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Altbougb the Weierstrass approximation theorem is interpreted by the terminology of

Banacb algebras, it was discovered and proved by
E.Weicrstrass15) with help of Riemann

inトgrals･

since then, there have been so many proofs with
help of Riemann

integrals･ The shortest One,

we believe, was given by E.Landau 9).
1Besides

these, two function-analysis-theoretical proofs

were known; the one wasgiven by N.Bourbaki 1) (cf. also S.Izumi 7)) by making use of absolute

value functions and the other wasgiven by K.Yosida 17)
with help of the theory of one-parameter

semトgroups orlglnated by E.Hill
5)
and 冗.Yosida

16).

Recently, the fundamental theorems in the theory of
Banacb algebras originated by I･

Gelfand 3) (the spectrum radius theorem due to ∫.Gelfand and Banacb field theorem due to

s.Mazur and I.Gelfand) have been proved, with no help of the theory of function of
a complex

variable, by S.Kametani
8), C.E.Rickart 13)･14), and the second named author

10),ll). (cf･ also S･Ito6)

as to an elementary proof of the theorems with
help of the theory of function of a complex

variable.) The aim of this note is, as an application of the
fundamental theorems in the theory

of Banacb algebras, to give an alternative proof of the Weierstrass approximation theorem in a

genralized formgiven by M.H.Stone 12) and I.Gelfand
4).

In §1, we shall give an alternative proof of the fundamental theorems in the theory of

Banacb algebras with
no help of Rieman-Radon

integrals by modifying a method stated
in the

second named author
10)Ill). In §2, we shall deal with an alternative proof of the Weierstrass-

stone-Gelfand approximation theorem by making use of the fundamental theorems in the theory

of Banacb algebras combining with the local theory stated
in the second named author

ll)

§1. BANACⅡ ALGEBRAS. By a lWrmed ring
A we mean an algebra over the field of comlex

numbers
C
with

a norm ll･Jl enjoying the following conditions･･ Ⅰ[aH≧0; Ha" -0 iff a-0,

17αal[-lα=Iall, lla+b‖≦lla11+llbll, and lfablL≦[la‖=bH, wherea,
b∈Aandα∈C. (No

completeness condition is assumed
on A.) We say that a normed ring is a normed field if it ts a

field. By a Banach algebra we mean a normed ring, which is complete with respect
to the norm.

(Ⅰ.Gelfand 1) originally used the terminology of normed rings to indicate
Banach

algebras defined

here.) We say that a Banach algebra is a Banach field if it is a field. For the sake of simplicity,

throughout this note, we are concerned with Banach algebras wiith a mutiplicative unit.

Let A be a Banach algebra. Denote by 1 the multiplicative unit of A. We may assume that

C⊂A. We say that a complex number
α is a left (right) s♪eclrum of an element a in A if α-a

has no left (right) inverse in A. A left (right) spectrum is called a s♪eciJum if A
is commutative.

Write IIa7Io for sup (Jαf ; α being a left or right spectrum of a). It will be shown
later (in

Lemma 1.5) that the set of left or right spectra is non-empty, but, anyway, we put HaIIo-0

if the set of left or right spectra of a would be empty. Write Tlalf叩forlim llanl[1/n. The

exstence of the limit will be shown later (in Lemma 1.2).
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In this section, we give
an alternative proof of the following

THEOREM A (t.Gelfand): Iral!o- Halt帥.

Let a be an arbitry (but fixed) elemeIlt in~A. Denote by (α)′the set of those elements in A

which commute with a, and by (a)" the set of those elements which commute with all elements

in (α)′.The set (α)′′then is a commutative Banacb algebra containing
α
and C.

Moreover, α is a

spectrum of a
in (a)" if and only if it is a left or right spectrum of a

in A. Hence, in order to

prove Theorem A, we can assume without loss of generality that A-(a)", or A is commutative･

putD-(α; ⅠαI<Hallo-1) and 4,(a)-(1-αa)~1 for α ∈ D, Then, .I,(α)
is continuous in D.

put gn(α)-n-1∑L='も1./,(αIl) for α∈ D, where i(1,(2, ..., (,･8idenotes the complete set of n-th roots

of unity. We have from Lagrange's formula gn(α)-(1-(αa)n)-1. Put A-(α;li'm (αa)n-0,α being a

positive real number). It
is immediate that A-(0,β) for some β>0.

LEMMA 1. 1: g乃(a) is uuiformly cqui-conlin〝㈹s
in lhe u)ider sense in D.

PROOF: Take any compact subset D` in D. We ht2ve lEl/,(α)71≦K′for α∈D', where K'is a

positive constant depending only on D'. we then have

llgn(a)-gn(β) ‖≦n~1∑L-nlTl(a-P)a7/,(!lα)4,((iP)‖- ((K')21Ialf) iα-β J.

This shows the assertion of
Lemma 1.1.

LEMMA 1.2･. 1iml[ann 1/n=β~1.

PROOF: We first show that (ll'm7[anlll/n)~1≦β.Suppose the contrary. Select γ such that

β<y<(limHanHl/n)-1. There exists A such that ll(ya)たIll/k<1,or ll(ya)たIJ<1. Hence ll(ya)nll≦

Il(ya)たHsll(ya)r7l-･iO (n-:j3, a-Sk+r, 0≦r<k), or y∈A. This contradicts the construction of P.

Hence we have the assertion.

We next show that β≦(limllanIEl/n)~1.For any O<γくP, we have ll'm (γa)乃=0, and so

ll(γa)nH≦L for all n. Hence limllanH I/n≦y=1, or y≦(lim7fanll
1/n)~1.This implie that P≦

(tim llan ll1/n)~1.

From these二resultsit follows that lt'mI[an l[
1(～
exists and equals to β~1.

LEMMA 1.3: HaHo≦β~1.

PROOF: There is nothing
to do if P-1==こ,. Suppose P-1<⊂:. For β~1<y~1<(!~1く∴ we have

tim(γa)n-0, or ll(ya)nH≦L for all n. Hence, I[(Ja)nII≦((∫/y)nLfor all n, and the series ∑'も=0∽((,a)'i

converges to the inverse of 1-Ja. This implies that llaTl≦(7-Iwhenever P-1く,Ill, or Zlallo≦β-1.

LEMMA 1.4: P-1≦Hallo.

pRboF: suppose the contrary. We can select four real numbers O<aくβくyく∂<8<HaJlo-1

such that ♂-α≦(2(K')2Jla7T)-1,where K′ denotes the positive constant described in the proof of

Lemma 1.1 (D′ニ(`J;I (J I ≦E) ). Since Oくα<P, we have tim (αa)■7も-0,and so limgn(a)-1, because

占fthe continuity of 1/i (FI-tf<1). Since I,I-αJ ( (K')2Ha7Ⅰ)Hott-1≦1/2,
we have from the proof

of Lemma 1.1 ⅠIgn(a)-gn(α)H≦1/2. Hence there exists a natural numderN such that llgn(♂)-17I

≦3/4 for all n≧N, or‖1-(da)nlI
- Ilgn(♂)~11(-∑koHl-gn(♂)たIl≦4for

all n≧N. This implies that

lf(Ja) Jl≦5 forall n≧N. Hence we have ll(ya) Hコ(九′/,5)'''8H≦5(y,I,f)nfI(ga) for all n≧N, or li"lll(ya)ケ名H

=o. we thushavey∈A.
Thisis, however, impossible, because of the construction of β. Hence we

must have P~1≦11allo.

we did not assume so far that the set of spectra of
a was non-empty, and wenowhave the
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following

LEMMA 1,5･･ a has at least one sbectJum
i･n A･

pROOF: Suppose a has no spectrum in A･ We havefromI･emmas l･3 andl･4β- llallo-1=L=':･

or liwl (αa),あ=O for all a>0. Hence2,a- ll(2aa-i)7L王1/==≦l( (2a)n川a-11llも′′l11H
- ll( (21ta~11Ia)n

H/tTltl-0 (n-,::). This is a contradiction･ Thus a has at least one spect(um in A･

pROOF OF THEOREM A: From I.emma 1.5 it follows that the definition of 7Iallo is

meaningful. And we have fromLemmas 1.2-1.4 1IalEo- llall｡･ This completes the proof.

Tbe following Banacb field theorem is
almost

a translation of I.emma l･5:

THEOREM B (S. Mazur and I. Gelfand) ‥ Erery Banach fi'eld is is抑OrPhic onto C･

pROOF: Let A be a Banach field and a be an element
in A. The set (a)"definedbefore is a

field containing
a
and C. In view of

Lemma 1.5, a has at least one spectrum in (a)"I say･ a･

The element α-α has no inverse in (α)′'.and so α-α∈C, This completes the proof･

REMARK (S.Kametani 8))･.Theorem B holds for normed fields･ This fact follows from the

proof I.emmas 1.4 and 1.5.

§2.WEIERSTRASS APPROXIMATION TIIEOREM. In this section, we give
an alternative

proof of the weierstrass approximation theorem in a generalized form given by M･H･Stone
12)
and

I.Gelfand4);

THEOREM C (Weterslrass-Stone-Gclfand) ; Lei O. be a com♪act Hausborff space and
S be an

algebra of real-Valued continuous functions on E2 enjoying the following conditions'･
S coniai-ns 1, the

function taking value 1 constantly, and if `Jl車J2 ((Jl,O2∈O･),
then there exl'sts a function a in S such

that x((Jl)幸x((J2).
Then, every real-valued continuous function on El･ carl be uniformly abProximated

on

Ei by functions in S.

Let O. be a compact Hausdorff space. Denote by C(Ei) the algebra of complex-valued

continuous functions on O.. The algebra C(E2) constitutes a commutative Banach algebra with a

usual norm H
･

H defined by HfT[コSuP(Jf((J) l ;`J∈E2). Denote by R(E2) the set of reaトvalued

continuous functions on O.. The set R (n) constitutes a semi10rdered set with a semi-

ordering l≦g defined by i(`J)≦g(`J) for all u∈0･. We know that every algebraic
homomorphism p

of C(o.) onto C satisfies the following conditions･･ (1) ll州ニ1, (2).o(R(E2) )⊂R, the
field of real

numbers, and (3) 0≦p(I) whenever f∈R(E2) and O≦f. We call such a mapping as p a pure state

of C(El). For (J in亡ユ, the mapping: i-i(`J) defines a pure state of C(E2)･ Denote it by pu･

Given (J in O, denote by E((J) the set of functions e in R(E3) such that `J is an inner point of

(FL;e(FL)ニ1,FL∈t)).

LEMMA 2.1･. Gl'ven any burc state p Of C(Q), there exists a Point
a in EI such thai p(e)幸O

a)henever e∈E(a).

pROOF‥ Suppose the coutrary. Given any {J in E3, there exists ew in E((a) such that p(eu)=0.

put uu=(FL;eu(FL)>1/2, FL∈E3). The set Uu
is open･ Since E3 is compact, there exists a finite subset

t{Jl,{J2,‥., a,も‡of 〔ユsuch that亡l. =∪｡=''bl
Uut, or 1/2≦∑L=1new'. In view of (3), we get 1/2≦

p(∑l=殉Ieol)-∑L=nlP(euL) -0.
This is a contradiction. Thus the proof is completed･

LEMMA 2.2: Given any Pure state p of C(El), there exz'sts
a point a in ∈ユsuch that p-po.

pROOF: We fix a point `J described in Lemma 2.1. It must be shown that p-pu･ By
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urysobn's lemma,given any二e'in E(`J) such
that ee'ニe′. Hence p(e)p(e') -p(e′),

or p(e) -1･ Suppose

now p幸pu. There exists f in C(E2) such that p(I)幸f(`J). put g-(p(I)-I(a) )~1(I-I(a) )･ Since

g(`J)-0,given any 8>0, there existse
in E(の) such that ltcgH≦8, Or lp(g) i

- ip(eg) l≦8･

This implies that p(g)-0, which contradicts the construction of g. Hence
we must have p-p<J･

Let S be a uniformly closed algebra of real-valued continuous functions on仁王with the

properties stated
in Theorem C. In order to proveTheorem C, we need only to show thatS-R(Ll)･

LEMMA 2.3: Zf l≦x∈S, then x-1∈S.

pROOF: Suppose l≦x≦α (1<a). Since 7I1-a-1xH ≦トα-1<1, α~1∑wn:o(1-α~1x)～uniformly

converges to x~1. Hence, Ⅹ~1∈S.

Given a in 〔ユ, denote by F(の) the set of functions e in S such thate(`J)-1 and such that

o≦e≦1. (F((a) is non-empty. Zn fact, 1- !Ix2(1+x2) -llE-1x2(1+x2)~1∈F(`J)whenever x(`J)=O

and O幸x∈R(E2).) Put llfII(J,n-imf(Tle2nfl[;e∈F(a) ) for all f∈C(Ll) (1≦nく…).
It is immediate

that =fllu,n≦llfllu,n.1 and ‖fll2u,n≦llf2ll`J,n.1(1≦nくco). Putt(fltu=suP(HfH`J,n;1≦nく-)

for f∈C(E2). Then ll
･

tlsatisfiesthefollowingconditions‥ llfll≧Itfltu≧0, Hafltuコl α川fllu,

llf+gllu≦l[fllu+lEgI!u, HfgIIu≦![fIIuilglfu, and lけ21lu-llfHコ-, where f, g∈C(o･) and

α∈c. put Ju-(f;=fllu-0, f∈E2(O.) ). Note that (1-e)f∈Ju whenever e≡F((a) and f≡C(0･)I

In fact, Hen(1-e) =≦(n+1)~l/(1+n~1)n-0 (n-の). The quotient algebra C(O･)/I(a constitutes
a

Banach algebra with the
norm TトⅠ[ defined bylllu(i) fTコZlflf'J,Where I(I:denotes

the natural

homooorphism of C(E2) onto C(0.)/Ju. (This norm is independent of a choice of a representative f

of Lu(I).
The completeness condition of C(E?.)/Ju follows from llxll≧IIxIIl (X∈C(O･)/I.,), where

ll･ TIl denotes the induced norm of C(E2)/Jw due to Jw, andso IIxl[≦cIFxlll for some c iin R

(see s.Banachl)).) Moreover, we have 7[x21lニHxII2 for any x in C(E)～)/Jo･

LEMMA 2. 4･. C(E2)/Jo⊇C.

pROOF: We first show that any pure state p of C(p.), which vanishes on九, coincides with

po. we have from Lemma 2.2 p=pw, for some u′ in E2･ Ifヰu′, there exists xinSsuch that

x(u)幸x(u′). Put y-(x(u′トx(a) )-1(x-x(a) ) and e-1- IIy2(1+y3)-1lZIly2(1+y2)-l･
we then have

y(`J)-0,y(u')=1, e∈F(a),and e(u')幸1. This contradictsトe∈Ju andトc((J')=0･ Hence, p-pw･

Obviously, p(J Vanishes
on Ju.

Denote by Mu the set of functions I in C(E2) such that i(a)さ0. Since
Lp(a
Vanishes

on Ju,

we next show that Jo=Mw. Suppose the contrary. There exists a non-zero element x in Mw/Jw･

since IIx=pコIimIIx2殉Hl/2拘
= ⅠIxlf幸0, by Theorem A, there exists a non-zero spectrum

a
of

x. Then the ideal I of C(E2)/Jw generated by αE山(1)-x does not contain the multiplicative unit

Ew(1) of C(E)a)/Jo.
Hence, by Zorn's lemma, there exists a maximal ideal M of C(i"～)/Ju containing

I. The quotient algebra of C(E2)/Jw by M is a Banach field, and
so, by theorem B･ there exists

a pure state p of C(E2), which vanishes on Lの-1(M) (⊃Jw)･
Since p vanishes on Jw･ we have p=po･

This contraeicts p(Ew-1(x) )幸0.
Hence JのコMの, and so C(O)/Jのコ〇(O･),I/Mw芸C･ Thus the proof

is

completed.

LEMMA 2.5‥ Let (el;1≦l'≦n) be a set of funcil'ons l'n R(由) which salc'sfies
the following

condii.ions: 0≦ei≦1 (1≦i≦n) and 1/2≦∑L=nlei. Then, there exists
a natural nJumber N such that

lf (∑L=nle&N)/(∑L=1neiN十1)‖≦3.
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PROOF: We first show that,given (a in 亡ユ, there exist a natural number Nw and a

neighbourhood
γ~wat `J Such that (∑r_1碗((J′)m)/(∑L=1net(`J')別+1≦3for all m≧No and for all u'∈Vw.

we can assume
without:

loss of generalty that el(`J)=-=eた(a) and e)(a)くel(a) (k<j≦n)･

( (j;k<j≦n) might be empty.) Given O<?<1, there exists a neighbourhood Vo at a such that
●

ei(u′)′'p((J')≦1-〟(1≦l'≦k) and 1-I)≦こe)(u′)/♪(u') (k<j≦n) for all三(J'∈Vw,where メ'(u′)=Max

(ei(u′);1≦2'≦n).

Put qi-Ci(包′)/♪(の′)(1≦i≦n). Then, we have

l 1/'♪(u′)- (∑L=1nel(u′)m)/(∑L=1nel(u′)m+1)1) l

-(1/♪(o′) ) F 1-(∑L=1nqim)/(∑l=1nqi桝1)
i

≦2(∑l=1nqiln(1-qi) )≦2(kq+2(n-A) (1-ヴ)`桐)

for all (J'∈V(J. We can select q and Nw such that 2 (kq+2(n-A)(1-7))"i)≦1 for all m≧Nw. We then

have (∑l=1''bei(`J')m)/(∑L=1'2･el((J′)m+1)≦3for all m≧No. and for all (J'∈V山.

we associate Nw and Vw with each
(a in i-ユ. Since亡ユis compact, there exists a finite subset

i(.'1,ul,,..., (Jn) of
〔1.such that O.=L)Lニ1,さVのE. Put N-Max(Nwた;1≦i≦11). It is now immediate that N

is the natural number
in question. Thus the proof is completed.

pROOF OF THEOREM C:Let S be a uniformly closed algebra二of reaトvalued
continuous

functions on O_ with the properties二stated
in Theorem C. It must be shown that S-R(E)A). Let I

be a function in R(i1) and E>0.
By the pr_oof ofLemma 2.4, given

`J in亡ユ, we have llf-f(a)Tl¢

=o.
Hence there exsits eのin F(`J) such that Zlew(I-f(a) ) 7t<E,'3. Put Uo-(IL:e.,(FL)>1/2,FL∈O･).

The set Uw is open. Since
O. is compact, there exists a finite subset i(Jl,`J2,…, (Jni of O･ su〇h

that 亡ユ-.J(=1n Uwl, Or 1/2≦∑L=1newl. Put el-ewL貰(1≦i≦11).
The set (el;1≦i≦n) satisfies the

conditions stated
in Lemma 2.5. Hence, by Lemma 2.5, we have Hf-(∑t=1nf(ul)e`N十1)/(∑l=1neiN'1)

H <(8′/3)1((∑,=1･1もeiN+1)≦8.We thus have f∈S, or R(O･)ニS･ This completes the proof･
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