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Abstract— Estimation of an accurate frequency response
function (FRF) of a target system is crucial to design fine servo
controllers that realize fast and precise positioning control.
The empirical transfer function estimation (ETFE) is the most
representative and simplest FRF estimation method in terms
of industrial utility. However, its applicability is limited to
input and output signals of a target system measured during
periodic or reciprocating operations, due to leakage errors
induced by the discrete Fourier transform. Recently, an FRF
estimation method combining ETFE with differential filtering
has been proposed, which enables accurate FRF estimation
in point-to-point motion. This paper theoretically clarifies the
relationship between leakage-free condition and the differential
filtering order in the ETFE-based FRF estimation framework.
Furthermore, it is demonstrated through simulations that
increasing the differential filtering order can broaden the input
and output signals acquisition conditions that enables accurate
FRF estimation.

I. INTRODUCTION

A variety of industrial mechatronics equipment, includ-
ing that used for manufacturing electrical components and
semiconductors, is experiencing increasing demand for faster
and more precise positioning mechanisms. This demand is
driven by the need for improved quality and productivity
[1], [2]. The frequency response function (FRF) of a target
system is a valuable non-parametric model for not only
system analysis but also designing high-precision positioning
controllers [3]. Accurate estimation of the FRF is a critical
aspect of the control design process that significantly impacts
control performance [4], [5], [6].

The empirical transfer function estimation (ETFE) is a
widely used method for estimating the FRF in the industry,
favored for its simplicity and effectiveness [7], [8]. It involves
calculating the FRF estimate from the ratio of the discrete
Fourier transform (DFT) of input and output signals of a
target system. However, due to its reliance on the DFT,
the aperiodicity of input and output signals can introduce
leakage errors, deteriorating the accuracy of FRF estimation.
As a result, ETFE is typically employed with periodic input
and output signals or signals whose initial and final states
coincide, such as in reciprocating motion. Recently, local
frequency modeling [9], [10] has emerged as an alternative
method for estimating the FRF that is not constrained by
the periodicity or the reciprocity in input and output signals.
This approach, which assumes the smoothness of the true
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FRF within a local frequency band, uses a parametric mod-
eling technique to estimate the system FRF separately from
leakage errors. However, to effectively facilitate the separate
estimation, system identification tests using additional exci-
tation by multi-sine or random-noise signals are required.
This implies that it is unable to perform FRF estimation
directly from the input and output signals measured during
processing operations of mechatronics systems. If the system
FRF can be accurately estimated without interrupting the
processing operations for system identification, it becomes
possible to perform tasks such as controller adjustments and
diagnosing anomalies in the positioning mechanism more
frequently [11], [12].

To address this limitation, the authors proposed a method
called ETFE-Diff (empirical transfer function estimation
with differential filtering) [13], which allowed for FRF
estimation from point-to-point (PTP) positioning motion
signals measured during actual operation. This technique,
which employs a first-order differential filter to compute
the differential input and output signals for the DFT-based
FRF estimation, offers a straightforward alternative to tra-
ditional ETFE. By modifying the leakage-free condition
through differential filtering, ETFE-Diff facilitates accurate
FRF estimation using not only periodic and reciprocating
motion signals but also PTP motion signals. In addition,
by applying this method to controller design, improved
positioning accuracy under plant perturbations and enhanced
modeling-free learning are realized in references [13] and
[14].

In this study, we have extended the research on ETFE-Diff,
demonstrating that by increasing the differential filtering
order, the leakage-free condition can be expanded, enabling
accurate FRF estimation under a broader range of operating
conditions. Specifically, we have newly constructed ETFE
with second-order differential filtering, referred to as ETFE-
2Diff, and conducted the aforementioned investigation. The
key contributions of this study are outlined as follows:

• The leakage-free condition for ETFE-2Diff is theoreti-
cally derived and the operating conditions under which
leakage errors can be removed are identified, comparing
to the existing ETFE and ETFE-Diff.

• Through FRF estimation simulations conducted on a
galvano scanner, it is demonstrated that ETFE-2Diff can
effectively perform FRF estimation while suppressing
leakage errors in various types of motion, including
reciprocating, PTP, and ramp motions.
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Fig. 1. Block diagram of FRF estimation system: (a) real; (b) virtual.
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Fig. 2. Conceptual waveform of positioning motion: (a) reciprocating; (b)
PTP; (c) ramp.

II. PROBLEM STATEMENT OF FRF ESTIMATION

The FRF estimation problem addressed in this study con-
siders the calculation of plant FRF estimate P̂ndiff(ωk) from
the input and output signals u(t), y(t) of plant P , which is an
Np-dimensional linear time-invariant SISO system, as shown
in Fig. 1(a). In this figure, t is the index representing discrete
time, k is the index representing the discrete frequency, ωk

is the discrete frequency corresponding to k, undiff(t) is the
n-th differential value of input u(t), yndiff(t) is the n-th
differential value of output y(t), Undiff(k) is the DFT of
undiff(t), Yndiff(k) is the DFT of yndiff(t), and q is the shift
operator. In addition, Fndiff(q) is the n-th order differential
filter defined by

Fndiff(q) = (1− q−1)n (1)

Define the DFT G(k) of time signal g(t), t = 0, 1, . . . , N−1
by the following equation:

G(k) =

N−1∑
t=0

g(t)e−j 2πkt
N , k = 0, 1, ..., N − 1 (2)

where, the discrete frequency index k and the discrete
frequency ωk have the correspondence ωk = 2πk/NTs

TABLE I
ASSUMPTION IN EACH MOTION PATTERN.

Motion pattern Assumption
Recip. i) xp(t ≤ 0) = xp(t ≥ N − 2)

PTP i) xp(t < 0) = xp(0),
ii) xp(t > N − 2) = xp(N − 2)

Ramp
i) xp(t < 0) = xp(0),

ii) xp(N)− xp(N − 1)
= xp(N − 1)− xp(N − 2)

(where Ts is the sampling period).
The state-space representation of plant P is defined by the

following equation:

P :

{
xp(t+ 1) = Apxp(t) +Bpu(t)

y(t) = Cpxp(t)
(3)

where xp(t) ∈ RNp is the state vector at discrete time
t, Ap ∈ RNp×Np ,Bp ∈ RNp×1,Cp ∈ R1×Np are the
state matrices. According to (3), the discrete-time Fourier
transform P (ωk) is expressed by

P (ωk) = Cp(e
jωkI −Ap)

−1Bp (4)

In this study, the estimate P̂ndiff(ωk) is calculated in the
FRF estimation system depicted in Fig. 1(a) by using the
input and output signals u(t), y(t), t = 0, 1, . . . , N−1 for the
positioning motion patterns of reciprocating, PTP, and ramp
motions shown in Fig. 2. It is assumed that the input and
output signals are in a stable state at times t ≤ 0, t ≥ N − 2
for any of the motion pattern, and the plant state xp(t) at
those times satisfies the conditions in Table I.

III. LEAKAGE-FREE CONDITION IN ETFE METHOD
USING DIFFERENTIAL FILTERING

In this section, the leakage-free condition for ETFE com-
bined with differential filtering is theoretically derived with
differential filtering orders of n = 0, 1, and 2 according to
the problem statement established in Sect. II.

A. ETFE (n = 0)

ETFE is the case of n = 0, i.e., without using differential
filters, and the DFT Y (k)(= Y0diff(k)) of the output y(t)(=
y0diff(t)) in (3) can be expressed as follows [7], [9]:

Y (k) = P (ωk)U(k) + T (ωk)

T (ωk) = Cp

(
ejωkI −Ap

)−1
ejωk{xp(0)− xp(N)}

(5)

where U(k)(= U0diff(k)) is the DFT of u(t)(= u0diff(t))
and T (ωk) represents the leakage errors in ETFE. The
plant FRF estimate in ETFE is expressed by the following
equation:

P̂0diff(ωk) :=
Y (k)

U(k)
= P (ωk) +

T (ωk)

U(k)
(6)

From (5) and (6), the leakage-free condition in ETFE, where
T (ωk) = 0, thus ensuring P̂0diff(ωk) = P (ωk), can be
expressed as

xp(0) = xp(N) (7)



From (7), it can be understood that ETFE relates to the plant
state at t = 0 and t = N .

B. ETFE-Diff (n = 1)

ETFE-Diff is applied for differential filtering order n = 1.
When (1) and (3) are considered, the DFT Y1diff(k) of the
first-order differential output y1diff(t) is expressed as follows
[13]:

Y1diff(k) = P (ωk)U1diff(k) + T1diff(ωk)

T1diff(ωk) = Cp

(
ejωkI −Ap

)−1
ejωk

[{xp(0)− xp(N)}
−{xp(−1)− xp(N − 1)}]

(8)

where U1diff(k) is the DFT of the first-order differential
input u1diff(t) and T1diff(ωk) represents the leakage errors
in ETFE-Diff. The plant FRF estimate in ETFE-Diff is
expressed as

P̂1diff(ωk) :=
Y1diff(k)

U1diff(k)
= P (ωk) +

T1diff(ωk)

U1diff(k)
(9)

According to (8) and (9), the leakage-free condition in ETFE-
Diff, where T1diff(ωk) = 0, thus P̂1diff(ωk) = P (ωk) holds,
is expressed by the following equation:

xp(0)− xp(N) = xp(−1)− xp(N − 1) (10)

Compared to the leakage-free condition of ETFE as shown in
(7), the plant states involved in ETFE-Diff increase to four:
t = −1, 0, N − 1, N . Specifically, it satisfies T1diff(ωk) = 0
when the first-order differential values of the plant state (in
the case of backward differential) physically match at t = 0
and t = N . Furthermore, (7) in ETFE represents one of the
conditions of (10). For a detailed theoretical representation of
the leakage-free condition in ETFE-Diff, see reference [13].

C. ETFE-2Diff (n = 2)

In this subsection, the derivation process of the leakage-
free condition in ETFE-2Diff, which is applied for differen-
tial filtering order n = 2, is clarified in detail. To make the
mathematical development more comprehensible, consider a
virtual plant Pv with integration and differential filters placed
before and after the plant P , as depicted in Fig. 1(b), by
equivalently transforming Fig. 1(a). In this case, original
u(t) can be represented by using the second-order differential
input u2diff(t) of u(t) as follows:

u(t) = u2diff(t) + 2u(t− 1)− u(t− 2)

u2diff(t) = (1− q−1)2u(t) = u(t)− 2u(t− 1) + u(t− 2)
(11)

When (11) is substituted into (3), the following equation is
obtained:

xp(t+ 1) = Apxp(t) +Bp{u2diff(t)

+ 2u(t− 1)− u(t− 2)}
= (Ap + 2I)xp(t)− (2Ap + I)xp(t− 1)

+Apxp(t− 2) +Bpu2diff(t)

(12)

In addition, the second-order differential output y2diff(t) of
y(t) is expressed by the following equation according to (3):

y2diff(t) = (1− q−1)2y(t)

= Cp{xp(t)− 2xp(t− 1) + xp(t− 2)}
(13)

From (12) and (13), the state-space representation of the
virtual plant Pv with input u2diff(t) and output y2diff(t) can
be defined as follows:

Pv :

{
xvp(t+ 1) = Avpxvp(t) +Bvpu2diff(t)

y2diff(t) = Cvpxvp(t)
(14)

where

xvp(t) =
[
xp(t) xp(t− 1) xp(t− 2)

]⊤
Avp =

Ap + 2I −2Ap − I Ap

I O O
O I O


Bvp =

[
Bp O O

]⊤
Cvp =

[
Cp −2Cp Cp

]
(15)

Next, the DFT Y2diff(k) of y2diff(t) in (14) is expressed
by

Y2diff(k) = Cvp(e
jωkI −Avp)

−1BvpU2diff(k)

+Cvp(e
jωkI −Avp)

−1ejωk

{xvp(0)− xvp(N)}
(16)

where U2diff(k) is the DFT of u2diff(t). When (ejωkI −
Avp)

−1 in (16) is expanded and rearranged using Ap,Bp,
and Cp, the result is the following equation:

Y2diff(k) = P (ωk)U2diff(k) + T2diff(k)

T2diff(k) = Cp(e
jωkI −Ap)

−1 [xp(0)− xp(N)

− 2{xp(−1)− xp(N − 1)}
+xp(−2)− xp(N − 2)]

(17)

where T2diff(ωk) represents the leakage errors in ETFE-
2Diff. Similar to ETFE and ETFE-Diff, the plant
FRF estimate can be defined by (18) as the ratio
of DFTs U2diff(k), Y2diff(k) of the differential signals
u2diff(t), y2diff(t):

P̂2diff(ωk) :=
Y2diff(k)

U2diff(k)
= P (ωk) +

T2diff(ωk)

U2diff(k)
(18)

From (17) and (18), the leakage-free condition in ETFE-
2Diff for which T2diff(ωk) = 0 and P̂2diff(ωk) = P (ωk)
hold is represented by

{xp(0)− xp(−1)} − {xp(−1)− xp(−2)} =

{xp(N)− xp(N − 1)} − {xp(N − 1)− xp(N − 2)}
(19)

This equation, compared to (7) for ETFE and (10) for
ETFE-Diff, shows that the time related to the leakage-free
condition in ETFE-2Diff increases to six: t = −2,−1, 0, N−
2, N − 1, N . Physically, (19) implies that T2diff(ωk) = 0
holds when the second-order differential values (in the case
of backward differential) of the plant state at t = 0, N match.
Furthermore, (19) is an equation including (7) for ETFE and
(10) for ETFE-Diff.



TABLE II
FEASIBILITY OF LEAKAGE-FREE CONDITION IN EACH MOTION PATTERN.

Method Leakage-free Motion pattern
cond. Recip. PTP Ramp

ETFE (n = 0) Eq. (7) ✓
ETFE-Diff (n = 1) Eq. (10) ✓ ✓

ETFE-2Diff (n = 2) Eq. (19) ✓ ✓ ✓

Fig. 3. Appearance of laboratory galvano scanner.

D. Feasibility of Leakage-Free Condition in Each Motion
Pattern

Table II summarizes the respective feasibility of the
leakage-free condition in ETFE, ETFE-Diff, and ETFE-2Diff
shown in Sections III-A, III-B, and III-C for the three motion
patterns (reciprocating, PTP, and ramp motions). According
to the table, it is possible to suppress leakage errors across
a wide range of motion patterns if the differential filtering
order is increased, and accurate FRF estimation that sup-
presses leakage errors for all motions is theoretically possible
for ETFE-2Diff. It reveals that the leakage-free condition for
differential filtering order n encompasses the conditions for
all orders up to n− 1.

IV. SIMULATION-BASED COMPARATIVE EVALUATION OF
FRF ESTIMATION METHODS

A. Galvano Scanner

The galvano scanner as the control object is a high-
precision servo mechanism for controlling the laser position
of printed circuit board laser drilling machine. It requires a
response frequency of several kHz and a positioning accuracy
of several µm in order to realize high productivity and
machining quality. The appearance of the laboratory galvano
scanner is shown in Fig. 3. The galvano scanner consists of a
galvano mirror that irradiates a laser, a DC servo motor that
drives the mirror, and an encoder that detects motor angular
position. The dashed red line in Fig. 4 shows the measured
FRF of the galvano scanner, which has resonance vibration
modes at 2.83 kHz and 6.04 kHz due to motor shaft torsion
and mirror deformation.

The s-domain transfer function model P (s) from current
reference u as the control input to motor angular position y
as the control output is expressed by the following equation,
considering the first and second resonance modes:

P (s) = Kge
−Ls

(
1

s2
+

2∑
i=1

ki
s2 + 2ζiωis+ ω2

i

)
(20)
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Fig. 5. Block diagram of positioning control system.

where Kg is the gain consisting of torque constant, moment
of inertia, and steady-state gain of current control system, L
is the equivalent dead time, ωi is the resonance frequency of
the i-th resonance mode, ζi is the damping coefficient, and
ki is the mode gain. The solid gray line in Fig. 4 shows the
model FRF of P (z), which is obtained by discretizing P (s)
via the Tustin transformation with sampling period Ts =
20 µs. The model FRF well reproduces the measured FRF.

B. Positioning Control System

Fig. 5 shows a block diagram of a two-degree-of-freedom
positioning control system used for simulation evaluation.
In the figure, r denotes the target position reference, P (z)
is the plant, Fr(z) and Fu(z) denote FF controllers, and
C(z) is the feedback（FB) controller. The control period
is Ts = 20 µs. The FF controllers were designed based
on the coprime factorization framework using P (z) and
a sixth-order low-pass filter whose cut-off frequency of
3000 Hz. On the other hand, the FB controller was designed
using a PID compensator and two second-order all-pass
filters for resonance mode compensation so that the gain
cross over frequency of the open-loop became about 830 Hz.

C. Simulation Condition

Table III shows the maximum stroke, maximum speed,
and maximum acceleration used in the design of position
reference r(t) for reciprocating, PTP, and ramp motions,
while Fig. 6 shows the waveforms of the designed r(t)
for all motion patterns. In the simulation described below,
u(t) and y(t) (plant input and output signals) obtained by
each motion were used to perform FRF estimation by ETFE,



TABLE III
SETTINGS OF POSITION REFERENCE.

Parameter Recip. PTP Ramp
Max stroke [rad] 6.58× 10−3 6.58× 10−3 0.33
Max vel. [rad/s] 40 40 40

Max acc. [rad/s2] 500× 103 500× 103 500× 103
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Fig. 6. Response waveform of position reference r(t).

ETFE-Diff, and ETFE-2Diff, and the estimation accuracy
was then compared and evaluated. Furthermore, the data
length of the input and output signals was set to N =
251 (NTs = 5.02 ms), and for the DFT, considering the
frequency resolution, zero-padding was applied to the end
of the data to set the data length to M = 4096 (NTs =
81.92 ms). In addition, in order to isolate the cause of FRF
estimation errors to solely leakage errors, the simulation
disregarded quantization of the output signal, disturbance,
and noise.

Figs. 7, 8, and 9 show the response waveform of control
input u(t), motor angular position y(t), and their differential
values udiff(t), ydiff(t), u2diff(t), y2diff(t) in each motion. It
is evident that the assumptions listed in Table I are almost
ideally satisfied for each motion pattern (although waveforms
at t < 0 are not shown, xp(t < 0) = xp(0) = O is strictly
satisfied).

D. FRF Estimation Results

Fig. 10 shows the FRF estimation results for reciprocating
motion. In all the FRF estimation methods, the FRF es-
timates closely matched the true FRF. Furthermore, while
the absolute amount was not substantial, an increase of
the differential filtering order n led to an increase of the
low-frequency estimation error. This phenomenon was also
observed under subsequent evaluation conditions, indicating
that it was due to the assumptions in Table I not being
strictly met. Fig. 11 shows the FRF estimation results for
PTP motion. Although a highly accurate FRF estimates were
obtained using ETFE-Diff and ETFE-2Diff, ETFE incurred
significant FRF estimation errors produced by the leakage
errors. Finally, Fig. 12 shows the FRF estimation results for
ramp motion. In this motion pattern, only ETFE-2Diff satis-
fied the leakage-free condition, and accurate FRF estimation
was realized.

From the above simulation results, it can be concluded
that increasing the differential filtering order enables FRF
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Fig. 7. Waveforms of time responses in reciprocating motion: (a) u(t),
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Fig. 9. Waveforms of time responses in ramp motion: (a) u(t), y(t); (b)
u1diff (t), y1diff (t); (c) u2diff (t).

estimation with reduced leakage errors over a broader range
of motion patterns. This demonstrates the validity for Table II
as theoretically presented in Sect. III-D.

V. CONCLUSION

In this paper, we performed theoretical analyses and
simulation evaluations to investigate the relationship between
the leakage-free condition and the order of differential
filtering in FRF estimation methods that incorporate ETFE
with differential filtering. The leakage-free condition for
ETFE-2Diff was theoretically derived, comparing to the
existing ETFE and ETFE-Diff, and it was found that increas-
ing the differential filtering order extends the leakage-free
conditions, which enabled accurate FRF estimation in a
broader motion patters. Furthermore, the validity of the the-
oretical considerations was verified through FRF estimation
simulations for reciprocating, PTP, and ramp motions.

This paper did not consider the influence of nonlinearity
and external disturbance or noise, which could have adverse
effects in ETFE with differential filtering. The theoretical
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Fig. 12. FRF estimation results
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analysis and evaluation regarding these aspects are subjects
for future research.
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