BANACH ALGEBRAS AND THE WEIERSTRASS APPROXIMATION THEOREM
By Shiro Okumura snd Tamio Ono

Although the Weierstrass approximation theorem is interpreted by the terminology of
Banach algebras, it was discovered and proved by K. Weicrstrass!® with help of Riemann int :grals.
Since then, there have been so many proofs with help of Riemann integrals. The shortest one,
we believe, was given by E,Landau 9., Besides these, two function-analysis-theoretical proofs
were known; the one was given by N.Bourbaki » (cf, also S.Izumi ?) by making use of absolute
value functions and the other was given by K. Yosida ! with help of the theory of one-parameter
semi-groups originated by E Hill ® and K., Yosida 9,

Recently, the fundamental theorems in the theory of Banach algebras originated by 1.
Gelfand » (the spectrum radius theorem due to I. Gelfand and Banach field theorem due to
S, Mazur and I, Gelfand) have been proved, with no help of the theory of function of a complex
variable, by S.Kametani ®, C.E.Rickart % and the second named author %, (cf, also S.Ito®
as to an elementary proof of the theorems with help of the theory of function of a complex
variable.) The aim of this note is, as an application of the fundamental theorems in the theory
of Banach algebras, to give an alternative proof of the Weierstrass approximation theorem in a
genralized form given by M.H.Stone ' and I, Gelfand %.

In §1, we shall give an alternative proof of the fundamental theorems in the theory of
Banach algebras with no help of Rieman-Radon integrals by modifying a method stated in the
second named author D, In §2, we shall deal with an alternative proof of the Weierstrass-
Stone-Gelfand approximation theorem by making use of the fundamental theorems in the theory
of Banach algebras combining with the local theory stated in the second named author D,

§1. BANACH ALGEBRAS, By a normed ring A we mean an algebra over the field of comlex
numbers C with a norm [ -|| enjoying the following conditions: I[d][ =0; |la]| =0 iff a=0,
leall = | a| [lall, lletbli<llall+]Ib]l, and |[ab]|<(lall |[&]], where a, b=A and «=C. (No
completeness condition is assumed on A.) We say that a normed ring is a normed field if it ts a
field. By a Banach algebra we mean a normed ring, which is complete with respect to the norm.
(I.Gelfand b originally used the terminology of normed rings to indicate Banach algebras defined
here.) We say that a Banach algebra is a Banach field if it is a field. For the sake of simplicity,
throughout this note, we are concerned with Banach algebras wiith a mutiplicative unit.

Let A be a Banach algebra. Denote by 1 the multiplicative unit of A, We may assume that
CC A, We say that a complex number « is a left (right) spectrum of an element ¢ in A if a—a
has no left (right) inverse in A. A left (right) spectrum is called a spect4wm if A is commutative.
Write ||a]]lo for sup (|a|; @ being a left or right spectrum of @). It will be shown later (in
Lemma 1.5) that the set of left or right spectra is non-empty, but, anyway, we put | e[ .=0
if the set of left or right spectra of a would be empty. Write |||, for lim || a™| '/ The

exstence of the limit will be shown later (in Lemma 1.2).
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In this section, we give an alternative proof of the following

THEOREM A (I.Gelfand): |allo=]all..

Let a be an arbitry (but fixed) element in A, Denote by (@)’ the set of those elements in A
which commute with a, and by (@)” the set of those elements which commute with all elements
in (@)’. The set (@)” then is a commutative Banach algebra containing @ and C. Moreover, @ is a
spectrum of @ in (@)” if and only if it is a left or right spectrum of @ in A. Hence, in order to
prove Theorem A, we can assume without loss of generality that A=(a)”, or A is commutative,

Put D=(e; | ¢ | <] a]ls) and ¥(&)=(1—aa)~' for « & D, Then, ¥(e) is continuous in D,
Put gn(e) =n"1%, " (af;) for a= D, where {,,¢5 ..., ¢u} denotes the complete set of n-th roots
of unity. We have from Lagrange’s formula gu(e) = (1—(ea)®)~!. Put A= (a;lim (ea)*=0,« being a
positive real number). It is immediate that A= (0O, 8) for some 3>0.

LEMMA 1.1: gn(@) is uuiformly equi-continuous in the wider sense in D,

PROOF: Take any compact subset D' in D, We heve [(a) | €K’ for e D', where K’ is a
positive constant depending only on D’. we then have

Il gn(@) —gn(B) | S X =" || (@—B)ap () (&:B) || = (BH2]lall) |e—B].
This shows the assertion of Lemma 1.1.
LEMMA 1.2: lim|]| a® | " =p"1,

PROOF': We first show that (lim]| a®|/*)-1<p3. Suppose the contrary. Select y such that
B<y<(lim| a® || %)-1, There exists k such that || (ya)*|| /<1, or || (ya)*]| <1. Hence || (y&)*| <
| Ga)|[*]l G@)" ]| =0 (n—>>0, n=sk+r, O=r<k), or y=A. This contradicts the construction of 3,
Hence we have the assertion,

We next show that B (lim| a®||™~!, For any O<y<B, we have lim (ya)®?=O0O, and so
|| pa)® || <L for all n, Hence lim| a® || /*<y=!, or yé(li;n‘”a"]l /my~-1 This implie that =
(im] a® || /™~

From theseTresults it follows that /im|| a™|| /™ exists and equals to 71,

LEMMA 1.3: |l allo=p™

PROOF: There is nothing to do if ~'=:2, Suppose p~1<c>, For g-1<y~1<61<. , we have
lim(ya)?=0, or || (y@)*||<L for all n, Hence, || (da)”| <(d/y)"L for all #, and the series 3in-0" (da)"
converges to the inverse of 1-—da. This implies that | a| Zd-'whenever 1<, or ||a]|l,<g.

LEMMA 1.4: < allo.

PROOF: suppose the contrary. We can select four real numbers O<a<f<y<d<le]allo!
such that 6—e<<(2(K’)?||a]|)~!, where K’ denotes the positive constant described in the proof of
Lemma 1.1 (O'=(0; | © | <&) ). Since 0<a<B, we have lim (ea)?=0, and so /im gs(a) =1, because
of the continuity of 1/¢ (J]1—t|<1). Since | 6—a | ( (K)%}|la]]) |lo]~'=1/2, we have from the proof
of Lemma 1.1 || ga(d) —gn(e) || £1/2. Hence there exists a natural numder N such that || g.(5)—1]|
<3/4 for all =N, or||1— (@)™ = || ga(@) || =Zs=o |l 1—gn()* || =<4 for all n=N. This implies that
| (ba) || <5 forall n=N. Hence we have|| (va) || = (A/)" || <5(y/8)"|| (¢a) for all #=N, or lim|| (ya)" ||
=0, We thus have y=A. Thisis, however, impossible, because of the construction of 8. Hence we

must have g-'< | al ..
We did not assume so far that the set of spectra of ¢ was non-empty, and we now have the
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following

LEMMA 1,5: a has at least one spectium in A,

PROOF: Suppose @ has no spectrum in A, We have from Lemmas 1.3 and 1.4 8= lla] o t=2cn,
or lim (aa)"=0 for all @>0. Hence 2"= || (2ae=)*|| /| 1] =1l @@ || et [I*/ 1111l =1 C @lla™ [[a)n
| /1]l =O (n-»--). This is a contradiction. Thus ¢ has at least one spect(um in A,

PROOF OF THEOREM A: From Lemma 1.5 it follows that the definition of | a|lo is
meaningful, And we have from Lemmas 1.2—1.4 |lalio= |l @]l.. This completes the proof.

The following Banach field theorem is almost a translation of Lemma 1.5:

THEOREM B (S.Mazur and I.Gelfand): Erery Banach field is isomorphic onfo C.

PROOF: Let A be a Banach field and @ be an element in A, The set (a)” defined before is a
field containing @ and C. In view of Lemma 1.5 @ has at least one spectrum in (a)”, say, a.
The element @—a has no inverse in (@)”, and so a=aEC, This completes the proof.

REMARK (S.Kametani ®): Theorem B holds for normed fields. This fact follows from the
proof Lemmas 1.4 and 1.5.

§2. WEIERSTRASS APPROXIMATION THEOREM. In this section, we give an alternative

proof of the weierstrass approximation theorem in a generalized form given by M.H. Stone » and

I. Gelfand 9;

THEOREM C (Weierstrass-Stone-Gelfand); Let Q be a compact Hausborf f space and S be an
algebra of real-valued continuous functions on Q enjoying the following conditions: S contains 1, the
Sfunction taking value 1 constantly, and if o;Fw; (@, ©0.CQ), then there exists a Sfunction x in S such
that x(0)Zx(w,). Then, every real-valued continuous function on Q can be uniformly approximated on
Q by functions in S,

Let @ be a compact Hausdorff space. Denote by C(Q) the algebra of complex-valued
continuous functions on Q. The algebra C(Q) constitutes a commutative Banach algebra with a
usual norm | - || defined by | fll =sup(| f(w) | ;0€Q). Denote by R(Q) the set of real-valued
continuous functions on Q. The set R (Q) constitutes a semi-ordered set with a semi-
ordering f<g defined by f(0)<g(w) for 'all wEQ, We know that every algebraic homomorphism p
of C(Q) onto C satisfies the following conditions: (1) [lell =1, (2) o(R(Q) )CTR, the field of real
nufnbers, and (3) O<p(f) whenever fER(Q) and O<{. We call such a mapping as p a pure state
of C(Q). For v in Q, the mapping: f—f(v) defines a pure state of C(Q). Denote it by p,.

Given « in Q, denote by E(w) the set of functions e in R(Q) such that o is an inner point of

(r;e(w) =1, pEQ).

LEMMA 2.1: Given any pure state p of C(Q), there exists a point o in Q such that p(e)=+0
whenever e=E (0),

PROOF': Suppose the coutrary. Given any o in Q, there exists ¢, in E(v) such that p(e,) =0.
Put U, = (#;e0(#)>1/2, #=Q). The set Uw is open. Since Q is compact, there exists a finite subset
{0, @s, ..., wp} of Q@ such that Q@ =U..% Us, or 1/2<X-'néw. In view of (3), we get 1/2=
p(Ei=Mew) =X p(ew.) =0. This is a contradiction. Thus the proof is completed.

LEMMA 2.2: Given any pure state p of C(Q), there exists a point o in Q such that p=pg,.

PROOF: We fix a point o described in Lemma 2.1. It must be shown that p=py. By
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Urysohn’s lemma, given any ¢ in E(w) such that ee’=¢’. Hence p(e)p(e’) =p(¢’), or p(e) =1. Suppose
now p==p,. There exists f in C(Q) such that p(f)==f(«). put g=((f) —f(w) YW(f—f(w) ). Since
g(w)=0, given any &>0, there exists e in E(w) such that |eg|l<=e or [p(g) ]| = |pleg) | ==
This implies that p(g)=0, which contradicts the construction of g. Hence we must have p=p,.

Let S be a uniformly closed algebra of real-valued continuous functions on Q with the
properties stated in Theorem C. In order to prove Theorem C, we need only to show that S=R(Q).

LEMMA 2.3: If 1=xES, then x-'CS.

PROOF: Suppose 1=x<a (1<a). Since [[l—e x| Z1—a1<]l, a7 X "p0o(l—a™%)® uniformly
converges to x~!, Hence, x'CS,

Given » in Q, denote by F(w) the set of functions ¢ in S such that e(w)=1 and such that
O<e<l. (F(v) is non-empty. In fact, 1— ||#*(1+a?) ~1]|~x?(1+x%)~'&F (@) whenever x(0)=0
and O%=xER(Q).) Put || fll e a=inf (|| ef || ;e=F(0) ) for all FEC(Q) (1£n<e0). It is immediate
that || fllonS !l fllonn and [ F 1% a= | P lla nn (1£0<e), Put] £l o=sup (|l f 1l o nils=n<e)
for F=C(Q). Then || - || satisfies the following conditions: || || = fllo=20, llefllo=le| |l flla
lfrgllo=ll Fllotligllo | fello=llfllollglle, and [[f2llo=1fll%, where f, g=C(Q) and
a=C, Put Jo=(f ;| flle=0, fEQ(Q) ). Note that (1—e)f=J, whenever e—F(vw) and fSC(Q).
In fact, [e®(1—e) || £(n+1)~l/(Q+n1)">0 (n—>c). The quotient algebra C(Q)/J, constitutes a
Banach algebra with the norm | - || defined byll«(f) |l =1l fll o where ¢, denotes the natural
homooorphism of C(Q) onto C(Q)/J,. (This norm is independent of a choice of a representative f
of ¢,(f). The completeness condition of C(Q)/J, follows from [|x||=][[x]: (*&C(Q)/J.), where
Il - |l. denotes the induced norm of C(Q)/J, due to J, andso ||x][<c]|x], for some ¢ iin R
(See S.Banach?).) Moreover, we have [[#2]| = | x||? for any x in C(Q)//w.

LE;MIVIA 2.4: C(Q)/Ju=C.

PROOF: We first show that any pure state p of C(Q), which vanishes on J,, coincides with
pe. We have from Lemma 2.2 p=p,, for some o' in Q. If o', there exists x in S such that
x(@)Fx(). Put y=(xw)—x) ) (x—x@) ) and e=1—[ 1+ [~y (1+»")". we then have
y(@) =0, (o) =1, e=F(w), and e(v)=1. This contradicts 1—eZJo and 1—e(w) =0. Hence, p=pn.
Obviously, pw vanishes .on Jo.

Denote by Me the set of functions f in C(Q) such that f(0)=0. Since pw vanishes on Jo,
we next show that J,=M,. Suppose the contrary, There exists a non-zero element x in M,//,.
Since |[x|[.=lim| x**||}/** = ||x||&0, by Theorem A, there exists a non-zero spectrum e« of
x. Then the ideal J of C(Q)//., generated by at,(1)-x does not contain the multiplicative unit
to(1) of C(Q)/Jw. Hence, by Zorn’s lemma, thelfe exists a maximal ideal M of C(Q)//J, containing
J. The quotient algebra of C(Q)//, by M is a Banach field, and so, by theorem B, there exists
a pure state p of C(Q), which vanishes on «,'(M) (DJ.). Since p vanishes on J,, we have p=p,.
This contraeicts p(s,~'(x) )3=0. Hence J,=M,, and so C(Q)/J,=02(Q)/M,=C. Thus the broof is
completed.

LEMMA 2.5: Let (e1;1<i<n) be a set of functions in R(Q) which satisfies the following
conditions: O<e;i<l (15i<n) and 1/2=3.="ei. .Then, there exists a natural nwmber N such that
I (See)/(Sitnei™) || £3.
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PROOF: We first show that, given o in Q, there exist a natural number N, and a

neighbourhood V,, at @ such that (X, la(e)™)/(X.tnes(0)™1L3 for all m=N,, and for all o'EV,,

We can assume without] loss of generalty that e (0)=---=e(0) and ej(w)<e (o) RIi=n).
( (j;k<j=») might be empty.) Given O<3<1, there exists a neighbourhood V., at o such that
(o) D) £l (1<isk) and 1—9=< [es(w)/p(0) (k< j=n) for all;w'CV, where p(v)=Max
(ei(0);1=i=n).
Put 9;=¢;(.) /P(,’) (1=i<n)., Then, we have

[ 1/0(0) — (Z=tnee(@)™) /(e (@)™ 1) |

=(1/p@) ) | 1= (Zi=als™) / (Za="n™ ) |

=2(Xitai™(1—11) )20k +2(n—R) Q—n)™)
for all '&Vo., We can select 7 and N, such that 2 (Bp+2(n—k) (1—n)"™) <1 for all m=N,. We then
have (X1 (0)™) /(X="e (W)™ 1) <3 for all m=N,. and for all &'CV,,.

We associate N, and V,, with each v in Q. Since Q is compact, there exists a finite subset
{ag, @, ..., @} of Q such that Q={J;=%V . Put N=Max(N z;1=i<n). Itis now immediate that N
is the natural number in question. Thus the proof is completed.

PROOF OF THEOREM C: Let S be a uniformly closed algebra,of real-valued continuous
functions on Q with the properties stated in Theorem C. It must be shown that S=R(Q). Let f
be a function in R(Q) and £>0. By the proof of Lemma 2.4, given v in Q, we have || f—f(©) [lo
=0, Hence there exsits ¢, in F(v) such that |le,(f—f(0) )|l <&/3. Put Uy=(p;e,(1)>1/2, p=Q).
The set U, is open. Since ¢ is compact, there exists a finite subset {wj,w,; ..., @s} of Q sudh
that Q=J;ln Uw, oF 1/253-'ntwi. Put e;=e, T(1=i<n). The set (e;;1=i=<n) satisfies the
conditions stated in Lemma 2.5. Hence, by Lemma 2.5, we have || f—(Zi='af (0r)ei™*) /(X i=tne:s¥1)

I <(e/3) || (Zi=lnei¥ ™) =<e. We thus have fES, or R(Q)=S. This completes the proof.
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