AN ALGORITHM IN A HILBERT SPACE

Masasi Kowada

1. Introduction. Many algorithms for integro-differential equations in a Hilbert space have been studied extensively with the progresses of the high speed automatic computers, and these methods have many extensions and variations.

We shall consider the minimal problem on a subspace V

 $\inf_{x \in V} ||Ax - f|| = \lim_{x \to \infty} ||Ax - x|| = ||y - f||, \quad y \in H_2$ (1)

for A, a bounded linear operator defined on a separable Hilbert space H_1 and has the range in another Hilbert space H_2 .

If the given element x belongs to the range S of A, the above problem reduces to the operational equation

 $Ax = f, \qquad (1)$

and the equation of this type have been studied under the some conditions. For a finite dimentional vector space, M. R. Hestenes proposed the so called conjugate gradient method in (1), and W. V. Petryshyn studied for a K-positive operators on a Hilbert space and its some variations. The familier equation of this type is the case where A is a self-adjoint and positive definite operator.

Our method is, in this sense, an extension for these problems. Another method for the problem (1) is found in V. V. Ivanov (2).

2. Notations and the principal theorem. Let H_1 and H_2 be Hilbert spaces and we shall suppose that H_1 is separable. A is a bounded linear operator defined on H_1 and its range S is in H_2 , the solution of the problem (2) is denoted by u, and the residual of x, by r(x) = f - Ax.

The family of the expanding subspaces $\{V_n\}$ is the family of the finite dimentional subspaces in H_1 which covers the whole space H_1 , that is, $\bigcup_{n=1}^{\infty} V_n$ is dense in H_1 . For a convenience, we shall agree with denoting the norms in H_1 and H_2 by the same notations $|| \cdot ||$, and the inner products by the same notations (,).

The metric function P(x) is defined by the following:

$$P(\mathbf{x}) = || A\mathbf{x} - f ||.$$

THEOREM 1.

Let V be a linear subspace of H_1 and x_0 be in V, then the following two conditions are equivalent each other:

- 1. $|| f Ax_0 || \leq || f A(x_0 + z) || for any z \in V$.
- 2. $(f Ax_0, Az) = 0$ for any $z \in V$.

PROOF. The condition 2. implies that

 $|| f - A(x_0 + z) ||^2 - || f - Ax_0 ||^2 = -2 Real(Az, f - Ax_0) + || Az ||^2 = || Az ||^2 \ge 0$

for any $z \in V$.

Conversely if we assume $(f - Ax_0, Az) \neq 0$, the non-zero scalar α exists such that

$$\frac{\partial p(x_0 + \lambda z)}{\partial \lambda} | \lambda = \alpha^{-1}$$

and the metric function P(x) has the minimum M on the line $x=x_0+\lambda z$,

where $a = (Az, f - Ax_0) / ||Az||^2 \neq 0$ and $M = - |(f - Ax_0, Az)|^2 / ||Az||^2 + ||f - Ax_0||^2$. And we get $||f - Ax_0||^2 - ||f - A(x_0 + \alpha z)||^2 = |(f - Ax_0, Az)|^2 ||Az||^2 \ge 0$. This completes the proof.

3. An algorithm. The theorem 1 enables us to use the projective method for the construction of the iterative sequence which converges to the solution.

LEMMA 1. Let V_n be a memder of the expanding subspaces spaned by a linearly independent sequence $\{e_1, e_2, \ldots, e_n\}$, and x_n be the minimal point on V_n such that

$$min \{ || f - Ax || : x \in V_n \} = || f - Ax_n ||,$$

then x_n takes the following form :

$$x_n = \sum_{k=1}^n c_k e_k,$$

where

$$(Ae_j, Ae_k) = 0, \ j = 1, \ 2, \dots, \ k-1$$

 $c_k = (f - Ax_{k-1}, Ae_k) \neq || \ Ae_k ||^2,$

or

 $(f-Ax_{k-1},Ae_k)=0$

 $c_{\lambda}=0.$

The last case happens, when $Ae_k=0$.

PROOF. By the theorem 1 and the relation

 $(f - Ax_k, Ae_j) - (f - Ax_k - 1, Ae_j) = -c_k(Ae_k, Ae_j),$

it is easy to prove the above lemma.

LEMMA 2. Let G be a closed subspace in H_1 and for the family of the expanding subspaces $\{V_n\}$ put $G_n = V_n \cap G$, n = 1, 2, ...,

then for a starting point x_0 , the iterative sequence $\{Ax_n\}$, where

$$x_{n+1} = x_n + (f - Ax_n, Ae_n)e_n / ||Ae_n||^2,$$
 (2)

converges to the solution y of (1) and we get

 $\lim ||Ax_n - f|| = \inf \{ ||Ax - f|| : x \in G_n \} = ||y - f||$

PROOF. Put $P(x_n) = \xi_n$, then ξ_n is a non-increasing and we denote the limit of the sequence $\{\xi_n\}$ by ξ .

The inequality

$$\xi_n^2 - \xi^2 \ge -\{ |t|^2 ||Az||^2 + 2Real(tAz, Ax_n - f) \}$$

folds for any complex number, and we have

 $(\text{Real } (Ax_n - f, Az))^2 \leq ||Az||^2 (\xi_n^2 - \xi^2).$

Putting $z = x_n - x_{m_n}$ we get

$$||A(x_n-x_m)||^2 \leq ||A(x_n-x_m)|| \sqrt{(\xi^2_n-\xi^2)+(\xi^2_m-\xi^2)}.$$

This implies that $\{Ax_n\}$ is a Cauchy sequence in H_2 and there exists an element y in H_2 such that

 $\lim Ax_n = y$,

For any $\varepsilon > 0$, and $x \varepsilon G$ there is an element x^* in H_1 and an integer N such that

$$||Ax^*-f|| \leq ||Ax-f|| + \varepsilon ||A||$$
 and $x^* \varepsilon G_N$.

Since

$$||y-f|| \leq ||Ax_n-f|| \quad \text{for any } r$$

and x_n is the minimal point on G_n , we get

$$\|y-f\| \leq \|Ax-f\| + \varepsilon \|A\|$$

This shows that

$$||y-f|| = \inf \{ ||Ax-f|| : x \in G \}$$

The last part of the assertion in the lemma is obvious.

Corollary. If A is an invertible bounded linear operator, the iterative sequence (3) converges to the solution u of the equation

Ax=f.

PROOF. The operator A being invertible, $\{x_n\}$ is the Cauchy sequence in H_1 , and there exists an element \hat{u} in H_1 to which [the sequence $\{x_n\}$ converges in norm. We shall show that \hat{u} is the solution u.

For any $\varepsilon > 0$ there exists a $x\varepsilon \in \bigcap_{n=1}^{\infty} V_n$ such that

 $\|\mathbf{u}-\hat{\mathbf{u}}-\mathbf{z}_{\mathbf{e}}\| < \varepsilon / \|\mathbf{A}\|,$

and there is the least integer N such that $z_{\varepsilon} \in V_n$ for any $n \ge N$.

Then by the theorem 1 we get

$$(A(u-x_n), Az_{\mathfrak{e}}) - 0$$
 for $n \geq N$.

This implies

$$(A(u-\hat{u}), Az_{\varepsilon}) = 0,$$

and we have

 $\|A(u-\hat{\mathfrak{n}})\|^{2} = (A(u-\hat{\mathfrak{n}}), A(u-\hat{\mathfrak{n}}-z_{\mathfrak{e}})) \leq \|A\| \|A(u-\hat{\mathfrak{n}})\| \|u-\hat{\mathfrak{n}}-z_{\mathfrak{e}}\| < \varepsilon.$

Then

$$\|A(u-\hat{\mathbf{u}})\| \leq \|A\| \|\|u-\hat{\mathbf{u}}-z_{\varepsilon}\| < \varepsilon,$$

and the invertibility of A implies that $u=\hat{u}$.

we shall remark that a linearly independent sequence $\{e_1, e_2, ...\}$ which is A-orthogonal, that is, which satisfies the condition $(Ae_j, Ae_k) = 0$ for $j \neq k$, can be constructed from any linearly cindependent sequence $\{q_1, q_2, ...\}$ by the iteration

nati gene offi

$$e_n = \gamma_n q_n - \sum_{k=1}^{n-1} (Aq_n, Ae_k) e_k / || Ae_k ||^2$$

where γ_n is the normalizing factor of e_n .

Combining these facts we have the following theorem. THEOREM 2.

Let $\{V_n\}$ be the expanding subspaces of H_1 where V_n is spaned by the linearly independent A-orthogonal sequence constructed for a bounded linear operator A, then for any starting point x_0 the sequence $\{Ax_n\}$ defined by

 $x_{n+1} = x_n + c_n e_n, \quad where \quad x_n = (f - Ax_n, Ae_n) e_n / ||Ae_n||^2,$

370

converges to the solution y of (1).

Moreover if A is invertible and f is in S, the sequence $\{x_n\}$ defined above converges to the solution u of the operational equation (2), and

 $||Ax_n - f|| \le ||Ax - f||$ for any $x \in V_n$, n=1, 2, ...

4. An error estimation. Noticing $x_n \in V_{n+1}$ in the last assertion in the theorem 2, we see that the residual $r(x_n)=f-Ax_n$, and when A is invertible and f is in S, the error E(x)=u-x too, decrease in its norm at the each step of the iteration.

we shall give an error estimation for the last case.

THEOREM 3.

Let x_n be the same as in the theorem 2 and let $E_n = u - x_n$. Then we have

$$||E_{n+1}||^2 \leq ||A^{-1}||^2 (1-k_n) ||E_n||^2$$

where

$$k_n = (Ae_n, f - Ax_n) / || Ae_n ||^2 || f - Ax_n ||^2 \leq 1.$$

PROOF.

 $|| E_{n+1} || ^{2} \leq || A^{-1} || ^{2} || A(u-x_{n}-c_{n}e_{n}) || ^{2}$ =P(x_n)² {1-(Ae_n, A(u-x_n)) / || Ae_n || ²P(x_n)²} || A⁻¹ || ² \$\le || A⁻¹ || ²(1-k_n) || E_n || ².

REFERENCES

(1) M.R.Hestenes, The conjugate gradient method for solving linear systems. Proceedings of Symposia in Applied Math., New York, 1956.

(2) V.V. Ivanov, Oshodimosti nekotoryh vyčislitelnynyh algoritmov metoda naimensih kvadratov, Jurnal Byčislitelnoj Matematiki i Matematičeskoj Fiziki, Tom 1, No 6, 1961.

(3) W.V.Petryshyn, On a general iterative method for the approximate solution of linear operator equations, Math. of Computation, Vol. 17, No. 81, 1963.

[4] _____, Direct and iterative methodes for the solution of liner operator equations in Hilbert space, Trans. Amer. Math. Soc. Vol. 105, No. 1, 1962.

. . . .