AN ALGORITHM IN A HILBERT SPACE

Masasi Kowada

1. Introduction. Many algorithms for integro-differential equations in a Hilbert space have been studied extensively with the progresses of the high speed automatic computers, and these methods have many extensions and variations.

We shall consider the minimal problem on a subspace V

$$
\begin{equation*}
\inf _{x \in T}\|A x-f\|=\lim \|A x-x\|=\|y-f\|, \quad y \varepsilon \mathrm{H}_{2} \tag{1}
\end{equation*}
$$

for A, a bounded linear operator defined on a separable Hilbert space H_{1} and has the range in another Hilbert space H_{2}.

If the given element x belongs to the range S of A, the above problem reduces to the operational equation

$$
\begin{equation*}
A x=f \tag{1}
\end{equation*}
$$

and the equation of this type have been studied under the some conditions. For a finite dimentional vector space, M. R. Hestenes proposed the so called conjugate gradient method in [1], and W. V. Petryshyn studied for a K-positive operators on a Hilbert space and its some variations. The familier equation of this type is the case where A is a self-adjoint and positive definite operator.

Our method is, in this sense, an extension for these problems.
Another method for the problem (1) is found in V. V. Ivanov [2].
2. Notations and the principal theorem. Let H_{1} and H_{2} be Hilbert spaces and we shall suppose that H_{1} is separable. A is a bounded linear operator defined on H_{1} and its range S is in H_{2}. the solution of the problem (2) is denoted by \boldsymbol{u}, and the residual of \boldsymbol{x}, by $r(x)=f-A x$. The family of the expanding subspaces $\left\{V_{n}\right\}$ is the family of the finite dimentional subspaces in H_{l} which covers the whole space H_{1}, that is, $\bigcup_{n=1}^{\infty} V_{n}$ is dense in H_{1}. For a convenience, we shall agree with denoting the norms in H_{1} and H_{2} by the same notations $\|\cdot\|$, and the inner products by the same notations (,).

The metric function $P(x)$ is defined by the following:

$$
P(x)=\|A x-f\|
$$

THEOREM 1.
Let V be a linear subspace of H_{1} and x_{0} be in V, then the following two conditions are equivalent each other:

1. $\left\|f-A x_{0}\right\| \leqq\left\|f-A\left(x_{0}+z\right)\right\|$ for any $z \varepsilon V$.
2. $\left(f-A x_{o}, A z\right)=0$ for any $z \varepsilon V$.

PROOF. The condition 2. implies that

$$
\left\|f-A\left(x_{o}+z\right)\right\|^{2}-\left\|f-A x_{o}\right\|^{2}=-2 \operatorname{Real}\left(A z, f-A x_{o}\right)+\|A z\|^{2}=\|A z\|^{2} \geqq 0
$$

for any $z \varepsilon V$.
Conversely if we assume $\left(f-A x_{o}, A z\right) \neq 0$, the non-zero scalar α exists such that

$$
\left.\frac{\partial p\left(x_{o}+\lambda z\right)}{\partial \lambda}\right|_{\lambda=\alpha}=1
$$

and the metric function $P(x)$ has the minimum M on the line $x=x_{0}+\lambda z$,
where $\quad \alpha=\left(A z, f-A x_{0}\right) /\|A z\|^{2} \neq 0$
and

$$
M=-\left|\left(f-A x_{0} . A z\right)\right|^{2} /\|A z\|^{2}+\left\|f-A x_{o}\right\|^{2}
$$

And we get $\left\|f-A x_{0}\right\|^{2}-\left\|f-A\left(x_{0}+a z\right)\right\|^{2}=\left|\left(f-A x_{0}, A z\right)\right|^{2}\|A z\|^{2} \geqq 0$.
This completes the proof.
3. An algorithm. The theorem 1 enables us to use the projective method for the construction of the iterative sequence whcih converges to the solution.

LEMMA 1. Let V_{n} be a memder of the expanding subspaces spaned by a linearly independent seguence $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, and x_{n} be the minimal point on V_{n} such that

$$
\min \left\{\|f-A x\|: x \varepsilon V_{98}\right\}=\left\|f-A x_{n}\right\|,
$$

then x_{n} takes the following form :

$$
x_{n}=\Sigma_{k=1}^{n} c_{k} e_{k},
$$

where

$$
\begin{aligned}
& \left(A e_{j}, A e_{k}\right)=0, \quad j=1,2, \ldots, k-1 \\
& c_{k}=\left(f-A x_{k-1}, A e_{k}\right) /\left\|A e_{k}\right\|^{2}
\end{aligned}
$$

or

$$
\begin{aligned}
& \left(f-A x_{k-1}, A e_{k}\right)=0 \\
& c_{k}=0
\end{aligned}
$$

The last case happens, when $A e_{k}=0$.
PROOF. By the theorem 1 and the relation

$$
\left(f-A x_{k}, A e_{j}\right)-\left(f-A x_{k}-1, A e_{j}\right)=-c_{k}\left(A e_{k}, A e_{j}\right)
$$

it is easy to prove the above lemma.
LEMMA 2. Let G be a closed subspace in H_{1} and for the family of the expanding subspaces $\left\{V_{n}\right\}$ put

$$
G_{n}=V_{n} \cap G, \quad n=1,2, \ldots,
$$

then for a starting point x_{o}, the iterative sequence $\left\{A x_{n}\right\}$, where

$$
\begin{equation*}
x_{n+1}=x_{n}+\left(f-A x_{n}, A e_{n}\right) e_{n} /\left\|A e_{n}\right\|^{2} \tag{2}
\end{equation*}
$$

converges to the soluion y of (1) and we get

$$
\lim \left\|A x_{n}-f\right\|=\inf \left\{\|A x-f\|: x \varepsilon G_{n}\right\}=\|y-f\|
$$

PROOF. Put $\mathrm{P}\left(x_{n}\right)=\xi_{n}$, then ξ_{n} is a non-increasing and we denote the limit of the sequence $\left\{\xi_{n}\right\}$ by ξ.
The inequality

$$
\xi_{n}^{2}-\xi^{2} \geqq-\left\{|t|^{2}\|A z\|^{2}+2 \operatorname{Real}\left(t A z, A x_{n}-f\right)\right\}
$$

folds for any complex number, and we have

$$
\left\lfloor\operatorname{Real}\left(A x_{n}-f, A z\right)\right\rfloor^{2} \leqq\|A z\|^{2}\left(\xi_{n}^{2}-\xi^{2}\right)
$$

Putting. $z=x_{n}-x_{m a}$. we get

$$
\left\|A\left(x_{n}-x_{m}\right)\right\|^{2} \leqq\left\|A\left(x_{n}-x_{m}\right)\right\| \sqrt{\left(\xi_{n}^{2}-\xi^{2}\right)+\left(\xi_{m}^{2}-\xi^{2}\right)}
$$

This implies that $\left\{A x_{n}\right\}$ is a Cauchy sequence in H_{2} and there exists an element y in H_{2} such that

$$
\lim A x_{n z}=y
$$

For any $\varepsilon>0$, and $x \varepsilon G$ there is an element x^{*} in H_{1} and an integer N such that

$$
\left\|A x^{*}-f\right\| \leqq\|A x-f\|+\varepsilon\|A\| \text { and } x^{*} \varepsilon G_{N}
$$

Since

$$
\|y-f\| \leqq\left\|A x_{n}-f\right\| \text { for any } n
$$

and x_{n} is the minimal point on G_{n}, we get

$$
\|y-f\| \leqq\|A x-f\|+\varepsilon\|A\|
$$

This shows that

$$
\|y-f\|=\inf \{\|A x-f\|: x \varepsilon G\}
$$

The last part of the assertion in the lemma is obvious.
Corollary. If A is an invertible bounded linear operator, the iterative sequence (3) converges to the solution u of the equation

$$
A x=f
$$

PROOF. The operator A being invertible, $\left\{x_{n}\right\}$ is the Cauchy sequence in H_{1}, and there exists an element $\hat{\mathfrak{u}}$ in H_{1} to which the sequence $\left\{\boldsymbol{x}_{n}\right\}$ converges in norm. We shall show that \mathfrak{a} is the solution \boldsymbol{u}.

For any $\varepsilon>0$ there exists a $x \varepsilon \varepsilon \bigcap_{n=1}^{\infty} V_{n}$ such that

$$
\left\|\mathrm{u}-\hat{\mathrm{u}}-\mathrm{z}_{\mathrm{\varepsilon}}\right\|<\varepsilon_{i}^{\prime}\|A\| .
$$

and there is the least integer N such that $z_{q} \varepsilon V_{n}$ for any $n \geqq N$.
Then by the theorem 1 we get

$$
\left(A\left(u-x_{n}\right), A z_{\mathrm{\varepsilon}}\right)-0 \text { for } n \geqq N
$$

This implies

$$
\left(A(u-\hat{\mathfrak{u}}), A z_{\mathrm{z}}\right)=0
$$

and we have

$$
\because A(u-\hat{\mathrm{u}})\left\|^{2}=\left(A(u-\hat{\mathrm{u}}), A\left(u-\hat{\mathrm{u}}-\mathrm{z}_{\mathrm{z}}\right)\right) \leqq\right\| A\|\|A(u-\hat{\mathrm{u}})\|\| u-\hat{\mathrm{u}}-z_{\mathrm{g}} \|<\varepsilon
$$

Then

$$
\|A(u-\hat{\mathrm{u}})\| \leqq\|A\|\left\|\boldsymbol{u}-\hat{\mathbf{\imath}}-\boldsymbol{z}_{\mathrm{\varepsilon}}\right\|<\varepsilon
$$

and the invertibility of A implies that $u=\hat{\mathrm{u}}$.
we shall remark that a linearly indenpent sequence $\left\{e_{1}, e_{2}, \ldots\right\}$ which is A-orthogonal, that is, which satisfies the condition $\left(A e_{j}, A e_{k}\right)=0$ for $j \neq k$, can be constructed from any linearly cindependent sequence $\left\{q_{1}, q_{2}, \ldots\right\}$ by the iteration

$$
e_{n}=\gamma_{n} q_{n}-\sum_{k=1}^{n-1}\left(A q_{n}, A e_{k}\right) e_{k} /\left\|A e_{k}\right\|^{2}
$$

where γ_{n} is the normalizing factor of e_{n}.
Combining these facts we have the following theorem.
THEOREM 2.
Let $\left\{V_{10}\right\}$ be the expanding subspaces of H_{1} where V_{7} is spaned by the linearly independent A-orthogonal sequence constructed for a bounded linear operator A, then for any starting point x_{0} the sequence $\left\{A x_{n}\right\}$ defined by

converges to the solution y of（1）．
Moreover if A is invertible and f is in S ，the sequence $\left\{x_{n}\right\}$ defined above converges to the solution u of the operational equation（2），and

$$
\left\|A x_{n}-f\right\| \leqq\|A x-f\| \quad \text { for any } x \varepsilon V_{n}, n=1,2, \ldots .
$$

4．An error estimation．Noticing $x_{n} \varepsilon V_{n+1}$ in the last assertion in the theorem 2，we see that the residual $r\left(x_{n}\right)=f-A x_{n}$ ，and when A is invertible and f is in S ，the error $E(x)=u-x$ too，decrease in its norm at the each step of the iteration．
we shall give an error estimation for the last case．
THEOREM 3.
Let x_{n} be the same as in the theorem 2 and let $E_{n}=u-x_{n}$ ．Then we have

$$
\left\|E_{n+1}\right\|^{2} \leqq\left\|A^{-1}\right\|^{2}\left(1-k_{n}\right)\left\|E_{n}\right\|^{2}
$$

where

$$
k_{n}=\left(A e_{n}, f-A x_{n}\right) /\left\|A e_{n}\right\|^{2}\left\|f-A x_{n}\right\|^{2} \leqq 1
$$

PROOF．

$$
\begin{aligned}
& \left\|E_{n+1}\right\|^{2} \leqq\left\|A^{-1}\right\|^{2}\left\|A\left(u-x_{n}-\mathrm{c}_{n} \mathrm{e}_{n}\right)\right\|^{2} \\
& =\mathrm{P}\left(\mathrm{x}_{n}\right)^{2}\left\{1-\left(A \mathrm{e}_{n}, A\left(u-\mathrm{x}_{n}\right)\right) /\left\|A \mathrm{e}_{n}\right\|^{2} \mathrm{P}\left(\mathrm{x}_{n}\right)^{2}\right\}\left\|A^{-1}\right\|^{2} \\
& \leqq\left\|A^{-1}\right\|^{2}\left(1-k_{n}\right)\left\|E_{n}\right\|^{2}
\end{aligned}
$$

REFERENCES

〔1〕 M．R．Hestenes，The conjugate gradient method for solving linear systems．Proceedings of Symposia in Applied Math．，New York， 1956.

〔2〕 V．V．Ivanov，Oshodimosti nekotoryh vyčislitelnỵnỵh algoritmov metoda naimensih kvadratov，Jurnal Byčislitelnoì Matematiki i Matematičeskoĭ Fiziki，Tom 1，No 6， 1961.
［3］W．V．Petryshyn，On a general iterative method for the approximate solution of linear operator equations，Math．of Computation，Vol．17，No．81， 1963.

〔4〕 \qquad ，Direct and iterative methodes for the solution of liner operator equations in Hilbert space，Trans．Amer．Math．Soc．Vol．105，No．1， 1962.

