AN ALGORITHM IN A HILBERT SPACE
Masasi Kowada

1. Introduction, Many algorithms for integro-differential equations in a Hilbert space
have been studied extensively with the progresses of the high speed automatic computers, and
these methods have many extensions and variations.

We shall consider the minimal problem on a subspace V
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for A, a bounded linear operator defined on a separable Hilbert space H; and has the range in

another Hilbert space H,.

If the given element x belongs to the range S of A, the above problem reduces to the operationat

equation

and the equation of this type have been studied under the some conditions. For a finite
dimentional vector space, M. R. Hestenes proposed the so called conjugate gradient method in (1],
and W. V. Petryshyn studied for a K-positive operators on a Hilbert space and its some
variations, The familier equation of this type is the case where A is a self-adjoint and positive
definite operator,

Our method is, in this sense, an extension for these problems,

Another method for the problem (1) is found in V. V. Ivanov (2).

2. Notations and the principal theorem. ILet H, and H, be Hilbert spaces and we shall
suppose that H, is separable. A is a bounded linear operator defined on H, and its range S is in
H,. the solution of the problem (2) is denoted by %, and the residual of x, by r(x)=f—Ax,

The family of the expanding subspaces {V,} is the family of the finite dimentional subspaces in

-]
H, which covers the whole space H,, that is, i} V, is dense in H,. For a convenience, we shall

agree with denoting the norms in H, and H. by the same notations || - ||, and the inner products
by the same notations ( , ).
The metric function P(x) is defined by the following:
P)=||Ax~f].
THEOREM 1.
Let V be a linear subspace of H, and x, be in V, then the following two conditions are equivalent
each other:
1L f—Ax||£|| f—A(xo+2) || for any zeV.
2. (f—Ax, Az)=0 for any zeV.
PROOF. The condition 2. implies that
| f —Axo+2) || ?— || f~Axo || 2= —2 Real (Az, f — Axo) + || Az || 2= || Az ]| 2=0
for any z ¢ V,

Conversely if we assume (f—Ax,, Az)== 0, the non-zero scalar ¢ exists such that
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and the mettic function P(x) has the minimum M on the line x=xo+2z,
where a= (Az, f-Axo) / || Az *F0

and M=~ | (f —Axo. Az) | %/ || Az||*+ || f = Ao || %

And we get || f—A%o||2- || f~ A(xotaz) ||2= | (f - A%, A2) | || Az || 220.

This completes the proof.

3. An algorithm. The theorem 1 enables us to use the projective method for the
construction of the iterative sequence whcih converges to the solution,
LEMMA 1. Let Vo, be a memder of the expanding subspaces spaned by a linearly independent seguence
{er, €o,..., en}, and %y be the minimal point on Vy such that
min {|| f-Ax|| : x &Va}= || f —Axall,

then x, takes the following form :

xn=>:;'§= 16%8,
where
(Aes, Aex) =0, j=1, 2,.., k-1
cx=(f = Axx—y, Aex) /|| Aex ]| %,
or

(f — Axg—y, Aex) =0 .
c,=0.
The last case happens, when Aex=0.
PROOF. By the theorem 1 and the relation
(f = Axy, Aeg) — (f — Axx—1, Aey) = —cr(Aex, Aey),
it is easy to prove the above lemma.
LEMMA 2. Let G be a closed subspace in H, and for the family of the expanding subspaces {Va} put
Ga=VaNG, n=1, 2,...,
then for a starting point x,, the iterative sequence {Axy}, where
Xppr =%t (F = Acn, Aen)en/ || Ay || 2, oeeeereveeremmmrmmmmmiiniisis i g)
converges to the soluion y of (1) and we get
lim|| Axp=f || =inf {{| Ax—f || : xeGa} =|ly-Ff ||
PROOF, Put P(xs) =%, then £, is a non-increasing and we denote the limit of thé sequence
{€a} by £,
The inequality
2 —8=-{11|?|| Az||*+2Real (¢ Az, Axa- )}
folds for any complex number, and we have
(Real (Axa—f,A2))* = || Az||? (E2-8).
Putting.z3=x5—%xm, we get
I AGn=%m) 12 S || AGGn=5m) || v/ =)+ @D,
This implies that {Axs} is a Cauchy sequence in H; and there exists an-element y in H; such that
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limAw, =y,
For any & >0, and x &G there is anvelement x* in H, and an integer Nwsuch that
| Ax*—f|| = || Az-f | +el A] and #* & G, o
Since '
Iy=fI< 1| Axa—fI| for anym
and x5 is the minimal point on Gn, we get ‘
ly—sFrlisllAxc-f 1l +ell All.
Thls shows that
Ny fll—mf{Ile fl: ‘
The last part of the assert:on m the ]emma 15 obvxous ) S
Corollary I f A is an invertible bounded lmear operator, thé iterative sequence (3) conver ges
to the solution u of the equation o ' R -
Ax=Ff. . . . . .
PROOF. The operator A being invertible, }xs} is the Céﬁchy sequencei m Hl,-énd theére
exists an elemént @ in H, to which the sequence {x,} converges in norm. We shall show that

Q4 is the solution z.
®

For any € > 0 there exists a xc & )V, such that
n=1

fu-t-ze | <&/ Al
and there is the least integer N such that z. ¢ V, for any a=N,
Then by the theorem 1 we get
(A(u—x,), Az) —0 for n > N,
This implies
(A(m-1), Az) =0,
and we have

oL JAG@- ) 2= (A -0), A(-(-2) < A JAG@-0) || fu-0-z1 <e.
Then

TA@-D I=Al lle-b -2l <s,
-and the invertibility of A implies that #=1. ,
we shall remark that a linearly indenpent sequence {e;, es,..} which is A-orthogonal, that is,
which satisfies the condition (Aejy, Avek) = (. for j=k,- can be constructed from any linearly

cindependent sequence {4,, -5, ...}.by the iteration .

en=yndn— X321 (Adn, Aer)er/ || Aen ||,
where y, is the normalizing factor of e,.
Combining these facts we have the following'théorem;
THEOREM 2.
Let {Va} be the expanding subspaces of H, where Vo, is spaned by the linearly independent
A-orthogonal sequence constructed for a bounded linear operator A, then for any starting point o
the seduence { Axp} defined by =~ .- U~
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converges to the solution y of (1).
Moreover if A is invertible and f is in S, the sequence {xn} defined above converges to the solution
# of the operational equation (2), and

| Axy—-Fl| || Ax—F || for any x ¢ Vi, n=1, 2, ... .

4. An error estimation, Noticing x, & Vg, in the last assertion in the theorem 2, we see
that the residual r(x,)=f —Ax, and when A is invertible and f is in S, the error E(x)=u-x
too, decrease in its norm at the each step of the iteration.
we shall give an error estimation for the last case.

THEOREM 3.

Let xn be the same as in the theorem 2 and let En=u—xy Then we have o )

HEnall? = AT 21—k | Enll*

where :
kn=(Aen, f—Ax) / || Aen | 21| £ - Axa | 21,

PROOF.
[ Ennll?= ] A7 ]| 2 || A(#—xa—cnen) || *
=P(xn)? {1—(Aen, A(u—xn) ) /|| Aea| P (xa)?} || A7 ]| *
=1 A 12(0—ka) || Enll
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