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Abstract— In industrial positioning systems where rapid
response and high-precision are crucial, minor model inac-
curacies due to unknown dynamics and identification errors
in controller design significantly impede achieving desired
positioning accuracy. This paper introduces and evaluates a
novel, direct data-driven control-based additive feedforward
(FF) compensation method, aimed at enhancing precision in
positioning while streamlining the design process. The purpose
of this additive FF compensation is to attenuate undesirable
error responses resulting from modeling errors in the existing
model-based FF design. The proposed method enhances control
performance by utilizing data-driven prediction of positioning
response and optimizing the predicted response. Moreover,
this work presents a newly developed design theory for the
additive FF controller and highlights its design efficiency.
The effectiveness of the proposed approach is substantiated
through comprehensive experiments with a galvano scanner in
printed circuit board laser drilling applications, demonstrating
significant improvements in positioning accuracy and response
time.

I. INTRODUCTION

Productivity and processing quality requirements for in-
dustrial mechatronics, represented by electronic component
processing machines and machine tools, continue to increase.
In particular, the required control specifications related to
the speed and accuracy of various inherent positioning
mechanisms are becoming increasingly stringent[1]. In the
field of fast and precise positioning control, model-based
feedforward (FF) compensation based on parametric or
nonparametric models of the plant is widely used, and there
are many reports in literature on its effectiveness[2], [3].

The efficacy of model-based control is widely known to
depend heavily on the precision of model identification.
Consequently, significant research efforts have been directed
not only towards controller design but also towards system
identification, and advanced system identification techniques
have been developed[4], [5]. However, in fast and precise
positioning control, even slight errors in modeling can cause
error responses that interfere with the target accuracy. In
general, this makes it difficult to obtain the desired position-
ing performance simply by designing an FF controller using
an identified model. Therefore, control engineers fine-tune
the model parameters and/or introduce and adjust additive
FF controllers, such as parallel type controllers[6], [7] and
pre-filters[8], which requires substantial design effort. In
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many types of industrial machines, operating conditions are
becoming more diverse, and the number of control axes
is increasing. More efficient control design, which is in
high demand from industry, is an important developmental
challenge that will lead to lower product costs and more
sophisticated control specifications.

To achieve a more efficient control design, research on
data-driven control is actively being conducted[9], [10],
where controllers are designed from operational data (here-
inafter referred to as learning data) obtained in advance from
a control system. Compared to the traditional model-based
control approach, which employs a step-by-step, indirect
method for control design, the data-driven control approach
is expected to achieve both more efficient design processes
and enhanced control performance. Among various methods,
the direct data-driven control (DDC) method, which uses
solely on the input/output data of a control system for
learning data, is deemed the simplest and most suitable
for industrial applications. This method does not require
additional sensors for data acquisition and enables to directly
and efficiently design controllers using learning data from a
“single” operating experiment. A representative example of
DDC is virtual reference feedback tuning (VRFT)[11], [12],
which, as the name implies, involves designing a feedback
(FB) controller by solving a control cost optimization prob-
lem for a virtual reference input. Furthermore, using a similar
approach to VRFT, several methods have been proposed
for designing FF controllers[13], [14], [15]. However, these
DDC methods require a pre-defined reference model as a hy-
perparameter to generate an appropriate reference input[16].
The design process necessitates complete knowledge or an
accurate model of the control system, and achieving desired
control performance demands as much design effort as the
model-based control approach.

In addressing the issue of reference model design in
DDC, a promising strategy to improve fast and precise
control performance involves the supplementary application
of DDC to a traditional model-based FF control. However,
to the best of our knowledge, this approach has not been
explored in previous research. Therefore, the development
of supplementary DDC technology, as a progressive and ef-
fective application of data-driven control, carries substantial
academic importance.

In this study, to address the problem of fast and precise
control of industrial positioning mechanisms, we proposed
an approach to DDC-based additive FF compensation design
intended to prevent degradation of positioning accuracy
owing to unknown modeling errors that cannot be compen-



Fig. 1. Exterior of galvano scanner.
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Fig. 2. Frequency characteristics of galvano scanner.

sated for via conventional model-based FF compensation.
The proposed method provides an effective approach to
designing an additive FF controller that predicts the response
directly from learning data obtained by a single positioning
experiment and solves a control cost optimization problem
on the predicted response. In addition, the proposed method
does not require the design of a reference model to generate
a reference input by using a target reference generated by an
existing model-based FF control. In this study, we newly
present the design theory of the DDC-based additive FF
compensation and demonstrated its effectiveness through
practical positioning experiments conducted by controlling
a galvano scanner in a printed circuit board laser drilling
machine.

II. PROBLEM OF MODEL-BASED CONTROL APPROACH
IN FAST AND PRECISE POSITIONING

A. Galvano Scanner

Fig. 1 shows an external view of the galvano scanner that
served as the control target. The galvano scanner is a precise
positioning mechanism for controlling the position of a laser
beam in a laser drilling machine for printed circuit boards. To
achieve high productivity and processing quality, a response
frequency of several kHz or more and a positioning accuracy
of several µm or less are required[17]. The galvano scanner is
broadly composed of a galvano mirror that reflects the laser,
a servo motor that drives the mirror, and a rotary encoder
that detects the angular position of the motor. When driving
at high acceleration or deceleration, the low rigidity of the

TABLE I
TARGET CONTROL SPECIFICATIONS.

Condition Stroke Yr Settling accuracy Settling time
[mrad] [µrad] [ms]

C1 1.32 ±13.2 0.48
C2 3.29 ↑ 0.64
C3 6.58 ↑ 0.72

P̃mot(z) C(z) Pmot(z)
−

umff

r
u

ymot

Fa(z)
uaff

r′

Pmir(z)
ymir

Model-based FF

Additive FF

emotFm(z)
rc

Fig. 3. Block diagram of two-degree-of-freedom position control system
with model-based FF and additive FF.

coupling between the motor shaft, mirror, and encoder causes
resonant vibration, resulting in a deterioration in positioning
accuracy. The motor is driven via a servo amplifier, and
current commands (control input) to the servo amplifier
are output from a digital signal processor, which performs
control operations (control period Ts = 20 µs). The FB
signal, which can be used for control operations, is the motor
angular position ymot detected by the encoder, resulting in
a typical load resonant system under semi-closed control,
where ymot is used to control the angular position ymir of
the mirror in response to the load.

In Fig. 2, the blue lines represent the plant frequency
response function (FRF) from the current command u to the
motor position ymot measured using the sinusoidal sweep
test. The galvano scanner has a frequency characteristic with
significant resonant vibration modes around 2.9 kHz and
6.0 kHz. Meanwhile, the purple lines in Fig. 2 represent the
plant FRF from u to the mirror position ymir detected using
the position sensing device sensor. The motor and mirror
positions have resonance peaks at the same frequencies, but
the characteristics of each vibration mode are different.

B. Target Control Specifications

The target control specifications for three stroke conditions
in Table I were examined in this study. In a point-to-point
positioning operation with stroke Yr, the motor and mirror
positions must be settled to within ±13.2 µrad of the target
position within each settling time. These control specifi-
cations were set considering control tuning issues under
multiple typical operating conditions of galvano scanners
used in industry. Challenging targets were set to achieve a
high response frequency of 1.39 ∼ 2.08 kHz (defined as the
reciprocal of the target settling time) for a first resonance
frequency of 2.9 kHz, with high accuracy in the order of
several µm at the laser irradiation position.

C. Position Control System

Fig. 3 shows a block diagram of a two-degree-of-freedom
(2DoF) position control system with model-based FF and
additive FF compensations. In the figure, Pmot(z) represents



TABLE II
PARAMETERS OF PLANT MODEL P̃mot(s).

Ksa [Nm/V] 3.00×10−3 J [kgm2] 1.62×10−6

L [s] 29.49×10−6

ω1 [rad/s] 2π×2925 ω2 [rad/s] 2π×6053
ζ1 6.77×10−3 ζ2 8.23×10−3

k1 0.40 k2 -1.54
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Fig. 4. Frequency characteristic of model-based FF controller Fm(z).

the dynamics of the galvano scanner to the motor position
ymot, Pmir(z) represents the dynamics of the galvano scanner
to the mirror position ymir, C(z) denotes the FB controller,
P̃mot(z) is the plant model for Pmot(z), Fm(z) denotes the
model-based FF controller, Fa(z) denotes the additive FF
controller, rc is the position command, r is the position
trajectory reference to the motor, emot is the motor position
tracking error, umff is the model-based FF control input,
and uaff is the additive FF control input. Note that the
command r′ input to Fa(z) is delay-free owing to the dead
time factor in P̃mot(z). If the plant model without a dead
time factor is P̃ ′

mot(z), r
′(z) = P̃ ′

mot(z)umff(z) holds. The
FB controller C(z) was composed of a PID controller and
two stages of second-order IIR filters connected in series.
The FB controller parameters were designed in the frequency
domain using the measured FRF, considering the expansion
of the FB control bandwidth and robust stabilization of the
first- and second-order vibration modes[19].

D. Design of Model-Based FF Compensation

In this study, umff and P̃mot(z) corresponding to model-
based FF compensation were designed based on deadbeat
FF control manner[3]. The design model P̃mot(z) used the
following parametric model in the s-domain representation
considering the two main vibration modes.

P̃mot(s) =
Ksa

J
e−Ls

(
1

s2
+

2∑
i=1

ki
s2 + 2ζiωis+ ω2

i

)
(1)

where Ksa is the gain of servo amplifier, J is the moment
of inertia, L is the equivalent dead time, ωi is the resonance
frequency of the ith vibration mode, ζi is the modal damping
coefficient of the ith vibration mode, and ki is the mode
influence coefficient of the ith vibration mode. The model
parameters were identified as shown in Table II by applying
the vector fitting method[18] on the measured FRF shown
by the blue lines in Fig. 2. The FRF of P̃mot(z) obtained by

C1
C2
C3

(a)

(b)

Fig. 5. Waveforms of model-based FF compensation: (a) position trajectory
reference r; (b) model-based FF control input umff .

discretizing (1) via the tustin transformation with period Ts

is represented by the black dashed lines in Fig. 2. From the
figure, the identified plant model accurately reproduced the
frequency response of the actual system.

The FF controller Fm(z) was designed by solving an opti-
mization problem using P̃mot(z) as the design model and the
objective function being frequency shaping at around the first
and second resonance frequencies and jerk minimization[1].
Fig. 4 shows the frequency characteristic of Fm(z) designed
for each stroke condition. From the figure, Fm(z) suppresses
frequency components at around 2.9 kHz and 6.0 kHz for
compensating for vibratory response owing to the vibration
modes. Fig. 5 shows the time responses of the generated
position trajectory reference r as the reference input in the
2DoF control system and model-based FF control input umff .
As seen from Fig. 5, each position reference settles to the
target position at the target settling time by the deadbeat
control manner. If there are no modeling errors, the actual
motor and mirror positions, ymot and ymir, can achieve the
desired response by realizing emot = 0 during the positioning
motion with the model-based FF compensation. For details
of the deadbeat FF control design method, see reference [3].

E. Undesired Error Response in Model-Based FF Compen-
sation

We conducted positioning experiments on an actual gal-
vano scanner to confirm the control performance of the
model-based control approach. Here, it should be noted
that the design of the model-based FF compensation used
the design model obtained through curve fitting to the
measured FRF, without any adjustment of model parameters
for improving positioning performance. Fig. 6 shows the
motor position ymot, mirror position ymir, and their position
errors Yr − ymot and Yr − ymir for each stroke condition.
As indicated in the position responses, from a macroscopic
perspective, thanks to the model-based FF compensation,



0 0.5 1 1.5 2 2.5 3
Time [s]

0

0.5

1

1.5
Po

si
tio

n 
[m

ra
d]

Ref.
Motor
Mirror

0 0.5 1 1.5 2 2.5 3
Time [s]

-40

-20

0

20

40

Po
s.

 e
rr

or
 [

ra
d]

Motor
Mirror

(a)

0 0.5 1 1.5 2 2.5 3
Time [s]

0

1

2

3

4

Po
si

tio
n 

[m
ra

d]

Ref.
Motor
Mirror

0 0.5 1 1.5 2 2.5 3
Time [s]

-40

-20

0

20

40

Po
s.

 e
rr

or
 [

ra
d]

Motor
Mirror

(b)

0 0.5 1 1.5 2 2.5 3
Time [s]

0

2

4

6

8

Po
si

tio
n 

[m
ra

d]

Ref.
Motor
Mirror

0 0.5 1 1.5 2 2.5 3
Time [s]

-40

-20

0

20

40

Po
s.

 e
rr

or
 [

ra
d]

Motor
Mirror

(c)

Fig. 6. Experimental waveforms of position, ymot and ymir, and position error, Yr − ymot and Yr − ymir, in case of model-based FF compensation:
(a) C1; (b) C2; (c) C3.

ymot followed r with high accuracy, and both ymot and
ymir rapidly settled to the target position. However, when
we focused on the position errors, both ymot and ymir

experienced an non-negligible overshoot immediately after
settling, exceeding the target settling accuracy of ±13.2 µrad
in all stroke conditions.

The experimental results revealed that owing to the influ-
ence of minor modeling errors for nonlinear dynamics such
as friction and identification errors in the FRF measurement,
it was difficult to satisfy the control specifications using the
model-based FF compensation designed via a general system
identification method. As mentioned in Sect. I, in industry,
engineers tune the model parameters and/or introduce the ad-
ditive FF controller. In the following sections, we improved
the positioning accuracy by applying DDC-based additive
FF compensation supplementary to the existing model-based
FF compensation with considerable effort to overcome this
problem.

III. DATA-DRIVEN DESIGN THEORY OF ADDITIVE FF
COMPENSATION

A. Objective Function

The additive FF controller Fa(z,ρ) in Fig. 3 is defined
as a linear structure of the basis function vector Ψ(z) ∈
C1×(N+1) and parameter vector ρ ∈ RN+1:

Fa(z,ρ) = Ψ(z)ρ

Ψ(z) = [Ψ0(z) Ψ1(z) · · · ΨN (z)]

ρ = [ρ0 ρ1 · · · ρN ]⊤
(2)

The design target, ρ, is set by solving the optimization
problem shown in (3) to minimize the error between the tar-
get position reference r(t) and the predicted motor position
ŷmot(t,ρ) at discrete time t = Mst,Mst + 1, . . . ,Med.

J (ρ) =

Med∑
t=Mst

(r(t)− ŷmot(t,ρ))
2 (3)

The noteworthy point in (3) is that in the proposed approach,
the position reference r generated by the model-based FF
control is directly used as the reference input to be followed
in the design of DDC-based FF control.

First, if G is an LTI system with an SISO of x(t) as
input and y(t) as output, the lifted representation at t =
0, 1, . . . ,Med is expressed as

y = Gx (4)

where

G =


D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAMed−2B CAMed−3B · · · D


∈ R(Med+1)×(Med+1)

y = [y(0) y(1) · · · y(Med)]
⊤ ∈ RMed+1

x = [x(0) x(1) · · · x(Med)]
⊤ ∈ RMed+1

(5)

Note that A,B,C, and D in the Toeplitz matrix G are
coefficient matrices of G. Applying the above lifted expres-
sion to Pmot(z), P̃mot(z), P̃ ′

mot(z), C(z), and Fa(z), we
can denote the Toeplitz matrices as Pmot, P̃mot, P̃ ′

mot, C,
and Fa, respectively. Expressing r(t), umff(t), and ŷmot as
vectors in t = 0, 1, . . . ,Med gives

r = [r(0) r(1) · · · r(Med)]
⊤ ∈ RMed+1

umff = [umff(0) umff(1) · · · umff(Med)]
⊤ ∈ RMed+1

ŷmot(ρ) = [ŷmot(0,ρ) ŷmot(1,ρ)

· · · ŷmot(Med,ρ)]
⊤ ∈ RMed+1

(6)

In this vector notation, ŷmot(ρ) can be represented as
follows:

ŷmot(ρ) = (I + PmotC)−1Pmot

(I +CP̃mot + Fa(ρ)P̃
′
mot)umff

(7)

However, ŷmot(ρ) in (7) cannot directly predict the response
as stated since it contains the unknown Pmot. Therefore,



based on the DDC approach[13], [14], [15], after conduct-
ing a learning data acquisition experiment with the initial
parameter ρ0, we used the output response data ymot0(t), t =
0, 1, . . . ,Med to predict ŷmot via an expression independent
of Pmot. As in (7), it was assumed that the following
equation holds for the vector ymot0 ∈ RMed of ymot0(t)
obtained from the learning experiment.

ymot0 = [ymot0(0,ρ0) ymot0(1,ρ0) · · · ymot0(Med,ρ0)]
⊤

= (I + PmotC)−1Pmot

(I +CP̃mot + Fa(ρ0)P̃
′
mot)umff

(8)

When additive FF compensation is not applied, this corre-
sponds to Fa(ρ0) = O; therefore, (8) can be simplified as
follows:

ymot0 = (I + PmotC)−1Pmot(I +CP̃mot)umff (9)

If umff is removed by combining (7) and (9) and ŷmot(ρ)
is rearranged, ŷmot(ρ) takes a form that does not include
Pmot, as shown in the following equation:

ŷmot(ρ) = ymot0 + Fa(ρ)ySmot0

ySmot0 = P̃ ′
mot(I +CP̃mot)

−1ymot0

(10)

Furthermore, considering (2), ŷmot(ρ) can be expressed as
an Affine function of ρ:

ŷmot(ρ) = ymot0 +Qρ

Q = [Ψ0ySmot0 Ψ1ySmot0 · · · ΨNySmot0]

∈ R(Med+1)×(N+1)

(11)

where Ψi, i = 0, 1, . . . , N are Toeplitz matrices correspond-
ing to the basis function Ψi(z). Equation (11) reveals that
the prediction ŷmot can be directly obtained from learning
data ymot.

From the above, the objective function J (ρ) in (3) can
be expressed using ρ:

J (ρ) = ∥V (r − ŷmot(ρ))∥2

= ∥V (emot0 −Qρ)∥2
(12)

with

emot0 = r − ymot0 ∈ RMed+1

V =

[
OMst×(Med+1)

I(Med−Mst+1)×(Med+1)

]
∈ R(Med+1)×(Med+1)

(13)

where the symbol ∥y∥ represents the 2-norm of the vector
y.

B. Constraint

To design the augmented FF controller Fa(z,ρ) that
outputs zeros after the deley-free position reference r′ settles
to a constant value, the following equality constraint is
introduced:

Fa(1,ρ) = Σρ = 0

Σ = [1 1 · · · 1] ∈ R1×(N+1)
(14)

C. Optimization Problem and Optimal Solution Calculation

By considering the objective function J (ρ) in (12) as a
quadratic form of ρ and the equality constraint in (14) as
an Affine function regarding ρ, the optimization problem to
design the additive FF controller is defined as follows:

ρ∗ := arg min
ρ

J (ρ)

s.t. Fa(1,ρ) = 0
(15)

The optimal solution ρ∗ can be found using the Lagrange’s
multiplier method. Define a Lagragian function L(ρ) as a
linear combination of the objective function and the equality
constraint with an undetermined coefficient 2λ ∈ R:

L(ρ) = J (ρ) + 2λFa(1,ρ)

= ∥V (emot0 −Qρ)∥2 + 2λΣρ
(16)

The partial deviation of L(ρ) can be expressed with W =
V Q ∈ R(Med+1)×(N+1) as follows:

∂L(ρ)
∂ρ

= −2W⊤{V (emot0 −Qρ)}+ 2λΣ⊤ (17)

At the optimal solution, ∂L(ρ)/∂ρ = O holds. Therefore,
from (17), if W⊤W ̸= O, then ρ∗ can be expressed using
λ as

ρ∗ = (W⊤W )−1(W⊤V emot0 − λΣ⊤) (18)

Furthermore, from Σρ = 0 and (18), λ can be derived by

λ = {Σ(W⊤W )−1Σ⊤}−1Σ(W⊤W )−1W⊤V emot0

(19)
From (18) and (19), ρ∗ can be calculated as follows:

ρ∗ = (W⊤W )−1
[
W⊤V emot0

−Σ⊤{Σ(W⊤W )−1Σ⊤}−1

Σ(W⊤W )−1W⊤V emot0

] (20)

From the above design theory, we can design the additive
FF controller based on a data-driven approach directly
using learning data r and ymot obtained through a single
operating experiment. Furthermore, by combining with the
model-based FF compensation, a reference model is not
necessary.

IV. EXPERIMENTAL EVALUATION

To overcome the problems of model-based FF compensa-
tion described in Sect. II, we next applied the DDC-based
additive FF compensation presented in Sect. III and evaluated
its effectiveness experimentally.

A. Design of Augmented FF Controller

For the additive FF controller Fa(z,ρ) in this study, we
used the FIR-type controller represented in the following
equation, considering flexibility in terms of compensating
for unknown modeling errors[20]:

Fa(z,ρ) = Ψ(z)ρ =
[
1 z−1 · · · z−N

]

ρ0
ρ1
...

ρN

 (21)



TABLE III
TIME INTERVALS FOR PREDICTED RESPONSE EVALUATION.

Condition Mst Med

C1 24 (0.48 ms) 124 (2.48 ms)
C2 32 (0.64 ms) 132 (2.64 ms)
C3 36 (0.72 ms) 136 (2.72 ms)
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Fig. 7. Frequency characteristics of additive FF controller Fa(z).

The order N was manually set to N = 7, providing an
adequate degree of freedom for the improvement of control
performance. The parameter ρ in (21) was designed based on
(20) for each stroke condition. Here, the learning data r and
ymot0 were measured in the corresponding stroke condition
using the existing model-based FF compensation shown in
Fig. 6. To set the evaluation time interval of the predicted
response evaluation to 2.00 ms after the target settling time,
we set Mst and Med as shown in Table III.

Fig. 7 shows the frequency characteristics of the additive
FF controller Fa(z). While the designed controllers funda-
mentally possess similar derivative properties, they exhibit
characteristics with varying gains and phases depending on
the stroke conditions. In the model-based control approach,
in general, fine-tune of the controllers for various operating
conditions necessitates considerable effort; however, the pro-
posed DDC approach can design the appropriate controllers
efficiently only by conducting a learning data acquisition
experiment. Fig. 8 shows the additive FF control input uaff .
The designed controllers output stable control inputs during
the transient response of positioning operations, and zeros in
the steady state.

B. Results of Positioning Experiment

Fig. 9 shows the response waveforms of the motor position
ymot, the mirror position ymir, and their position error
Yr − ymot and Yr − ymir from the positioning experiments
when the additive FF compensation was applied. From the
figure, for all stroke conditions, the undesired overshoot
after settling were significantly suppressed, compared to the
results shown in Fig. 6, and both motor and mirror responses
satisfied the target settling accuracy of ±13.2 µm within
the target settling times. In terms of quantitative evaluation,

FF
 c
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ol
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t [

V
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C2
C3

Fig. 8. Waveforms of additive FF control input uaff .

Table IV shows the RMS of the position error and the settling
time of the motor and mirror positions for the 2.00 ms
interval following each target settling time. The additive FF
compensation significantly reduced the RMS of the error
and shortened the settling time for the motor and mirror,
resulting in the improvement of fast and precise positioning
performance.

C. Consideration of Error Response Suppression Mechanism

To investigate the mechanism of the error response sup-
pression owing to the additive FF compensation, we analyzed
the position tracking responses of the motor during the
positioning operation between without and with additive FF
compensation. Fig. 10 shows the time response waveform
and frequency spectrum of the motor position tracking error
emot. In the absence of the additive FF compensation,
the error responses that caused overshoot after the settling
occurred during the transient response of the point-to-point
motion, and their frequency components were mainly be-
tween 500 Hz and 1.2 kHz below the response frequencies.
In contrast, when additive FF compensation was applied,
the additive FF control input uaff shown in Fig. 8 reduced
low-frequency tracking errors, particularly in the frequency
range of 500 Hz to 1.2 kHz, thereby suppressing overshoot
at the settling.

Next, Fig. 11 shows the predicted waveforms of the
motor position error Yr − ŷmot calculated using (11) with
the optimal parameter ρ∗ in the case with the additive FF
compensation. The proposed data-driven method accurately
predicted the measured actual response, and the performance
improvement from the model-based FF compensation is
similar to the experimental results shown in Fig. 6 and Fig. 9.
Therefore, it is evident that the proposed method designs
additive FF controllers shown in Fig. 7 to suppress undesired
error responses through accurate response prediction driven
by learning data and control cost optimization regarding the
predicted response.

V. CONCLUSION

In this study, we proposed a DDC-based design method for
additive FF compensation aimed at fast and precise control
of industrial positioning mechanisms. The proposed method
enabled efficient controller design by directly predicting
responses from learning data obtained from a single posi-
tioning experiment and optimizing the predicted response.
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Fig. 9. Experimental waveforms of position, ymot and ymir, and position error, Yr − ymot and Yr − ymir, in case of additive FF compensation: (a) C1;
(b) C2; (c) C3.

TABLE IV
COMPARISON OF POSITIONING PERFORMANCE.

Condition Additive FF RMS of pos. error [µrad] Settling time [ms]
Motor Mirror Motor Mirror

C1 w/o 8.84 8.65 0.98 0.90
w/ 3.49 (−60.5 %) 3.92 (−54.7 %) 0.42 (−57.1 %) 0.44 (−51.1 %)

C2 w/o 5.27 6.06 0.90 0.94
w/ 2.24 (−57.5 %) 3.08 (−49.2 %) 0.60 (−33.3 %) 0.62 (−34.0 %)

C3 w/o 10.20 11.20 1.14 1.14
w/ 2.60 (−74.5 %) 3.13 (−72.1 %) 0.70 (−38.6 %) 0.70 (−38.6 %)
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Fig. 10. Time response waveform and frequency spectrum of motor position tracking error emot in cases without/with additive FF compensation: (a) C1;
(b) C2; (c) C3.

By applying the proposed additive FF compensation in
conjunction with the existing model-based FF compensa-
tion, it enabled to effectively compensate for undesirable
responses caused by unknown modeling errors that were
not adequately suppressed by the traditional model-based
control approach. The practical effectiveness of the proposed
approach has been verified through positioning experiments
using a galvano scanner under multiple stroke conditions,
enabling the attainment of the target control specifications
with a significant improvement in positioning accuracy.
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