = {LEFT,RIGHT}

is_green(T ) Yes 3 No 7 No 7

is_yellow(T ) Yes 3 No 7 No 7

is_red(T ) Yes 3 No 7 No 7

is_flashing_red(T ) Yes 3 No 7 No 7

is_flashing_yellow(T ) Yes 3 No 7 No 7

is_right_turn_green(T ) Yes 3 No 7 No 7

is_intersection(P ) No 7 Yes 3 No 7

is_t_junction(P ) No 7 Yes 3 No 7

is_priority_road(X,R) No 7 Yes 3 No 7

is_small_road(X,R) No 7 Yes 3 No 7

is_one_way_road(X,R) No 7 Yes 3 No 7

road_width(X,R) No 7 Yes 3 No 7

has_sign(X,SN) No 7 Yes 3 No 7

speed_limit(X,S) No 7 Yes 3 No 7

turn(X,DIR) No 7 No 7 Yes 3

direction(X,SD) No 7 No 7 Yes 3

orientation(X) No 7 No 7 Yes 3
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4.3 Conclusions
Very few studies have gone beyond vehicle collision detection to resolve

the problem of responsibility assessment after a crash. To solve that problem,
in previous work, we proposed an approach based on image detection and a
rule-based knowledge system to automatically assess actors’ responsibilities
when a crash occurs. With some limitations observed in this approach such
as the difficulty to manage more crashes, we propose a new framework that
combines open data (with OpenStreetMap API), image detection, and the
rule-based knowledge system. The system can recognize a crash within im-
ages generated from video streaming of a mobile app, detect traffic signs and
finally assess the responsibilities of actors within the crash by using the vehi-
cle’s speed, its GPS location, and its orientation as well as OpenStreetMap
API to get information about the road. Our experiments showed promising
results on how the system performs better than the previous system in assess-
ing each party’s responsibility when crashes with/without traffic lights occur.
The system performs well when the crash occurs during daytime either with
traffic lights, or without traffic lights; and during nighttime without traffic
lights by using open data on a road map.

In future work, based on the promising future of our technique of com-
bining image recognition and open data, we plan to improve our system to
support more and more crossroad head-on/angle crash cases (such as when
there is a red blinking/yellow blinking signal, in case of overtaking in an in-
tersection where overtaking is prohibited, and passing in intersections where
passing is allowed) and make additional experiments.
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5.1 Introduction

Despite existing critical needs for innovative solutions that can shorten
decision time and help victims get their compensations faster, there has been
limited research dedicated to evaluating responsibility in the aftermath of ve-
hicle collisions. Existing studies have focused only on individual aspects such
as collision detection, crash risk prediction, crash anticipation, or responsibil-
ity attribution through data-driven processes. Assessing responsibility after
a crash is a complex task requiring advanced knowledge of road rules. For
straightforward scenarios like crashes with traffic lights, decisions are fast
and easy. However, in situations such as crashes without any traffic signs,
expert knowledge is essential. Automating such tasks demands innovative
and high-level approaches, representing a necessity for the future of the au-
tomobile and insurance industry

This chapter introduces the improved version of the previous system that
is capable of detecting vehicle collision and implements an original responsi-
bility assessment process to assess drivers responsibilities. It employs object
detection for collision detection and an association of a knowledge rule-based
system and open data from the OpenStreetMap API for responsibility as-
sessment. The responsibility assessment process involves four steps: (1) de-
tecting the crash time within the crash video, (2) identifying all traffic lights
within the video, (3) obtaining road information from the OpenStreetMap
API, such as road width and the presence of other traffic signs if necessary,
and (4) utilizing a rule-based knowledge system of road rules, vehicle speed,
and orientation to deduce the probable responsibility of each party involved.
The system focuses on head-on/angle crashes involving two cars and facili-
tates the seamless sharing of evaluation results with the police and insurance
companies within minutes of a collision. It comprises a mobile application
and a server. The mobile application, when installed on a smartphone or
tablet, acts as a vehicle recorder that users can employ to document their
driving experiences. It streams real-time recorded videos to the server, which
saves them for later responsibility assessment in the event of an incident. Ad-
ditionally, it transmits real-time information to the server regarding speed,
GPS (Global Positioning System) location, and orientation.

In the previous chapter, the system supported only three types of crash
scenarios without traffic lights (priority roads/one-way roads/roads with the
same width) within three weather conditions (sunny/cloudy/rainy), in ad-
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dition to those with traffic lights. This study further improves the system
which now supports six different types of crash scenarios without traffic lights
(priority roads/one-way roads/roads with the same width/roads with stop
signs/roads with speed limit signs/roads with flashing red or yellow signals)
within six harsh weather conditions (sunny/cloudy/rainy/stormy/snowy/-
foggy). The support of these additional scenarios and weathers demanded
retraining crash detection and traffic light detection models, adding more
rules to our knowledge-based system, and enhancing the algorithm and pro-
cess of responsibility assessment. Additionally, extensive experiments are
also conducted with results showing that the system performs better than its
previous version, mainly during nighttime without traffic lights (up to 93%
accuracy against 82.5% obtained previously). The significant difference and
advantage of this system over existing ones is its automation of responsibil-
ities evaluation for the police, claims adjusters, and victims themselves as
well as its applicability for autonomous vehicles.

Here is the summary of this study’s contributions:
• Implementation of an advanced system that supports both collision

detection and responsibility assessment, presenting a comprehensive
and practical solution.

• Extension of the system to support a broader range of crash scenarios
and weather conditions.

• Improvement in the performance of the system, particularly in night-
time scenarios.

• Improvement of a rule-based knowledge system with OpenStreetMap
API for more accurate responsibility assessment.

• Conducting extensive experiments to validate the system’s efficiency
and reliability in real-world usage.

• Demonstration of the system’s superiority through comparisons with
existing research in the field.

5.2 Design of the system
The new system architecture consists of a mobile application (the fron-

tend) and a server (the backend), each with specific roles and operating
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independently to achieve sub-goals within the overall system. The mobile
application, illustrated in Figure 5.2, functions as a vehicle recording appli-
cation that can be installed on a mobile device (smartphone or tablet) for
capturing driving experiences. It streams the recorded video in real-time to
the server, which saves it as a sequence of individual images. These images
are later utilized for responsibility assessment in the event of an incident.
The mobile application also transmits real-time information about vehicle
speed, GPS location, and orientation to the server. The server receives the
video streams from the mobile application in real-time and stores them as
sequences of data-tagged images in the user’s personal folders. These data-
tagged images contain information about the vehicle’s speed, GPS location,
and orientation. When a user submits a request for responsibility evaluation
through the mobile app, the server utilizes its crash detection model to iden-
tify the crash time within the saved data-tagged images. It then employs
its traffic light detection model to locate all traffic lights in the data-tagged
images. After decoding the data within the images and retrieving the ve-
hicle’s speed, GPS location, and orientation, the server employs the GPS
location to extract road information from the OpenStreetMap API. This in-
formation includes road width and the presence of other traffic signs such
as stop signs, pedestrian crosswalks, and speed limit signs. Finally, using a
rule-based knowledge system of road rules along with the vehicle’s speed and
orientation, the server determines the probable responsibility of each party
involved in the collision. Figure 5.1 illustrates the system architecture with
its two components.

 

Mobile app Online server 

Driving’s video 
Live Streaming 

Crash time detection 
 
 
Traffic lights detection 
 
Road information 
retrieval from 
OpenStreetMap API 
 
Responsibility assessment 
 

Real time GPS 
location, speed, 
orientation data 

sending 

Figure 5.1: The architecture of the system with the collaboration between
the front-end and the back-end
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5.3 Implementation

5.3.1 The front-end: Driving recorder app
To develop a mobile application compatible with various devices such as

smartphones and tablets, we opted to use Flutter (https://github.com/
flutter/flutter), an open-source UI software development kit created by
Google. Flutter allows for the creation of cross-platform applications for
Android, iOS, Linux, macOS, Windows, Google Fuchsia, and the web, all
from a single codebase. Although our application has the capability to be
compiled for multiple operating systems, we have chosen to focus on Android
and iOS devices.

To enable video streaming within the system, we utilize WebRTC (https:
//webrtc.org/), a free and open-source project that provides real-time com-
munication capabilities via application programming interfaces (APIs) for
web browsers and mobile applications. This technology allows for direct peer-
to-peer communication, enabling audio and video communication within web
pages without the need for plugins or native app downloads.

To begin using the mobile application, it must be installed on an Android
or iOS device. Due to some limitations with Flutter, the app can only be
installed on devices running Android 5.0 (API level 21, released in October
2014) or later, and iOS 9 (released on September 16, 2015) or later. For-
tunately, the majority of devices currently in use run on versions later than
Android 5.0 and iOS 9, minimizing any impact on app usability.

The mobile app comprises various screens and functionalities, with the
key ones being:

• Dashcam screen: This is the initial and primary screen of the app.
Here, users can manage real-time recording (start/pause/stop), adjust
the camera orientation, and activate/deactivate the GPS. The screen
also provides real-time information about the vehicle’s speed, location
(street name), and local time. Figure 5.2 illustrates a screenshot of this
screen.

• Map: Users can view the vehicle’s current position and navigation
details on a map implemented with OpenStreetMap. This screen serves
as the navigation function of the app and enables users to search for
places by address and obtain the corresponding route.
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• Recordings screen: This screen allows users to view and manage the list
of recorded videos (delete, download, share, etc.) and request respon-
sibility assessments. After a collision occurs and the crash is recorded,
users can quickly obtain responsibility evaluations through this screen,
which displays all recorded videos and provides a ”Predict Responsi-
bility” button for each recording.

Upon launching the app and initiating video streaming, the app starts
recording and streaming the content to the server. Leveraging WebRTC
technology, the app establishes direct peer-to-peer communication with the
server, transmitting the streaming data in real-time. Prior to the app’s full
functionality, the device’s GPS must be activated. This is necessary because
each frame sent to the server must be tagged with crucial additional infor-
mation that will be utilized in the event of a collision. This additional data
includes the vehicle’s speed, GPS location, and orientation. Consequently,
in addition to the video data, the app sends this supplementary information
to the server, which automatically processes and associates it with all saved
frames.

As depicted in Figure 5.3, all recordings are displayed in a daily-based
list format, filtered by creation date from newest to oldest.

5.3.2 Crash time detection and responsibility
assessment

For the backend implementation, we used aiortc (https://github.com/
aiortc/aiortc), a Python library for WebRTC (Web Real-Time Communi-
cation) and ORTC (Object Real-Time Communication). This library is built
on top of asyncio, which is Python standard asynchronous I/O framework.

When the mobile app starts streaming, the Python-based backend server
receives the video stream in real-time. It saves the incoming video streams
as sequences of individual data-tagged images, with each image containing
crucial data such as the vehicle’s speed, GPS location, and orientation. To
tag the images and store additional data, we utilize the Exif properties. Exif
is a standard format that defines the specifications for image, sound, and
ancillary tags used by digital cameras, including smartphones. By leveraging
the Exif properties, we can easily retrieve and store important metadata
recorded by digital cameras. For crashes occurring without traffic lights, the
system processes the saved images and extracts the relevant metadata (Exif



5.3. 63

 

Figure 5.2: A screenshot of the recording screen in the mobile app (Yawovi,
Kikuchi, and Tadachika Ozono 2023)

Figure 5.3: A screenshot of the recordings screen in the mobile app
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header data) regarding the vehicle’s speed, GPS location, and orientation.
This information is used later during the responsibility assessment process.
When a head-on/angle crash occurs and a responsibility assessment request
is sent from the mobile app, the server undergoes three key processes to
determine responsibilities. Firstly, the server analyzes all the saved frames
within a specified time period, detects the beginning of the crash time, and
narrows down the frames to be processed to 240. This selection corresponds
to a 10-second video at 24 frames per second (5 seconds before and after the
crash). Secondly, it analyzes the 240 images to determine the presence or
absence of traffic lights. Finally, it uses the process descrived in Algorithm 1
and employs a rule-based knowledge system of road rules, combined with an
inference engine, to deduce the responsibilities of the actors involved in the
crash.

Crash Time Detection

This is the first process of the responsibility assessment flow. It ana-
lyzes all the saved frames during a given time period, detects the begin-
ning of the crash time, and reduces the number of frames to work with
to 240 (equivalent to a 10 seconds 24 fps (frame per second) video, 5 s
each before and after the crash). To detect the crash time in images, we
retrained, updated, and used a previously created custom object detection
model that can detect a crash using YOLOv8 the latest version of a convo-
lutional neural network for performing object detection in real time (https:
//doi.org/10.5281/zenodo.7347926). YOLOv8 is a family of object detec-
tion architectures and models pre-trained on the COCO dataset (T.-Y. Lin
et al. 2014). It is one of the fastest versions in the YOLO series. YOLO
(Redmon et al. 2015) an acronym for ’You only look once’, is a convo-
lutional neural network for performing object detection in real-time. We
used our previously created custom dataset (Yawovi, Kikuchi, and Tadachi
Ozono 2022) of 1530 images of head-on/angle crashes to retrain our updated
YOLOv8 model and get it ready for crash detection. To build this dataset,
we extracted crossroad head-on/angle crash images from videos. We used
YouTube as a source of video data. We started by searching compilation
videos of crossroad accidents recorded by driving recorders that we could
collect manually. The major part of the compilation videos we found was
not dedicated only to head-on/angle crashes in the context of crossroad ac-
cidents. Most of them were a compilation of all kinds of car crashes that
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occurred in the United States of America, Thailand, Russia, and India with
the driving recorders, not necessarily the ones of the vehicles involved in the
crash. Therefore, we had to watch all the videos and select the parts contain-
ing the kinds of crashes and angles of recording of interest to us. In total,
we watched 103 videos (each one having an average of 15 min in length)
and finally selected 68 of them. We selected those compilation videos based
on acceptable image quality (480px and above), the fact that they have at
least one video related to a head-on/angle crash in a crossroad accident con-
text, and the fact that the crash details are clear enough to use the images
during the labeling step. After collecting the compilation videos, we had to
extract and resize the frames (images) of the parts that we were interested
in. We used the library OpenCV (Open Source Computer Vision) to extract
the frames and scikit-image ((https://scikit-image.org/) (accessed on 11
May 2022)) to modify and resize them so that they have the same size and
structure. For homogeneity and consistency in the data, the frames of the
videos were converted to a lower width (500px). After extracting and resizing
frames from the videos, we got a total of 1530 head-on/angle crash images
and annotated them. After all these steps, we got a total of 1530 crash im-
ages from different countries, such as the United States of America, Russia,
and India, to train the model. To annotate the images, we used LabelImg
(https://github.com/tzutalin/labelImg) (accessed on 11 May 2022) a
graphical image annotation tool, and label object bounding boxes in images
written in Python. We then separated the annotated images into training
data (1071 images equivalent to 70% of the dataset), validation data (306
images equivalent to 20% of the dataset), and test data (153 images equiv-
alent to 10% of the dataset). The output of this process is images of the
environment of the crash a few seconds before and after the crash. This
output is used by the second process to detect traffic lights and other crucial
information used to evaluate responsibilities within crashes.

Traffic Light Detection

This process is the traffic light detection phase. To implement it, we used
again the object detector YOLOv8 and the library Open CV. We retrained,
updated, and used a previously trained YOLO custom object detection model
with a dataset of thousands of images of green, red, and yellow traffic lights
that we described in a previous work (Yawovi, Kikuchi, and Tadachi Ozono
2022). To build a custom dataset with enough images of traffic lights, we in-
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vestigated and downloaded them one by one on Google Image Search. In ad-
dition, fortunately, we found a ready-to-use labeled traffic light image dataset
on the public dataset of Roboflow.com (https://public.roboflow.com/
object-detection/self-driving-car) (accessed on 11 May 2022). The
dataset is a set of 15,000 images taken on roads in the United States of
America. It contains not only traffic lights but also traffic signs for pedestri-
ans, bikers, and cars. Needing only traffic lights annotations, we extracted
1300 images of traffic lights from the original dataset (red, green, yellow,
red left, green left, and yellow left). We finally got a total of 3000 images
of traffic lights after adding the ones we downloaded manually from Google
and annotated them. For labeling the dataset images, we used LabelImg,
to annotate them. We then separated the annotated images into training
data (2100 images equivalent to 70% of the dataset), validation data (600
images equivalent to 20% of the dataset), and test data (300 images equiva-
lent to 10% of the dataset). The output of this process is the list of all traffic
lights detected in the crash environment’s images a few seconds before and
after the crash. This output is used by the third process to evaluate actors’
responsibilities through an inference on a rule-based knowledge system.

Responsibility Evaluation

Typically, following a car accident, the police assign responsibilities by
considering how much each person was at fault or negligent. Our system
follows the same principle, using a logic based on the degree of negligence.
In Japan, established legal guidelines, found in books used in civil traffic
cases, help determine this degree of negligence. These books outline different
levels of fault corresponding to various types of accidents. Since the system
adheres to Japanese traffic regulations, we rely on these predetermined levels
of negligence to assess responsibilities. For instance, let’s examine three
scenarios of head-on collisions at a crossroad involving two vehicles Vehicle
A (let XA) and Vehicle B (let XB) at an intersection (let P ). One intersection
has traffic lights, and the other does not. In such cases, according to Japanese
traffic rules, we have basic degrees of negligence (let N) for each vehicle
depending on the situation:

• Scenario 1 (with traffic lights): “In case the traffic light is green for
Vehicle A and red for Vehicle B, the degree of negligence for Vehicle A
is 0, and the one of Vehicle B is 100. In case the traffic light is yellow
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for Vehicle A and red for Vehicle B, the degree of negligence for Vehicle
A is 20, and the one for Vehicle B is 80. In case the traffic light is red
for Vehicle A and red for Vehicle B, the degree of negligence for Vehicle
A is 50, and the one for Vehicle B is 50.”
In first-order logic, this can be expressed as:
Let T be traffic light, the predicates is_intersection to check if a crash
spot is an intersection or not, is_green to check if a traffic light is green
or not, is_yellow to check if a traffic light is yellow or not, and is_red
to check if a traffic light is red or not.

(is_intersection(P ) ∧ is_green(XA, T ) ∧ is_red(XB, T ))

=⇒ (N(XA) = 0 ∧N(XB) = 100)

(is_intersection(P ) ∧ is_yellow(XA, T ) ∧ is_red(XB, T ))

=⇒ (N(XA) = 20 ∧N(XB) = 80)

(is_intersection(P ) ∧ is_red(XA, T ) ∧ is_red(XB))

=⇒ (N(XA) = 50 ∧N(XB) = 50)

• Scenario 2 (without traffic lights): “If Vehicle B was going straight
on a priority road and Vehicle A was coming from a small road, the
degree of negligence for Vehicle A is 90, and the one for Vehicle B is
10.”
In first-order logic, this can be expressed as:
Let R be the road, the predicates is_intersection to check if a crash
spot is an intersection or not, is_priority_road to check if a road is a
priority road or not, is_small_road to check if a road is a small road
or not.

(is_intersection(P ) ∧ is_priority_road(XB, R)∧
is_small_road(XA, R)) =⇒ (N(XA) = 90 ∧N(XB) = 10)

• Scenario 3 (without traffic lights): “If Vehicle A collides with and
Vehicle B who was violating a one-way road, the degree of negligence
for Vehicle A is 20, and the one for Vehicle B is 80.”
In first-order logic, this can be expressed as:
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Let R be the road, the predicates is_intersection to check if a crash
spot is an intersection or not, is_one_way_road to check if a road is
a one-way road or not

(is_intersection(P ) ∧ is_one_way_road(XB, R))

=⇒ (N(XA) = 20 ∧N(XB) = 80)

In Scenario 1, evaluating responsibilities is straightforward; there is only
one important information: the status of the traffic light –whether it is green,
yellow, or red. However, in Scenarios 2 and 3, where there are no traffic
lights, a different set of information becomes crucial: the road type (priority
road or one-way) and its width (narrow road). These factors are necessary
for determining responsibilities. These three scenarios represent only a few
examples of head-on/angle crashes, with many various crash scenarios de-
manding different sets of information. Such a situation makes it difficult for
automatically determining responsibilities. To address the challenge, we de-
signed a novel process that helps to successfully assess responsibilities within
different crash scenarios.

The following steps outline the proposed process as illustrated by Algo-
rithm 1 and Algorithm 2:

1. First, the system extracts metadata from the main crash frame, includ-
ing latitude and longitude coordinates, using Exif data of the saved
images.

2. Then, it calculates a bounding box around the main crash frame coor-
dinates, creating a search area of 20 meters by 20 meters.

3. It then constructs a specific query to fetch data within this defined
area. An example of query is expressed by Listing 5.1

Listing 5.1: Formulated Query Example
[timeout:25];
node(%(35.1497066)s,%(136.9295019)s,
%(36.49236)s,
%(136.2956719)s) [highway];
//(._;>;);
out body;
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4. The formulated query is executed through the OpenStreetMap API.
This query retrieves nodes representing various elements like traffic
signals, stop signs, and other relevant road features such as road type
and width within the specified search area.

5. For each retrieved node, the system checks its type and tags. If the
node represents a road element and is not yet recorded, the system
saves it.

6. The detected traffic signs, along with any other relevant information,
are aggregated and sent to the inference engine of road rules.

7. Multiple logic deductions (as described by Algorithm 2) are made and
the result is finally output to the user. If there is no result after multiple
deductions from the knowledge system, the user get ”unknown”. This
is the output in case of failure in the responsibility assessment by the
system.

5.4 Conclusions
Most studies only focused on detecting crashes, not on deciding who is at

fault. We tackled this issue in a previous work by using image detection and
a rule-based system. This helped assigning drivers responsibilities automati-
cally. However, this approach had some limitations, especially when dealing
with crashes in situations without traffic signs. To address these limitations,
we introduced a new method that implements open data, image detection,
and a rule-based system. This system can spot accidents in images from a
mobile app, identify traffic signs, and determine who is at fault. It considers
factors like vehicle speed, GPS location, orientation, and road’s information.
Additional and extensive experiments demonstrated promising results and
the system’s efficiency in performing well in various scenarios, both during
the day and night, regardless of the presence of traffic lights. In addition,
through detailed case studies and comparisons, the effectiveness and supe-
riority of the system are demonstrated. Future work includes the further
enhancement of the system. We plan to handle more complex cases, such
as accidents involving overtaking in intersections where it is prohibited, and
passing in intersections where it is allowed.
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Algorithm 1: Algorithm for automatically assessing responsibilities
Data: Main crash frame metadata (Latitude, Longitude)
Result: Percentage of fault or unknown

1 Procedure EvaluateResponsibility
2 Main crash frame metadata
3 Calculate search area: 20 meters × 20 meters around main crash

frame coordinates;
4 Construct query using search area information;
5 Execute query through OpenStreetMap API ; // Retrieve nodes

within the search area
6 foreach node in queried nodes do
7 if node represents a road element and type not recorded then
8 Add node to detected traffic signs and relevant road features

list;
9 end

10 end
; // Send Detected traffic signs and relevant road
features as Facts to the inference engine

11 Facts: 'type_of_accident': 'head-on','road_width':
'15','vehicle_speed': '75', 'road_type': 'one-way',
'traffic_light': 'none';

; // Use the inference engine to make a conclusion
12 Result: result = Infer(facts, rules);
13 return result; // Result from the Function Infer that is

more detailled in the next algorithm
14 return unknown;
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Algorithm 2: Inference Engine for Assessing Responsibilities
Data: Rules, Facts
Result: Conclusion

1 Function Infer
2 facts, rules
3 for each rule in rules do
4 if all conditions in facts match conditions in rule then
5 return conclusion from rule;
6 end
7 end
8 return None;

; // Define the rules and facts
(9) Rule 1:

(is_intersection(P ) ∧ is_green(XA, T ) ∧ is_red(XB, T )) =⇒
(N(XA) = 0 ∧N(XB) = 100);

(10) Rule 2:
(is_intersection(P ) ∧ is_yellow(XA, T ) ∧ is_red(XB, T )) =⇒
(N(XA) = 20 ∧N(XB) = 80);

(11) ...
(12) Rule 76: (is_intersection(P ) ∧ is_one_way_road(XB, R)) =⇒

(N(XA) = 20 ∧N(XB) = 80);
; // Return the result

(13) Return: result;
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6.1 First Round Evaluation

6.1.1 Introduction
To evaluate the system, we performed some experiments with a testing

dataset containing 180 head-on and angle crash videos within the context
of crossroad accidents that occurred in the United States of America and in
India (as for now, the side of driving—either left or right—does not have
any impact on the result of the system). The dataset contains 90 videos of
crashes that occurred in good visibility conditions (45 each during daytime
and nighttime) and 90 videos of crashes with poor visibility (45 each during
daytime and nighttime). For each module, we got different results depending
on the road environment conditions such as daytime and night time with good
visibility (for example, a sunny day or a well-lighted road during the night),
and daytime and night time with bad visibility (for example, a snowy day or
a bad lighted road during the night).

6.1.2 Evaluation of the Crash Time Module
The crash time detection of the system within a video is achieved through

the first module. To evaluate the performance of this module in detecting
videos crashes, we carried out the experiment with 180 testing videos. Here,
we want to evaluate how well our custom model can detect a crash so that
the system can get the crash time. We chose different collided objects (the
other actor in the crash) such as cars, vans, and trucks. First, we evaluated
the performance of the system during the day with good visibility and bad
visibility. Then we evaluated its performance at night with good visibility
and bad visibility.

Table 6.1 shows the resulting accuracy of the module’s model in detect-
ing the crash in videos during these different environmental conditions with
different collided objects. The model’s accuracy calculation is expressed by
the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100 (6.1)

where TP is True Positive, TN is True Negative, FP is False Positive, and
FN is
False Negative.
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Table 6.1: Results of the crash detection model’s accuracy.

Collided object & Environment conditions
performance of the Day Night
model (accuracy) Good visibility Bad visibility Good visibility Bad visibility

Car 93.5% 39.9% 82.1% 32.5%
Van 91.2% 38.7% 80.6% 28.3%

Truck 91.5% 38.3% 79.8% 28.1%

As shown in Table 6.1 during daytime and in good visibility conditions,
the accuracy of the crash detection model is either 93.5% (for cars), 91.2%
(for vans), or 91.5% (for trucks). During the day and in bad visibility, the
accuracy drastically drops to reach 39.9% for cars, 38.7% for vans, and 38.3%
for trucks. During nighttime and in good visibility conditions, the crash
detection model performs relatively well when the collided object is either
a car (82.1%), a van (80.6%), or a truck (79.8%). The lowest accuracy is
reached when the environment condition is night with poor visibility. The
model achieves an accuracy of 32.5% for cars, 28.3% for vans, and 28.1% for
trucks.

The limitation of this module is mainly due to the variation of light and
the visibility of objects in crash images. When the visibility is good enough,
the module performs well with good accuracy. On the other hand, when
the visibility is bad, the module suffers from making a good detection of the
crash.

6.1.3 Evaluation of the Traffic Signs Detection
Module

We evaluated the performance of the system in detecting traffic lights
within the 180 test videos by evaluating the second module that is in charge
of the task. Here, we want to evaluate how well our custom model can
detect a traffic light (green, red, and yellow) in a given image. We made the
experimentation in different road environment conditions as we did for the
evaluation of the first module. We chose different view distances of the traffic
lights from the driving recorder of the vehicle. We evaluated the system when
the traffic light is far from the driving recorder (more than 30 m), close to
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the driving recorder (between 30 m and 10 m), or very close to the driving
recorder (less than 10 m).

Table 6.2 shows the resulting accuracy of the module’s model in detecting
traffic lights in videos with different view distances. Here again, the model’s
accuracy calculation is expressed by formula (6.1).

Table 6.2: Results of the traffic sign detection model’s accuracy.

View distance & Environment conditions
performance of the Day Night
model (accuracy) Good visibility Bad visibility Good visibility Bad visibility

Far 83.5% 40.6% 68.1% 30.2%
Close 91.2% 40.8% 69.5% 30.6%

Very close 97.3% 41.2% 73.1% 36.8%

During the day and under good visibility conditions, the model of the
module performs well when the distance from the traffic light from the driving
recorder is either very close (97.3%), close (91.2%), or far (83.5%). During
the day and in bad visibility, the accuracy drastically drops to 41.2% for
very close distances, 40.8% for close distances, and 40.6% for far distances.
During nighttime and in good visibility conditions, the traffic sign detection
model performs relatively well when the view distance is either very close
(73.1%), close (69.5%), or far (68.1%). The lowest accuracy is reached when
the environment condition is night with poor visibility. The model achieves
an accuracy of 36.8% for very close distances, 30.6% for close distances, and
30.2% for far distances.

The performance of this module depends on light conditions and traffic
lights’ view distance. When the visibility is good enough and the view dis-
tance is very close, the module performs well. However, when the visibility
is bad with a far view distance, the module suffers from recognizing traffic
lights.

6.1.4 Evaluation of the Responsibilities’ Assessment
Module

To evaluate the performance of the system in predicting each actor’s re-
sponsibility within a crash, we evaluated the performance of the third module
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in different road environment conditions and in two different scenarios: (a)
with the user’s manual selection of the best result during the crash time
detection phase, and (b) without the user’s manual selection step. In both
scenarios, we randomly partitioned the 180 testing videos as follows:

• With a car as the collided object (60 videos in total): 15 videos during
the day in good visibility, 15 videos during the day in bad visibility,
15 videos during the night in good visibility, and 15 videos during the
night in bad visibility;

• With a van as the collided object (60 videos in total): Same as the
previous partition.

• With a truck as the collided object (60 videos in total): Same as the
previous partition.

Evaluation Results with the User’s Manual Selection Step

Table 6.3 shows the results of the successfully predicted responsibilities
within the videos over the total number of videos tested when the user in-
tervenes during the crash time detection phase and selects the best result to
use among the top 20 results. The result is calculated by the proportion of
videos in which the system has successfully predicted responsibilities over the
total number of videos tested. The proportion formula is expressed below:

Proportion =
V S

V T
∗ 100 (6.2)

where V S is the number of videos in which the system has successfully pre-
dicted responsibilities, and V T is the total number of tested videos.

As shown in the results, during the daytime, and in good visibility con-
ditions, with the user’s intervention, the module performs well in evaluating
actors’ responsibilities when the collided object is either a car (successful
evaluation within 14 videos over 15 tested in total), a van (successful evalua-
tion within 14 videos over 15 tested in total) or a truck (successful evaluation
within 12 videos over 15 tested in total). During the day and in bad visi-
bility, the performance drastically drops to reach good evaluation within 5
videos only over 15 tested in total for cars, 4 videos only over 15 tested in
total for vans, and 5 videos only over 15 tested in total for trucks. During
nighttime and in good visibility conditions, the system performs relatively
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Table 6.3: Results of the module in evaluating responsibilities with user’s
manual selection.

Collided object & Environment conditions
performance of the Day Night

responsibilities’ evaluation Good visibility Bad visibility Good visibility Bad visibility
Car 93%

(14/15 videos)
33%
(5/15 videos)

93%
(14/15 videos)

20%
(3/15 videos)

Van 93%
(14/15 videos)

26%
(4/15 videos)

80%
(12/15 videos)

20%
(3/15 videos)

Truck 80%
(12/15 videos)

33%
(5/15 videos)

80%
(12/15 videos)

13%
(2/15 videos)

well when the collided object is either a car (successful evaluation within 14
videos over 15 tested in total), a van (successful evaluation within 12 videos
over 15 tested in total), or a truck (successful evaluation within 12 videos over
15 tested in total). The lowest accuracy is reached when the environment
condition is night with bad visibility. The system achieves a performance of
good evaluation within 3 videos only over 15 tested in total for cars, 3 videos
only over 15 tested in total for vans, and 2 videos only over 15 tested in total
for trucks.

Evaluation Results without the User’s Manual Selection Step

Table 6.4 shows the results of the successfully predicted responsibilities
within videos over the total number of tested videos when the user does not
intervene during the crash time detection phase to select the best result to
use among the top 20 results. In this scenario, the system automatically
takes the first best result of the crash time prediction to evaluate respon-
sibilities. Here again, the result is calculated by the proportion expressed
by Formula (6.2.2).

As shown in the results, during the daytime, and in good visibility con-
ditions, without user intervention, the module performs relatively well in
evaluating actors’ responsibilities when the collided object is either a car
(successful evaluation within 10 videos over 15 tested in total), a van (suc-
cessful evaluation within 9 videos over 15 tested in total) or a truck (successful
evaluation within 8 videos over 15 tested in total). During the day and in
bad visibility, the performance drastically drops to reach good evaluation
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Table 6.4: Results of the module in evaluating responsibilities without user’s
manual selection.

Collided object & Environment conditions
performance of the Day Night

responsibilities’ evaluation Good visibility Bad visibility Good visibility Bad visibility
Car 66%

(10/15 videos)
20%
(3/15 videos)

53%
(8/15 videos)

13%
(2/15 videos)

Van 60%
(9/15 videos)

13%
(2/15 videos)

46%
(7/15 videos)

13%
(2/15 videos)

Truck 53%
(8/15 videos)

20%
(3/15 videos)

46%
(7/15 videos)

6%
(1/15 videos)

within 3 videos over 15 tested in total for cars, 2 videos over 15 tested in to-
tal for vans, and 3 videos over 15 tested in total for trucks. During nighttime
and in good visibility conditions, the system performs slightly well when the
collided object is either a car (successful evaluation within 8 videos over 15
tested in total), a van (successful evaluation within 7 videos over 15 tested
in total), or a truck (successful evaluation within 7 videos over 15 tested in
total). Here again, the lowest accuracy is reached when the environment
condition is night with bad visibility. The system achieves a performance of
good evaluation within 2 videos over 15 tested in total for cars, 2 videos over
15 tested in total for vans, and 1 video over 15 tested in total for trucks.

Evaluation Results’ Comparison for Both Scenarios

To compare the different evaluation results that were obtained with and
without user intervention during the crash time detection process, we put
the results in a simple column chart, as shown in Figure 6.1.

By analyzing the chart, we can see that the difference in accuracy in
assessing responsibilities between cases with the user’s intervention and the
one without the user’s intervention is in the range of 7% (best case) and
40% (worst case). This leads to the fact that although the system performs
relatively well when there is no user intervention, it performs better when that
intervention is involved. In addition, the performance of the system depends
on the performance of the first and second modules of the system, either with
or without the user’s intervention. If one of the two modules or both do not
perform well, it affects the ability of this module to evaluate responsibilities.
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Figure 6.1: Comparison graph for evaluation results with and without user
intervention

In some situations where there is no result after multiple deductions from the
knowledge system, the third module could fail in assessing responsibilities
even if both the first and second modules returned correct results. However,
during the experiments, we did not get such a situation. Therefore, the
limitations of our system are due to (a) the variation of light, (b) the visibility
of collided objects, (c) the view distance of traffic lights within crash videos,
and (d) the availability of matching rules in the knowledge system.
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Legend:

• D: Day

• N: Night

• GV: Good visibility

• BV: Bad visibility

• 1: with user’s intervention

• 2: without user’s intervention

• For example, DGV1 means Day - Good visibility with user’s interven-
tion

6.2 Second Round Evaluation

6.2.1 Introduction
The purpose of this second round evaluation was to see the ability of

the system to automatically detect the nature of the crash (crash with traf-
fic lights or crash without traffic lights) and to assess responsibilities. To
evaluate the system, we performed some experiments with 80 head-on/angle
crash videos within the context of crossroad accidents with and without traf-
fic lights during daytime and nighttime. We simulated the crash by playing
the crash videos with a video player on a computer and recording them using
the mobile app.

Table 6.7 shows the results of the successfully evaluated responsibilities
within the videos over the total number of videos tested for the specific
environmental condition. The result is calculated by the accuracy, which
is the proportion of videos in which the system has successfully evaluated
responsibilities over the total number of videos tested. The accuracy formula
is expressed by Formula (6.2.2).

As shown in the results, during the daytime the system performs well
in evaluating actors’ responsibilities when the crash occurs either with traf-
fic lights (successful evaluation within 18 videos over 20 tested in total) or
without traffic lights (successful evaluation within 20 videos over 20 tested in
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Table 6.5: Results of the current system in evaluating responsibilities within
crashes with/without traffic lights in comparison with the previous one

Type of crash & Environment Conditions
Responsibility assessment Day Night

Accuracy: Previous system
With traffic lights 53-66% 46-53%

Without traffic lights Not available Not available
Accuracy: Current system (with open data)
With traffic lights 90% 55%

Without traffic lights 100% 80%

total). During nighttime the system performs relatively well without traffic
lights (successful evaluation within 16 videos over 20 tested in total). The
lowest accuracy is reached when the environment condition is night with bad
visibility. Here, the system achieves a good performance within only 8 videos
over 20 tested in total. Within crashes with traffic lights, the system uses
its traffic light detection model to detect the state of existing traffic lights
(green, yellow, or red). Generally, the light condition affects object detec-
tion (good light condition, better detection), that is why at night, the system
does not perform very well. On the other hand, within crashes without traf-
fic lights, the system gets the location of the device at the moment of the
crash and uses the OpenStreetMap API to get information about the road
before assessing the responsibilities. As a comparison with previous results
obtained from the evaluation of our previous system, we see a significant
accuracy improvement for crashes with traffic lights either during daytime
(90% currently obtained against between 53 and 66% previously obtained) or
nighttime (55% currently obtained against between 46 and 53% previously
obtained). This shows how improved can our computer vision-based system
be, by associating open data to assess responsibilities automatically.
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6.2.2 Responsibility Assessment
The purpose of this evaluation is to see the ability of the system to au-

tomatically detect the nature of the crash (crash with traffic lights or crash
without traffic lights) and to assess responsibilities.

In our prior study (Yawovi, Kikuchi, and Tadachika Ozono 2023), we con-
ducted experiments involving 80 head-on and angle crash videos within the
context of crossroad accidents during daytime and nighttime, considering
scenarios both with and without traffic lights (40 videos with traffic lights
and 40 videos without traffic lights). For situations without traffic lights, the
40 tested videos were mainly for 3 cases: (1) on priority roads (12 videos),
(2) on one-way roads (16 videos) and (3) on roads with the same width (12
videos). However, it is pertinent to acknowledge the limitations of this test-
ing dataset and the subsequent need for an expanded investigation to show
the validation of our system’s effectiveness and its use in real-world scenarios.
In response to this necessity, the current experiment significantly augments
the experimental dataset adding more diverse situations. We meticulously
curated and analyzed 160 head-on and angle crash videos, specifically focus-
ing on crossroad accidents with and without traffic lights (80 videos with
traffic lights and 80 videos without traffic lights), spanning various lighting
conditions during both daytime and nighttime and expanding the situation
to 6 cases: (1) on roads with stop signs (15 videos), (2) on roads with speed
limit signs (15 videos), (3) on roads with flashing red/flashing yellow signals
(5 videos), (4) on priority roads (15 videos), (5) on one-way roads (15 videos)
and (6) on roads with the same width (15 videos). In addition to increasing
the number of videos in different scenarios, we made sure to include diverse
weather conditions. We added videos taken during winter days with snow,
rainy days, and foggy days. This variation allowed us to test the system’s
performance in challenging weather, providing a more comprehensive under-
standing of its capabilities. The comparison between the previous testing
dataset and the current one is summarized in Table 6.6.
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Table 6.7 shows the results of the successfully evaluated responsibilities
within the videos over the total number of videos tested for the specific
environmental condition. The result is calculated by the accuracy, which
is the proportion of videos in which the system has successfully evaluated
responsibilities over the total number of videos tested. The accuracy formula
is expressed by Formula (6.2.2)Accuracy = V S

V T
where V S is the number of

videos in which the system has successfully evaluated responsibilities, and
V T is the total number of tested videos.

As shown in the results, during the daytime the system performs well
in evaluating actors’ responsibilities when the crash occurs either with traf-
fic lights (successful evaluation within 38 videos over 40 tested in total) or
without traffic lights (successful evaluation within 40 videos over 40 tested in
total). During nighttime the system performs relatively well without traffic
lights (successful evaluation within 35 videos over 40 tested in total). The
lowest accuracy is reached when the environment condition is night with
bad visibility. Here, the system achieves a good performance within only 24
videos over 40 tested in total. Within crashes with traffic lights, the system
uses its traffic light detection model to detect the state of existing traffic
lights (green, yellow, or red). Generally, the light condition affects object
detection (good light condition, better detection), that is why at night, the
system does not perform very well. On the other hand, within crashes with-
out traffic lights, the system gets the location of the device at the moment
of the crash and uses the OpenStreetMap API to get information about the
road before assessing the responsibilities.

As a comparison with previous results obtained from the evaluation of
our previous system, we see a significant accuracy improvement for crashes
with traffic lights either during daytime (95% currently obtained against be-
tween 53 and 66% previously obtained) or nighttime (60% currently obtained
against between 46 and 53% previously obtained). This shows how improved
can our computer vision-based system be, by associating open data to assess
responsibilities automatically.

In addition, as a comparison with previous results obtained from the
evaluation of our system that uses Yolov5, we see a significant accuracy
improvement for crashes (1) with traffic lights either during daytime (95%
currently obtained against 90 previously obtained) or nighttime (60% cur-
rently obtained against 55% previously obtained); and (2) without traffic
lights during nighttime (87.5% currently obtained against 80% previously
obtained).
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Table 6.7: Results of the current system in evaluating responsibilities within
crashes with/without traffic lights in comparison with the previous one

Type of crash & Environment Conditions
Responsibility assessment Day Night

Accuracy: Previous system
With traffic lights 53-66% 46-53%

Without traffic lights Not available Not available
Accuracy: Current system with open data (YOLOv5)

With traffic lights 90% 55%
Without traffic lights :

On priority roads 100% 78.5%

Without traffic lights :
On one-way roads 100% 82.5 %

Without traffic lights :
On roads with the same width 100% 79%

Without traffic lights - Average 100% 80%
Accuracy: Current system with open data (YOLOv8)

With traffic lights 95% 60%
Without traffic lights :

On priority roads 100% 85.5%

Without traffic lights :
On one-way roads 100% 89%

Without traffic lights :
On roads with the same width 100% 85%

Without traffic lights :
On roads with stop signs 100% 92%

Without traffic lights :
On roads with speed limit signs 100% 93%

Without traffic lights :
On roads with flashing

red/yellow signals
100% 80.5%

Without traffic lights - Average 100% 87.5%
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6.2.3 Comparison with Other Existing Systems

To gauge the significance of our contribution, we conducted a comparative
analysis between our work and existing research within the domain of vehicle
collision responsibility assessment.

Our system employs a unique approach by integrating image recogni-
tion, open data, and a knowledge system. This comprehensive combination
ensures a robust methodology for accident responsibility assessment. In con-
trast, Jang-Hee et al.’s work (Yoo, Kang, and J.-U. Choi 1994) combines
neural networks with fuzzy techniques, providing a different technological
foundation. Cédric et al.(Garcia et al. 2019) utilize logistic regression with
L1 penalty, random forests, and boosting, emphasizing statistical modeling.
Chandraratna et al.’s approach (Chandraratna and Stamatiadis 2009) cen-
ters on not-at-fault drivers, focusing on specific driver behavior patterns.
Regarding rule-based support, our system and Jang-Hee et al.’s work (Yoo,
Kang, and J.-U. Choi 1994) both incorporate rule-based systems, enhanc-
ing their decision-making capabilities. However, Cédric et al. (Garcia et al.
2019) opt for a scoring system to assess responsibility, while Chandraratna
et al. employ (Chandraratna and Stamatiadis 2009) quasi-induced exposure,
each offering distinct evaluation methods. In terms of crash detection ca-
pacity, our system provides accurate identification of collision events within
various scenarios. Jang-Hee et al.’s approach (Yoo, Kang, and J.-U. Choi
1994) lacks crash detection capabilities, focusing more on post-collision as-
sessment methodologies. Cédric et al. (Garcia et al. 2019) and Chandraratna
et al. (Chandraratna and Stamatiadis 2009)’s works also do not include crash
detection features, concentrating on subsequent analysis methodologies. Re-
garding automatic traffic sign detection, our system integrates traffic sign
detection, enhancing its ability to consider real-time road regulations and
signals in responsibility assessment. Jang-Hee et al. (Yoo, Kang, and J.-U.
Choi 1994), Cédric et al. (Garcia et al. 2019), and Chandraratna et al.
(Chandraratna and Stamatiadis 2009) ’s systems do not incorporate traffic
sign detection, potentially limiting their contextual understanding in certain
situations. In terms of user accessibility, our system caters to a broader user
base, including victims, police, and insurance companies. Jang-Hee et al.’s
system (Yoo, Kang, and J.-U. Choi 1994) primarily targets insurance compa-
nies, emphasizing a specialized user group. Cédric et al.’s approach (Garcia et
al. 2019) is tailored for police use, focusing on law enforcement applications.
Chandraratna et al.’s work (Chandraratna and Stamatiadis 2009) also caters
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to police, concentrating on specific driver behaviors within their assessment.
The summary of this comparison is encapsulated in Table 6.8. Notably,

our system exhibited effectiveness, superiority and outperformed other works.
It stands out for its versatile approach, wider user accessibility, and incorpo-
ration of rule-based support, making it a promising solution for accident re-
sponsibility assessment across diverse scenarios and user requirements. Each
approach brings unique strengths, catering to specific contexts and user bases
within the field of accident responsibility assessment.
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7.1 Introduction

The proposed system introduces novel aspects and advancements, set-
ting it apart from state-of-the-art methods in the field such as Dirnbach et
al. 2020; Dong, Yan, and Duan 2022; Garcia et al. 2019. Its unique ap-
proach of implementing a process that uses image detection, open data, and
a rule-based knowledge system allows for a comprehensive and accurate as-
sessment of responsibilities in vehicle collisions. By leveraging real-time video
streaming and advanced image processing techniques, it enables prompt and
precise evaluation of collision incidents. In addition, the innovative usage of
Exif (Exchangeable image file format) properties to tag and store essential
data within the captured images facilitates efficient retrieval of vital informa-
tion such as vehicle speed, GPS location, and orientation. Incorporating this
data, along with road information from the OpenStreetMap API, enhances
the accuracy and contextuality of responsibility assessments. However, this
approach has some limitations. In addition, the development of the sys-
tem went through multiple iterations, encountering various difficulties. This
chapter first discusses the encountered difficulties and then describes some
of the limitations of the current system.

7.2 Difficulties Encountered During System
Implementation

During the implementation of the system, we encountered several diffi-
culties. The following summarizes some of them:

• Changing YOLOv5 Code: To obtain crash detection results in text
format from YOLOv5, we had to modify the detection algorithm of
YOLOv5 to output the required data. The original YOLOv5 detection
algorithm outputs results directly in a video if the input is a video or
directly in an image if the input is an image. However, this format was
not suitable for our needs. In a video, we required detailed detection
information, including each detection’s accuracy, the frame in which
each detection was made, and the image containing the bounding box
for each detection. Therefore, we modified YOLOv5’s original code
and added features and methods to extract details about the detection’s
accuracy, the frame number in the image sequence of the video in which
the detection was made, and the exportation of the image in which the
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crash was detected with the detection bounding box.

The following illustrates the modified code of the detection function,
which now returns the results of the detection in addition to the direct
output within images or videos:

1 def detect(save_img=False, return_result = False):
2 [...]
3 # Process detections
4 for i, det in enumerate(pred): # detections per image
5 if webcam: # batch_size >= 1
6 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
7 else:
8 p, s, im0 = path, '', im0s
9

10 save_path = str(Path(out) / Path(p).name)
11 txt_path = str(Path(out) / Path(p).stem) + ('_%g' %

dataset.frame if dataset.mode == 'video' else ''
)

12 s += '%gx%g ' % img.shape[2:] # print string
13 gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] #

normalization gain whwh
14

15 # Add the accuracy of the prediction to the list
16 data_prediction_results.append(det)
17 [...]
18

19

20 if return_result:
21 return data_prediction_results
22

23 if save_txt or save_img:
24 print('Results saved to %s' % os.getcwd() + os.sep +

out)
25 if platform == 'darwin': # MacOS
26 os.system('open ' + save_path)
27

28 print('Done. (%.3fs)' % (time.time() - t0))

Listing 7.1: Modified YOLOv5’s detection algorithm
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• Collecting Data with Specific Criteria: To build a custom crash
detection model, all images in the dataset had to be related to a head-
on/angle crash and had to be from a video recorded by the driving
recorder of one of the vehicles involved in the crash. This made data
collection meticulous and difficult. YouTube was used as the primary
source for various driving recorder crash videos. However, most compi-
lation videos found were not dedicated solely to head-on/angle crashes
in the context of crossroad accidents. Many of them were compilations
of various car crashes captured by driving recorders of other vehicles,
not necessarily the ones involved in the crash. Consequently, we had
to watch numerous videos and select the parts containing the kinds of
crashes and angles of recording that were of interest to us. This process
took several months to complete.

• Finding a Method Other Than Computer Vision: The evolution
of our system from the first prototype to its current version involved
overcoming a significant challenge: finding an alternative method be-
yond conventional computer vision to address the limitations of the
initial model. The primary limitation of the first prototype emerged in
scenarios where traffic lights were absent, resulting in a less effective
system in crash detection and responsibility assessment. Conventional
computer vision heavily relies on visual cues, making it dependent on
the presence of identifiable objects such as traffic lights. As we en-
countered this limitation, it became evident that a paradigm shift was
necessary to find a solution that did not solely rely on visual elements.
Finding an alternative method that could complement or even replace
computer vision led us to the need to think ”out of the box.” We ex-
plored alternative fields such as sensor technology, data fusion, and
signal processing. The goal was to identify a method that could pro-
vide reliable information even in the absence of visual cues like traffic
lights. This exploration led to the consideration of sensor-based solu-
tions, lidars, radars, and other non-visual technologies. However, each
approach brought its own set of challenges and trade-offs. Finally,
after various shifts, the integration of OpenStreetMap emerged as a
compelling method.
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7.3 Crash Time and Traffic Signs Detection
The experiment results reveal certain limitations of the system, with a no-

table concern being its sensitivity to light conditions during crashes. Similar
to other technologies utilizing computer vision or object detection, varia-
tions in lighting present challenges to robust object detection. A potential
solution to this challenge involves incorporating sensors such as lidars or
radars. Alternatively, training the models with additional data collected un-
der low lighting conditions is a viable approach. Given that many vehicles
lack advanced technologies like lidar or radar but are equipped with driving
recorders, the latter solution appears more practical for the system.

In addition to lighting conditions, the crash time detection module may
occasionally misidentify objects, leading to inaccurate crash time evaluations.
For instance, Figure 7.1 illustrates an instance where the module detects the
shadow of a vehicle as the collided object. This misclassification occurs be-
cause the crash detection model is trained to identify a deformed vehicle as
a crash, and any irregular shape of a vehicle in a driving recorder video is
classified as a collided object. To address this challenge, exploration of so-
phisticated methods involving object tracking and the temporal evolution of
scenes is planned, aiming to enhance the system’s accuracy in crash detec-
tion.

Figure 7.1: Example of the detection of the vehicle’s shadow as the collided
object.

In real-world accidents, unforeseen and exceptional events can occur, sur-
passing the system’s current capabilities. For instance, when a crash video
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displays both traffic lights for involved drivers simultaneously, the system
may become confused, resulting in inaccurate outputs.

Furthermore, the robustness of the system depends on the performance
of the collision detection and crash time detection. If either detection fails or
makes an erroneous detection, the responsibility evaluation is adversely af-
fected, leading to challenges in accurate assessments. Lastly, the system may
face challenges when driving recorders sustain serious damage from impactful
collisions. In such scenarios, the system’s ability to evaluate responsibilities
may be compromised if the recording of at least one second post-collision is
unavailable.

7.4 Real-time Video Streaming
The incorporation of real-time video streaming is one of the most key

points of a prompt responsibility assessment, providing unparalleled advan-
tages in incident evaluation. By leveraging live video feeds, the system can
promptly analyze and assess collision events as they occur. This immediate
access to real-time data empowers the system to make fast decisions, poten-
tially reducing response times during critical situations. The real-time video
streaming component ensures that the responsibility assessment process is
not affected by delays associated with traditional methods. Traditional post-
incident analysis methods often rely on recorded footage, which may result in
a temporal gap between the occurrence of an incident and its assessment. In
contrast, real-time video streaming allows for instantaneous monitoring and
evaluation, offering a more dynamic and proactive approach to responsibility
assessment.

While real-time video streaming presents a significant strength, it is es-
sential to acknowledge potential challenges such as bandwidth limitations,
network latency, and the need for more robust video compression techniques.
Addressing these challenges will be crucial to maintaining the efficiency and
reliability of the real-time streaming component in diverse operational set-
tings.

7.5 Open Data Usage
The utilization of location data from open sources, such as the Open-

StreetMap, provides the system with a rich spatial context for each road
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crash. The detailed geospatial information, including road layouts, intersec-
tions, and geographical features, contributes to a more precise understanding
of the environment in which the crash occurred. This enhanced location con-
text is invaluable for assessing responsibilities accurately, especially in com-
plex scenarios such as intersections or areas with specific traffic regulations.
Another notable advantage is the ability to access real-time updates to road
conditions and infrastructure. This real-time information ensures that the
system stays current with the latest changes in the road network, including
closures, construction, or modifications to traffic regulations. The dynamic
nature of road data from open data sources contributes to the overall accu-
racy of responsibility assessments.

While the use of open data, particularly the OpenStreetMap API, brings
substantial benefits, it is crucial to acknowledge potential limitations. One
primary limitation is the system’s dependency on the internet. The mobile
component of the system necessitates a continuous internet connection to
stream videos and transmit data to the server in real-time. In the event of
a collision, if the driver’s device is not connected to the internet, the server
cannot receive the frames associated with the crash, resulting in a failure
of responsibility assessment. Furthermore, the system relies on the Open-
StreetMap API, which must always be accessible to guarantee uninterrupted
responsibility assessment services.

7.6 Exif Properties for Data Tagging

The use of Exif properties plays a key role in enhancing the depth and
richness of data available for responsibility assessment within the system. It
provides a standardized way to store metadata within images, including cru-
cial information such as timestamps, camera settings, and geospatial details.

By leveraging Exif properties, the responsibility assessment system gains
the ability to tag captured images with essential contextual information.
This metadata becomes a valuable resource for retrieving specific details re-
lated to the incident, such as vehicle speed, GPS location, and orientation.
The systematic tagging of images ensures that the responsibility assessment
process is not solely reliant on visual analysis but is augmented by a com-
prehensive set of associated data. The timestamp information embedded
through Exif properties allows for chronological ordering of images, aiding in
the reconstruction of events leading up to and following a collision incident.
This temporal context is invaluable for understanding the sequence of events
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and contributing factors.
The orientation data captured in conjunction with GPS information and

vehicle’s speed, provides accurate location-based context. This additional
layer of information are important in discerning environmental conditions,
road layouts, and potential contributing factors specific to the geographical
context of the incident.

However, it’s important to note that the effectiveness of Exif properties
is dependent on the accuracy of the mobile device’s internal clock and GPS
system. Discrepancies or inaccuracies in these components may lead to misin-
terpretations of the temporal and geospatial aspects, impacting the precision
of responsibility assessments.

7.7 Responsibility Assessment

One of the key advantages of employing a rule-based knowledge system is
the inherent transparency it brings to the responsibility assessment process.
The rules governing the inference engine are explicitly defined, following the
”if-then” structure, making it clear how conclusions are reached. This trans-
parency is crucial, especially in scenarios where the assessment of responsi-
bility may have legal or insurance implications. Stakeholders, including law
enforcement and insurance agencies, can benefit from a clear understanding
of how responsibility determinations are made. Our system’s rule-based ap-
proach allows for the incorporation of domain-specific rules that capture the
nuances of responsibility assessment in road crashes. For example, specific
traffic regulations, local driving practices, or contextual factors can be eas-
ily integrated into the knowledge base. This adaptability ensures that the
system can be fine-tuned to different environments, contributing to the ac-
curacy and relevance of responsibility attributions Responsibility assessment
in road crashes often involves dealing with uncertainty and ambiguity. The
rule-based system allows us to explicitly model this uncertainty within the
rules, providing a more nuanced evaluation. For instance, rules can include
conditions that account for unclear situations or conflicting evidence. This
capability aligns with the real-world complexity of crash scenarios where
definitive responsibility determination might be challenging. Comparing our
rule-based responsibility assessment with alternative methods, such as ma-
chine learning models or statistical approaches, reveals distinct advantages.
While machine learning models may offer predictive capabilities, the lack of
transparency in their decision-making processes can be a significant draw-
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back, especially when explaining responsibility attributions is essential. Our
rule-based system strikes a balance by providing both accuracy and inter-
pretability.

Despite the strengths of our rule-based responsibility assessment system,
it is essential to acknowledge its limitations. The effectiveness of the system
heavily relies on the comprehensiveness and accuracy of the defined rules.
Incomplete or inaccurate rules may lead to suboptimal results. Future work
could focus on refining and expanding the rule set based on continuous learn-
ing from real-world crash data.

7.8 Correction Factors

Correction factors play a crucial role in refining responsibility assessments
by considering additional contextual elements that might influence the sever-
ity or degree of negligence in a collision incident. These factors can encompass
a wide range of variables, including driver’s fatigue, road maintenance, vis-
ibility, and other external influences that may not be explicitly covered by
standard road rules. One notable limitation of the system is its reliance on the
rule-based knowledge system without the incorporation of correction factors.
This absence may lead to oversimplified assessments that do not fully encap-
sulate the complexity of real-world scenarios. For instance, road maintenance
issues could significantly impact the dynamics of a collision, and neglecting
these factors might result in a skewed evaluation of responsibilities. Inte-
grating correction factors into the responsibility assessment process would
enable a more nuanced and accurate determination of negligence. These fac-
tors can be dynamically adjusted based on real-time data sources, such as
traffic reports, or surveillance systems, to provide a more comprehensive un-
derstanding of the incident context. While the current rule-based approach
serves as a solid foundation, future iterations of the responsibility assessment
system could benefit greatly from the inclusion of correction factors. This
enhancement would align the assessment methodology more closely with the
intricacies of real-world driving conditions, thereby improving the system’s
overall accuracy and reliability in assigning responsibilities.

7.9 Limitation on Crash Scenarios

Crashes at intersections, commonly referred to as road junctions or cross-
roads, constitute a common type of road collision. According to the National
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Cooperative Highway Research Program in the U.S. 1, intersection-related
crashes account for over 50% of all collisions in urban areas and more than
30% in rural areas. In 2021, the U.S. Department of Transportation, National
Highway Traffic Safety Administration reported 2 that among collisions in-
volving moving motor vehicles, angle collisions and head-on collisions were
the most frequent, accounting for 45.46% and 27.18%, respectively. This is
in contrast to rear-end collisions (18.66%), sideswipe collisions (7.5%), and
other/unknown incidents (1.2%).

The proposed system fully supports head-on (front impact) collisions and
angle collisions (left and right-side impacts). The system’s usability and rel-
evance in real-world application is highlighted by the fact that these sup-
ported collision types collectively account for more than 70% of all collisions,
as mentioned earlier. However, the system’s ability to handle angle collisions
is under the condition that the impact with the other vehicle is visible in the
crash video.

The decision to focus on head-on and angle collisions is influenced by the
technical specifications of driving recorders, primarily designed to capture
the frontal view of vehicles. Consequently, the system may not adequately
address scenarios involving side impacts for both vehicles, rear-end collisions,
or other non-frontal crash configurations, impacting its comprehensiveness in
assessing other types of crash scenario.

While the current system excels in evaluating head-on and angle colli-
sions, expanding its capabilities to cover a broader spectrum of crash scenar-
ios would improve its applicability in real-world situations. Future iterations
could explore technological enhancements or multi-camera setups to over-
come limitations in handling diverse crash scenarios. By incorporating a
wider field of view, the system could extend its support to side impacts,
rear-end collisions, and other configurations, ensuring a more comprehensive
and inclusive approach to responsibility assessments.

7.10 Crash Explainability
Currently, the system relies on a knowledge-based approach, utilizing pre-

defined road rules to infer the basic degree of negligence. However, there is
a potential avenue for further enhancement by incorporating advanced LLM

1https://web.archive.org/web/20061003032951/http://safety.
transportation.org/doc/1P\%20Unsignalized\%20Intersection\%20Crashes.pdf

2https://www.iii.org/table-archive/21904
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(Large Language Model) and NLP (Natural Language Processing) techniques
to augment the explainability of the assessments. By doing so, the system
will gain the ability to generate human-readable explanations that go beyond
the constraints of rigid rule-based interpretations. LLM can understand in-
tricate patterns within the data, while NLP enables the conversion of these
patterns into coherent and interpretable narratives. Their incorporation will
introduce the potential for dynamic and context-aware explanations. Unlike
static rules, LLM can adapt to evolving circumstances, providing tailored jus-
tifications for each responsibility assignment. NLP can enable the system to
articulate nuanced details, considering factors beyond strict rule adherence,
such as driver behavior, environmental conditions, and the specific context
of the collision.

However, it is important to acknowledge potential challenges in imple-
menting LLM and NLP, including the need for extensive and diverse training
data to ensure accurate language generation. Additionally, maintaining the
balance between the interpretability of rule-based approaches and the flex-
ibility of language models is crucial to avoid overly complex or ambiguous
explanations.



102 CHAPTER 7.



Chapter 8

Conclusion
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8.1 Summary of this Study

Many studies have primarily concentrated on crash detection rather than
determining fault. In our approach, we initially employed image detection
combined with a rule-based system to automatically assign driver responsibil-
ities. However, this method encountered limitations, particularly in scenar-
ios lacking traffic signs. To overcome these challenges, we introduced a novel
process and algorithm that incorporates open data, image detection, and a
rule-based system. Experimentation yielded promising outcomes, showcasing
the system’s effectiveness across diverse scenarios, day and night, irrespective
of the presence of traffic lights.

8.2 Results and Contributions of this
Research

Previous studies have focused on proposing methods for predicting road
accidents or detecting traffic incidents in real-time. However, these ap-
proaches often have limitations, primarily addressing collision detection or
prediction only. This study aims to overcome these limitations by expand-
ing the scope of accident management. It introduces a new algorithm and
process designed to automatically assess responsibility, going beyond simple
collision scenarios, even in situations without traffic lights.

The proposed method enhances the system’s ability to assess responsibil-
ities in a broader range of crash situations, thereby improving its versatility
and applicability in real-world scenarios. The entire responsibility assessment
process involves four steps: (1) detecting the crash time within a crash video,
(2) identifying all traffic lights within the video, (3) obtaining road informa-
tion from the OpenStreetMap API, such as road width and the presence
of other traffic signs if necessary, analyzing and processing the information,
and (4) utilizing a rule-based knowledge system of road rules, vehicle speed,
and orientation to deduce the probable responsibility of each party involved.
The system focuses on head-on and angle crashes involving two cars and
facilitates the seamless sharing of evaluation results with the police and in-
surance companies within minutes of a collision. By employing advanced
image processing techniques, the system enables prompt detection and anal-
ysis of collision incidents. The integration of open data enhances the contex-
tual understanding of the road environment, contributing to more accurate
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responsibility assessments by improving the performance of responsibilities
evaluation mainly during nighttime with traffic lights. The significant dif-
ference and advantage of this system over existing ones is its automation of
responsibilities evaluation for the police claims adjusters, and victims them-
selves. This automation is not only beneficial for accident management but
also holds significant implications for the development of autonomous vehi-
cles, driving assistant systems, and other cutting-edge research areas within
the automobile and insurance industries.

Additionally, the detection models, image dataset, and video dataset used
in implementing the system will be made publicly available to the scientific
community. This valuable resource can be utilized by other researchers in
the future to develop more advanced systems and contribute to related fields.
This study is among the first to enable machines to automatically assess the
responsibility of drivers within a crash. It can serve as one of the precur-
sors and foundations for automatic responsibility assessments in autonomous
vehicles.

8.3 Future Work
While the system has shown promising outcomes in assigning driver re-

sponsibilities using a combination of image detection and a rule-based sys-
tem, there are several avenues for future work to enhance its capabilities and
address identified limitations:

• Integration of Advanced Machine Learning Techniques: Ex-
plore the integration of advanced machine learning techniques, such
as deep learning algorithms, to further improve the accuracy of object
detection and scene understanding. This could involve training models
on a larger and more diverse dataset to handle complex scenarios with
greater efficiency.

• Enhanced Object Recognition: Investigate methods to enhance
object recognition in scenarios where traditional image detection faces
challenges, especially in the absence of clear traffic signs. This may
involve exploring alternative computer vision approaches or leverag-
ing additional sensor data, such as radar or lidar, to improve object
identification.

• Dynamic Rule-based System: Develop a more dynamic and adap-
tive rule-based system that can evolve based on real-time data and
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environmental conditions. This would enhance the system’s ability
to handle diverse scenarios and adapt to changing road conditions or
infrastructure.

• Incorporation of Vehicle-to-Everything (V2X) Communica-
tion: Explore the integration of V2X communication to gather real-
time information from other vehicles and infrastructure. This could
provide valuable contextual data for decision-making and contribute
to a more comprehensive understanding of the traffic environment.

• Extended Testing in Complex Traffic Scenarios: Conduct ex-
tensive testing in complex traffic scenarios, including intersections with
multiple lanes, diverse vehicle types, and intricate road layouts. This
will help validate the system’s robustness and reliability across a wide
range of real-world situations.

• Usability Studies and User Feedback: Conduct usability studies
involving drivers and stakeholders to gather feedback on the user inter-
face and overall system performance. This user-centric approach can
lead to refinements and improvements based on practical user experi-
ences.

• Legal and Ethical Considerations: Address legal and ethical con-
siderations associated with automated responsibility assignment. This
includes exploring the regulatory landscape, liability implications, and
ethical frameworks to ensure responsible deployment of the system.

• Integration with Autonomous Vehicles: Investigate the potential
integration of the system with autonomous vehicles, considering how it
can contribute to decision-making processes and enhance overall traffic
safety in mixed traffic environments.

These future directions aim to further strengthen the system’s capabil-
ities, adaptability, and reliability in addressing challenges related to crash
detection and responsibility assignment in diverse and complex traffic sce-
narios.
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Appendix A

List of Road Rules of the
Knowledge Base System

Let T, P,R be traffic light, crash spot, and road respectively, XA Vehicle
A, XB Vehicle B, SA the speed of Vehicle A, SB the speed of Vehicle B, N
the degree of negligence, the predicates is_intersection to check if a crash
spot is an intersection or not,is_t_junction to check if a crash spot is a T-
junction or not, is_priority_road to check if a road is a priority road or not,
is_small_road to check if a road is a small road or not, is_one_way_road
to check if a road is a one-way road or not, road_width to get the width
of a road, is_green to check if a traffic light is green or not, is_yellow
to check if a traffic light is yellow or not, is_red to check if a traffic light
is red or not, is_flashing_red to check if a traffic light is flashing-red or
not, is_flashing_yellow to check if a traffic light is flashing-yellow or not,
is_right_turn_green to check if a traffic light is right-turn-green or not,
has_sign to check if there is a traffic sign or not, using the domain SN =
{STOP,NONE}, speed_limit to check if there is a speed limit sign or
not, turn to check if a vehicle turns right or left or not, using the domain
DIR = {LEFT,RIGHT,NONE}, direction to get the side a vehicle is
coming from, using the domain SD = {LEFT,RIGHT}, orientation to get
the orientation of a vehicle.

Rule 1:
is_intersection(P ) ∧ is_green(XA, T ) ∧ is_red(XB, T )
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∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 0 ∧N(XB) = 100)

Rule 2:
is_intersection(P ) ∧ is_yellow(XA, T ) ∧ is_red(XB, T )

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 3:
is_intersection(P ) ∧ is_red(XA, T ) ∧ is_red(XB, T )

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 50 ∧N(XB) = 50)

Rule 4:
is_intersection(P ) ∧ is_green(XA, T ) ∧ is_yellow(XB, T )

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 5:
is_intersection(P ) ∧ (SA = SB) ∧ direction(XB,RIGHT)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 40 ∧N(XB) = 60)

Rule 6:
is_intersection(P ) ∧ (SA > SB) ∧ direction(XB,RIGHT)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 60 ∧N(XB) = 40)

Rule 7:
is_intersection(P ) ∧ (SA < SB) ∧ direction(XB,RIGHT)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
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=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 8:
is_intersection(P ) ∧ is_one_way_road(XB, R)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 9:
is_intersection(P ) ∧ (road_width(XA, R) > road_width(XB, R)) ∧ (SA = SB)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 10:
is_intersection(P ) ∧ (road_width(XA, R) > road_width(XB, R)) ∧ (SA > SB)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 40 ∧N(XB) = 60)

Rule 11:
is_intersection(P ) ∧ (road_width(XA, R) > road_width(XB, R)) ∧ (SA < SB)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 12:
is_intersection(P ) ∧ has_sign(XA, STOP ) ∧ (SA = SB)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 13:
is_intersection(P ) ∧ has_sign(XA, STOP ) ∧ (SA > SB)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 30 ∧N(XB) = 70)
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Rule 14:
is_intersection(P ) ∧ has_sign(XA, STOP ) ∧ (SA < SB)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 10 ∧N(XB) = 90)

Rule 15:
is_intersection(P ) ∧ has_sign(XA, STOP ) ∧ (SB <= 30)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 40 ∧N(XB) = 60)

Rule 16:
is_intersection(P ) ∧ is_flashing_red(XA, T ) ∧ (SB = SA)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 17:
is_intersection(P ) ∧ is_flashing_red(XA, T ) ∧ (SB > SA)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 18:
is_intersection(P ) ∧ is_flashing_red(XA, T ) ∧ (SB < SA)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 10 ∧N(XB) = 90)

Rule 19:
is_intersection(P ) ∧ is_flashing_red(XA, T ) ∧ (SB <= 30)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 40 ∧N(XB) = 60)
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Rule 20:
is_intersection(P ) ∧ is_flashing_yellow(XA, T ) ∧ (SB = SA)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 21:
is_intersection(P ) ∧ is_flashing_yellow(XA, T ) ∧ (SB > SA)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 22:
is_intersection(P ) ∧ is_flashing_yellow(XA, T ) ∧ (SB < SA)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 10 ∧N(XB) = 90)

Rule 23:
is_intersection(P ) ∧ is_flashing_yellow(XA, T ) ∧ (SB <= 30)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 40 ∧N(XB) = 60)

Rule 24:
is_intersection(P ) ∧ is_priority_road(XA, R)

∧ has_sign(XA, NONE) ∧ has_sign(XB, NONE)

∧ turn(XA,NONE) ∧ turn(XB,NONE)
=⇒ (N(XA) = 10 ∧N(XB) = 90)

Rule 25:
is_intersection(P ) ∧ is_green(XA, T ) ∧ is_green(XB, T )

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 20 ∧N(XB) = 80)
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Rule 26:
is_intersection(P ) ∧ is_yellow(XA, T ) ∧ is_green(XB, T )

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 70 ∧N(XB) = 30)

Rule 27:
is_intersection(P ) ∧ is_yellow(XA, T ) ∧ is_yellow(XB, T )

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 40 ∧N(XB) = 60)

Rule 28:
is_intersection(P ) ∧ is_red(XA, T ) ∧ is_red(XB, T )

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 50 ∧N(XB) = 50)

Rule 29:
is_intersection(P ) ∧ is_red(XA, T ) ∧ is_green(XB, T )

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 90 ∧N(XB) = 10)

Rule 30:
is_intersection(P ) ∧ is_red(XA, T ) ∧ is_yellow(XB, T )

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 70 ∧N(XB) = 30)

Rule 31:
is_intersection(P ) ∧ is_red(XA, T ) ∧ is_right_turn_green(XB, T )

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 100 ∧N(XB) = 0)

Rule 32:
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is_intersection(P ) ∧ (road_width(XA, R) = road_width(XB, R))

∧ (orientation(XA) = orientation(XB))

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 33:
is_intersection(P ) ∧ (road_width(XA, R) = road_width(XB, R))

∧ (orientation(XA)! = orientation(XB)) ∧ direction(XB,LEFT)

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 40 ∧N(XB) = 60)

Rule 34:
is_intersection(P ) ∧ (road_width(XA, R) = road_width(XB, R))

∧ (orientation(XA)! = orientation(XB)) ∧ direction(XB,RIGHT)

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 35:
is_intersection(P ) ∧ has_sign(XA, NONE) ∧ (road_width(XA, R) > road_width(XB, R))

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 36:
is_intersection(P ) ∧ has_sign(XA, NONE) ∧ (road_width(XA, R) < road_width(XB, R))

∧ direction(XB,LEFT) ∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 60 ∧N(XB) = 40)

Rule 37:
is_intersection(P ) ∧ has_sign(XA, NONE) ∧ (road_width(XA, R) < road_width(XB, R))

∧ direction(XB,RIGHT) ∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 50 ∧N(XB) = 50)



131

Rule 38:
is_intersection(P ) ∧ has_sign(XA, STOP ) ∧ (road_width(XA, R) = road_width(XB, R))

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 15 ∧N(XB) = 85)

Rule 39:
is_intersection(P ) ∧ has_sign(XA, STOP ) ∧ (road_width(XA, R) = road_width(XB, R))

∧ direction(XB,LEFT) ∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 70 ∧N(XB) = 30)

Rule 40:
is_intersection(P ) ∧ has_sign(XA, STOP ) ∧ (road_width(XA, R) = road_width(XB, R))

∧ direction(XB,RIGHT) ∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 60 ∧N(XB) = 40)

Rule 41:
is_intersection(P ) ∧ is_priority_road(XA, R)

∧ has_sign(XA, NONE) ∧ has_sign(XB, NONE)

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 10 ∧N(XB) = 90)

Rule 42:
is_intersection(P ) ∧ is_priority_road(XA, R)

∧ has_sign(XA, NONE) ∧ has_sign(XB, NONE)

∧ direction(XB,LEFT) ∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 80 ∧N(XB) = 20)

Rule 43:
is_intersection(P ) ∧ is_priority_road(XA, R)

∧ has_sign(XA, NONE) ∧ has_sign(XB, NONE)
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∧ direction(XB,RIGHT) ∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 70 ∧N(XB) = 30)

Rule 44:
is_intersection(P ) ∧ has_sign(XA, NONE) ∧ has_sign(XB, NONE)

∧ (road_width(XA, R) = road_width(XB, R)) ∧ turn(XA,LEFT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 50 ∧N(XB) = 50)

Rule 45:
is_intersection(P ) ∧ has_sign(XA, NONE) ∧ has_sign(XB, NONE)

∧ (road_width(XA, R) < road_width(XB, R)) ∧ turn(XA,LEFT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 70 ∧N(XB) = 30)

Rule 46:
is_intersection(P ) ∧ has_sign(XA, STOP )

∧ turn(XA,LEFT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 80 ∧N(XB) = 20)

Rule 47:
is_intersection(P ) ∧ is_priority_road(XA, R) ∧ has_sign(XA, NONE)

∧ turn(XA,LEFT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 90 ∧N(XB) = 10)

Rule 48:
is_t_junction(P ) ∧ has_sign(XA, NONE)

∧ (road_width(XA, R) = road_width(XB, R))

∧ turn(XA,NONE) ∧ turn(XB,LEFT)

=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 49:
is_t_junction(P ) ∧ has_sign(XA, NONE)
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∧ (road_width(XA, R) = road_width(XB, R))

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 50:
is_t_junction(P ) ∧ has_sign(XA, NONE)

∧ (road_width(XA, R) > road_width(XB, R))

∧ turn(XA,NONE) ∧ turn(XB,LEFT)

=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 51:
is_t_junction(P ) ∧ has_sign(XA, NONE)

∧ (road_width(XA, R) > road_width(XB, R))

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 52:
is_t_junction(P ) ∧ has_sign(XA, STOP )

∧ turn(XA,NONE) ∧ turn(XB,LEFT)

=⇒ (N(XA) = 15 ∧N(XB) = 85)

Rule 53:
is_t_junction(P ) ∧ has_sign(XA, STOP )

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 15 ∧N(XB) = 85)

Rule 54:
is_t_junction(P ) ∧ is_priority_road(XA, R) ∧ has_sign(XA, NONE)

∧ turn(XA,NONE) ∧ turn(XB,LEFT)

=⇒ (N(XA) = 10 ∧N(XB) = 90)
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Rule 55:
is_t_junction(P ) ∧ is_priority_road(XA, R) ∧ has_sign(XA, NONE)

∧ turn(XA,NONE) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 10 ∧N(XB) = 90)

Rule 56:
is_t_junction(P ) ∧ has_sign(XA, NONE)

∧ (road_width(XA, R) = road_width(XB, R))

∧ turn(XA,RIGHT) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 40 ∧N(XB) = 60)

Rule 57:
is_t_junction(P ) ∧ has_sign(XA, NONE)

∧ (road_width(XA, R) > road_width(XB, R))

∧ turn(XA,RIGHT) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 58:
is_t_junction(P ) ∧ has_sign(XA, STOP )

∧ turn(XA,RIGHT) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 25 ∧N(XB) = 75)

Rule 59:
is_t_junction(P ) ∧ is_priority_road(XA, R) ∧ has_sign(XA, NONE)

∧ turn(XA,RIGHT) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 60:
is_intersection(P ) ∧ has_sign(XA, NONE)

∧ (road_width(XA, R) = road_width(XB, R))

∧ turn(XA,RIGHT) ∧ turn(XB,RIGHT)
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=⇒ (N(XA) = 40 ∧N(XB) = 60)

Rule 61:
is_intersection(P ) ∧ has_sign(XA, NONE)

∧ (road_width(XA, R) < road_width(XB, R))

∧ turn(XA,RIGHT) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 70 ∧N(XB) = 30)

Rule 62:
is_intersection(P ) ∧ has_sign(XA, STOP )

∧ turn(XA,RIGHT) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 75 ∧N(XB) = 25)

Rule 63:
is_intersection(P ) ∧ is_priority_road(XA, R) ∧ has_sign(XA, NONE)

∧ turn(XA,RIGHT) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 80 ∧N(XB) = 20)

Rule 64:
is_intersection(P ) ∧ has_sign(XA, NONE)

∧ turn(XA,LEFT) ∧ turn(XB,RIGHT)

=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 65:
is_intersection(P ) ∧ is_green(XA, T ) ∧ is_red(XB, T )

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 0 ∧N(XB) = 100)

Rule 66:
is_intersection(P ) ∧ is_yellow(XA, T ) ∧ is_red(XB, T )

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
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=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 67:
is_intersection(P ) ∧ is_red(XA, T ) ∧ is_red(XB, T )

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 50 ∧N(XB) = 50)

Rule 68:
is_intersection(P ) ∧ is_green(XA, T ) ∧ is_yellow(XB, T )

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 69:
is_intersection(P ) ∧ (SA = SB) ∧ direction(XB,RIGHT)

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 40 ∧N(XB) = 60)

Rule 70:
is_intersection(P ) ∧ (SA > SB) ∧ direction(XB,RIGHT)

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 60 ∧N(XB) = 40)

Rule 71:
is_intersection(P ) ∧ (SA < SB) ∧ direction(XB,RIGHT)

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 72:
is_intersection(P ) ∧ is_one_way_road(XB, R)

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 20 ∧N(XB) = 80)
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Rule 73:
is_intersection(P ) ∧ (road_width(XA, R) > road_width(XB, R)) ∧ (SA = SB)

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 30 ∧N(XB) = 70)

Rule 74:
is_intersection(P ) ∧ (road_width(XA, R) > road_width(XB, R)) ∧ (SA > SB)

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 40 ∧N(XB) = 60)

Rule 75:
is_intersection(P ) ∧ (road_width(XA, R) > road_width(XB, R)) ∧ (SA < SB)

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 20 ∧N(XB) = 80)

Rule 76:
is_intersection(P ) ∧ has_sign(XA, STOP ) ∧ (SA = SB)

∧ turn(XA,RIGHT) ∧ turn(XB,NONE)
=⇒ (N(XA) = 20 ∧N(XB) = 80)


