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Summary. It is assumed that a given network has N nodes and. N(N—1) arcs which have
the Probabilities to pass through another node. We have two choices in each arc whether we
change the arc before and replace new arc with high probability, or not. Changing costs
before and after are given. A method of obtaining the optimal path with optimal policy of
replacement which makes the minimum expected-cost from any node ito sink NV in a directed
network is desired. The problem is formulated by using the funcpional equations of dynamic
progamming and which gives some informations in optimal policy. The uniqueness of functional
equations and the convergence of successive approximations are shown. In the last a similiar

problem with time-lag is considered.

1. Introduction. Bellman (2) has given a method of finding the shortest path for a
network using the functional equations of dynamic programming. In this note we propose the
method of obtaining the optimal path with optimal policy of replacement which makes the
expected cost minimum. It js assumed that a given directed network has N nodes and N (N—1)
arcs which have the probabilities {P;;} not to pass through, moreover we are allowed in each
arc ({, j) to replace it new arc with lower probability P:;* at beforehand with cost B;;. In the
second section the problem is formulated in the functional equations of dynamic programming,
an analysis of replacement policy is given in the third section, and uniqueness and apporoxim-
ations in policy space are discussed in the following two sections. In the sixth section numerical
examples are given. Contrary to the above problem of optimal type, a problem of adative

type is formulated in the last section.

2. Formulation. In a directed network a set of N nodes is given and numbered in any
fashion. In every ordered pair (s, ), & j==1, 2, N, we call it arc (¢, 7) and which has the
probability {P:;} not to pass through. We have two choices in each arc whether we change
the arc with {P;;} before and replace the new arc with {P:;*}. Changing costs of arc (i ;)
before and after are B;; and A;; respectively. The traverse cost is denoted dy Cy;j. It is
natural that we assume

Ay; < By ; ' 2.1
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Pi* < Pij (2.2)
Let
U; - minimum expected cost traversing optimal path with
optimal policy of replacement from node ¢ to node N,
Employing the principle of optimality (1], we get
My, (Pis (Agj+U5) + auy (Ciy+U)D N

Us = Min My, (Bij + Pij* (Ag5+Uj5) +4e® (Coj+Uj))
Jj=i y (23)
(F = 1, 2, N—-1)
Uy = 0. (2.4)
where
gi; = 1= pij and P 1 — gii* (2.5)

In the right hand of the upper equation means after-replacement and the lower before-replace-
ment. If the arc (;, ;) does not exsist, we consider the right hand of eq. (2.3) infinite. If it is
1o loop to return the node itself, we number the arc (4, j) as i<j and can obtain the value

of eq. (2.3) directly. But generally we cannot obtain it directly.

3. Analysis in policy of replacement. The equation (2.3) is reformulated in the following ;

[ M [PisAi; + qi5 Cij + Uy 1
Uz’ = My, . N % . R oM - ‘
My [Bij + P Ay + oqi® Ciy + Uil |
e ; 3.
As easily seen, the inequalities
PiiAii+4i;Ci;+UE Bis+Pi*Aij+¢i *Cij+U;
implies
B;;
PR 5 J ) (VN
Pij P7,7 %:A“——C“‘ (3.2)

This means that if we pass from node i to node j, it is better to replace the arc (i,7) beforehand
by new (afterwards), when the first (second) inequality occurs. Let J @ be the set of indices,
1, 2,y t—1, i1, e N, then decompose J @ into two disjoint parts J1® and 2@ ;

PICIS MOl MO

where

. JU B;;
) — CJD Py Pri— Pt = 3] }
J1 {]7] s Pij s Piy—Pij™ = Aii_ci}' ,

and
J=@® —the complement of J1® in J©.
Then (3.1) reduces to the following equation
Min [PijAs+4:5Ci5+U5] 1
U;= My .;I.Iz
in

' [Bij+Pi*Ai;+q:%Ci;+ U] ‘

Ljeno (3.3)

The equality (3.3)enables the calculation simpler than of (3.1).

4. Uniqueness of solution. The uniqueness of solution of (2.3) is shewn by slight

modifications of Bellman (2). Let {U:;} and{V:} are two solutions and # be an integer such that
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Up—Vi—= 'M{LT ~ {Ui'Vi}.

i=1, -,
Suppose that the minimum for U, is attained at 7 and the policy of replacement in the arc
(k,r) is the afterreplacement, and the minimum for Vi is attained at s and the policy in the
arc (k,s) is the before-replacement. Then we get
Ug - Prr(App—Cip) +CrrtU =Byt Pry¥* (Aps—Crs) +Crs+ Uy
V= Bgs+Prs® (Ars—Crs) +Crs+ Vs,
This implies that
Up—Vi UV,
that is,
Up—Vip— UV,
Clearly we see ks, Repeating this Procedure for Us, we get for some #s and 7k,
Up-Vy=Us—V~U,—Vy,
At the mean time, the member of nodes is finite and we exhaust the set of all nodes, and we
have
Ui~V i=Uszg-Va=e=Uy—V y=0,

The similar method is applicable for the remaining three cases with the results that U;=V;

5. An algorithm. The method of successive approximations in policy space yield us
numerical solutions of (2.3). Let {U;®} be an initial approximation and then define {U;®}
inductively by the followings,

My [Pij (At U;F)4-qi5(Ci5-+U; ®) ] i

J=i
My [Byj+Pi* (Ag5-+U ;B )+ % (Cr5+U;B) ]
=1 .

J B 5.1

U, &+1) = My,

Uy 1) =, (5.2)
(k—0,1,2, = )
It is known in (3Jthat the iterations in (5.1) converges in a finite number of steps for any

choice of {U;(®}, Here we consider only the case where

U, =M, [ PinAin--qinCixn ]
Bin+Pin*Ain+4in*Cin (5.3)
(i=1,2, w=e , N—1)
, and
oy (5.4

We shall show that {U;®} is monotone, non-increasing with respect to » for any 7

Uy D —U; (O =My {Miy, [P1j(As5—Ci3) +Cij+U ;O My, [BiI+Pii*(A;;—Ciy) +Ci 54U ;0 ]}
=i i

—My, {PinAin+ainCin, BintPi* Ain+qin*Cin}
=o. (j+N)
On the one hand, for any &k, we easily have
U1 U0 U ;0 —U ;=D (5.5)

for any j (7).
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This implies that

U, G+ <U,; & (5.6)
for any ‘.

It follows that there exsists a finite U;* such that
lim U;® Ug* (5.7)

k—>co

and clearly {U;*} is the unique solution of (2.3).
As Bellman noticed in {2) that U;® represents the minimal expected cost for a optimal path
with at most % steps. This fact implies the foregoing inequalities U; **1)=<U;® gand that at

most (N—1) iterations, U;* converges to U*.

6. Numerical examples. We consider the network of Fig. 1. In this network we can

number every arc (4, j) as <{j and can obtain the solution directly.

Fig.

In each arc the right value means {P;;} and the left {P;;*}, moreover

A;;—A—18

B;;—B—3 for any 7, j.
Ci;=C—2

U1—29.60 (B,3)
U4=-23.60 (B, 5)
Us;—22.00 (A4,4)
U,=15.40 4,7
Us-16.00 (B,6)
Ug—= 7.80 (4,8)
U7z=17.60 (B,8)
Usg= 0.00

Fig. 2 gives the optinal path with optimal policy of replacement. 4 and B denote after-

replacement and before-replacement respectively.

In the second example we consider the Fig.3. In this network we cannot number every arc

(i,7) as i<, j so we apply the successive approximations.
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A;; A-18

B B3 JJ for any ¢, J.

Cij=C= 2
U, ® -0
Uy, (- 5.8 (B,4)
Uy —12,2 (B,4)
U,®~- 0,0
, Ui MW=18,0 (A,3)
U, (1O~ 5,8 (B.4)
Uz =110 (4,2)
U, = 0,0
U, —16.8 (B,3)
Uy, @ = 5.8 (B, 4)
Uz —11,0 (4,2
Uy~ 0.0

We can obtain the solution by two iterations and

show the policy of replacement in Fig.4.

U,—16.8 (B,3)
Us— 5.8 (B,4)
Us;—=11.0 (4,2)
Us= 0.0

7. An adaptive problem. In the foregoing problem, we consider the expected cost
independent of time. Here we shall give an another problem which includes time as a
parameter. The two problems differ essentially from each other in the point that the last
problem is that of adative type and the former is of optimal one. Let U;(#) be the expedéted
cost of traversing from node 7 to node N with time f using optimal policy Let P;;(¢) be the
density function of failure in arc (7,7) at time ¢, and A4;;, B;j and C;; are the same as in the
third section. A and A’ denote the time-lags of afterreplacement of Pi; ({) and P:;* (8)

respectively. Then we have

3 bl ¢ al
(a1, [ [P (=T A0+U (=0 s+ [ a1s(t=5) [Co5+U 5(5) Vs
Ui(t) =My

Mm[[B;_;—Ff[—MPij*(f‘y”S)EAij-'FUj(S*A)]ds%—fl-yl]ij(f"A'_S> [C;,f—ij(S)]dSJ 7.1
L% 0 0 §

(i==1,2, et N-1)

Un(®)=0 (7.2)

We choose an initial sequence
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t 12
[ Pun(t=5) Awnats+ [ qin(t—s) Conds
n

U; 0 () =M; (7.3)

t—A7 t-Al
L BiN-FfO Pm"*(i*A’-“")AZNdS*f‘fO ain(t—A"—5)Cyds |

Uy () =0, (7.4)
Employing the successive approximations, we again get

U, 6o (1) =

t t
Mm[fopij(t—s)[A”-}-Uj k) (S*A)](ls+f0qij(t—s)[ij+U7 (k) (s)]dsJ
=i
Min t— .
M (Bis+ [ Pt = a1 =LA+ U ® (5= aTds [T g, - ar—9)[C1y+U 5 ® (9)1ds)

J~i
(7.5)

Uyt (=0
(=20,1, -+ ) (7.6)
As before discussion, we see that U; ™ (£) represents a minimum cost for path with time
t, and this implies the inequality
U, (et 1) (1) <<U; O (£) (7.7)
and we see that {U;® (#)}*;=0 converges, 7. e.
Jim Ui ® ()= U0 (7.8)

Clearly U;*(¢) is a solution of (7.1).
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