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A Method of Functional Analysis in Numerical Integrals

Masasi KOWADA

In the fir:t place we provethat the Banach space C™/P,_;, where C™ is the Banach space
of all functions who have the z-th continuous derivatives and P,., is the closed subspace in Cc™
spaned by all the n—1 dimensional polynomials, is isomorphic to the space of all the continuous
functions. Applying F.Riesz’s theorem to the above fact, we show that the linear functional
on the C(™/P,_; can te written in the form of the Stieltjes-integral. Many error functionals in
numerical integrals are the functionals on the space C™/P,., for some integers »#, and we
have the systematic method of the estimation of the following type:

|E(f)|< @ E| max|f™(x)],
where E - is the norm of the error functional E(f) which may be calculeted as the total
variation of the function of bounded variation assined to the error functional E(f). As an

example, the case of Simpson’s rule is to be showed at the end of this paper.

I. We shall consider the formula

4 mn
[ W @) £ ) dx = EWef )+ B, -(1)
i =
where W(x) is a positive weight function, and xg, %y, ,xm are m-+1 abscissa. When this

formula is considered on the space of all the continuous functions on the closed interval (a,b),
the error E(f) is regarded as a continuous linear functional on the space, and by the theorem
of F.Riesz, we can express E(f) in the integral form.

This implies the existence of the estimatoin of E(f) in the following type,

|E(f)I= [ E El(iié)l fF@®1, -(2)

where || E || is the functional norm which may be calculated as the total variation of the function
of bounded variation assined to the functional E(f).

The fact that the estimation (2) holds for any continuous function, on the other hand,
weakens the accuracy of the approximation,

But the error functional E(f) in (1) is often assumed tohavethe degree of precision 7
which is defined as the largest of integers satisfing the equation E(x®)=0 for any integer

#<y, and we shall consider the method of restriction of the error functional to certain classes
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of continuous functions.

It seems that the recent developments in high-speed autmatic computers may aid
the global treatments in numerical analysis.

See, for an example of the estimation of the error of this type, Davis 2). And we shall

give the example of our method in the case of Simpson’s rule in the last paragraph.

II. Let C™ be the space of all the continuous functions which are defined on the closed
interval (¢,b) and have the n-th continuous derivatives, and | fll; be the norm of feC™
defined by

[ filn iﬁﬁ“ﬂﬁﬂf”x") D,
where f® is the i-th derivative of f.
Then C™ becomes the Banach space with this norm. We shall denote the closed subspace in
C™ spaned by all the #—1 dimentional polynomials by P, and we construct the quatient
space Ky=C®/P,_, in the ordinary manner. Let (f) be an element in K,, which is the coset
represented by f, and [[(f)| be the norm in K, defined by
10 =inf[| f+p a,

where inf is to be taken over peP,_; .

Lemma The Banach space Ky is eQuivalent to the space C©® in the sence of the terminology of
Banach
Proof. We shall. define the operator D, which trasform K, into C;:
Dy(f1=f™,
It is clear that the operator D, is one-one mapping, and moreover

[DalfIlo = 1 f™ ] o=max|(f®+p)(x)| for any pePpi,

i=0,1,+,%
that is, DRI i0= | (0
Then there is a inverse operator of D, and for some positive number M >0, we have
MiC(f) = i DalfY = [0

Any continuous function can be considered as the n-th continuos derivative of some continuous

function, and so D, is the onto mapping. This complete the proof.

By the above lemma we can appy the theorem of F. Riesz to represent a linear functional

of K5 in the integral form. His theorem states that a linear functional F(f) on the C® can

be written in the following integral form:
1]
F ) = | r@ar,
a

and the norm of F is equal to the total variation of i(x), where i(x) is defined as follows;
2(x) = F(9z0) ,
1 (est=x),
Qz,O(t) =
0 (x<t<b).
Let 9z,a(f) be the function defined as follows;
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t—x)/nl  (asi=x),
%am(t) = {
0 (x<{t<b).

Then we have

Theorem. A linear functional E on the space Ky can be represented in the following integral form:

b
E()=| fO@da@), -@®
a
where in(x) = E©9zm),

and the norm of E is edual to the total variation of ix(x).
Proof. For a linear functional E(f) on K, put
E (Dl N=E(fD).
Then the following inequality shows that E is the continuous linear functional on the space
C©); .

[E (DalfNI=EUDISIE] I = M| E || || DalS -

Applying F.Riesz’s theorem to E, we have the above theorem.

If the error functional in (1) has the degree of precision 7, it is easy to see that the
restriction of the error functional to C®, (n<y-+1), may be regarded as the linear continuous
functional on the space K, We shall agree to use the same mnotation for the given error
functional and the restricted one.

Corollary. Let E(f) be the error functional in (1) whose degree of precision is Y, then E(f)can be

represented in the following form;

b

E(f)= Sf(”)(x)dwn(x), fx)eC™ |

a
where an integer n<i+1 and an(x) is defined by
b

an(®) = (1/n) | t—2) 0O dt— T Wy (xe—x) . -(4)
J =

a

III. To illustrate our method, we shall employ the simple case where w(x)=1in (4), and
particulary the rule is Simpson’s 3-point rule.

The function of bounded variation a,(x) takes the following form;
an(x) = (1/n1) (=)™ et 1= Wo(tom ) "= Wi Gr— ) —oovss = Wit =)"}

in each segment (x;, x;1(, and it is easy to compute the total variation of ax(x) .
Let E(f) be the linear functional generated by Simpsons 3-points rule. By regarding E(f) as
the functional on the space Ky, for each n<4,
we have the following estimations:
a) When f(x) is a continuous function, the estimation,

[E(H] £ ZhEn%)X.‘f(x)l,
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holds.

b) When f(x) has the 1-th continuous derivative, the estimation,

[E(f)| £ 3pPmax|fW(x)],
wxe (a,b)
holds.
c¢) When f(x) has the 2-th continuous derivative, the estimation,

lE(f)] = (16/81)h3m(a1§)| F@O@)],

holds.
d) When f(x) has the 3-th continuous derivative, the estimation,

[E(f)] < 8r*max|f®(x)],

xela,b)
holds.

e) When f(x) has the 4-th continuous derivative, the estimation,

IEH| = (1/90)h5urr%3§<)ff(“>(x)l,

holds.
In each case, h=(b—a)/2.
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