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On the Defect Relation for Exponential Curves
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For n+1 distinct complex numbers 2;, Ao+, A, let f= [, &'%, -+, en~¥] be an expo-
nential curve, D be the convex polygon surrounding the points A, A5, A4,., and
XC C" '~ {0} be in general position. Weput X = {aEX|6(a, f)>0}. It is well-known that
(*)Z,cx-6(a, ) <n+1. In this paper we consider when the equality holds in (*).

Theorem. Suppose that D is an n+1—gon. If the equality holds in (*), then

X ={ae, awey ' a,_8,. 1} (@@, a,,#0),

: -1
where e,, e,, ***, e,_, are the standard basis of C"" .

When D is a segment, this theorem dose not hold.

1 Introduction.

Let f=1Lf,,".f,_,] be a holomorphic curve from C into the n-dimensional complex projective space P"(C)
with a reduced representation (f,,**,f,-,) : C =C"'— {0}, where n is a positive integer. We use the following no-

tations:
A= (£ P+ 1 £, () DY
and for a vector a= (a,, -, a,.,)EC" '—{0}
lall=(la, 4+ +la,., D" (a, H=a fi++a, f,-1 (a, @) =a fi(2)+Fa,. f-1(2)
The characteristic function 7(7, f) of f is defined as follows(see[4]):
T(r, 1) == | logllfre") a6~ log|7(O)].

On the other hand, put U(z) = 1<m§)51|]§(2) |, then it is known ([1]) that

27 X
T(r, f)z%j; log U(re™)do+0(1). ()
We suppose throughout the paper that f is transcendental; that is to say,
lim LD o
e log 7

and that f is linearly non-degenerate over C; namely, f,,***,f,; are linearly independent over C. It is well-known
that f is linearly non-degenerate if and only if the Wronskian W= WA, foo) of fi,--,f,-1 is not identically
equal to zero.

For meromorphic functions in the complex plane we use the standard notation of the Nevanlinna theory of
meromorphic functions([2],[3]).

Forae C"'— {0}, we write
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llallllfCre®)i

1
€ (a, fre™yy |20 N a =N 7).

m(r, a, )= f log

We then have the first fundamental theorem
T(r, )=N(r,a, )+m(r, a, f)+0(1)

([4], p.76). We call the quantity

6(a, H=1-lim sup%— liminf%l

r—>o0

the deficiency of a with respect to f. We have 0<6(a, f) <1 from the first fundamental theorem since
N(r, a,f)=0forr>1and m(r, a, f) >0 for r>0.

Let X be a subset of C""'— {0} in general position: that is to say, #X>#+1 and any n+1 elements of X gen-
erate C""'. We denote by e, ---, e,., the standard basis of C""".

Cartan([1]) gave the following

Theorem A (Defect relation). For any ¢ elements a; (j=1, -, ¢) of X (n+1=g< ),

q
Y 6(a, H<n+1.
i=1
For any n+1 distinct complex numbers 4,, ***, 1,,,,, we define a curve f, by
fe: [eilz' elzz’ eA,lel (2)

We call it an exponential curve([4],p.94). It is easy to see that the curve f, is non-degenerate and transcen-

dental. It is an interesting problem to detemine

={aeXlé(a, £,) >0}

for which the equality

Z é6(a, f)=n+1

ac Xt
holds when #>2. When n=1, it is trivial that X = {ae,, be,} (ab#0).
The purpose of this paper is to give an answer to this problem for some cases.
The author owes to Professor Nakamura the solutions of several Diophantine equations at the beginning of

this research.

2 Preliminaries

Let f,= [¢"7, ¢’°,---, "] be the exponential curve given in (2). Let £ be the length of the convex polygon
D surrounding the points 4,, ***, 4,,.;, where £=2] A;— 2, | if the convex polygon reduces to a segment with the end-
points 2; and 4,. Then, £ is equal to the circumference of the convex polygon spanned arround the n+1 points

;le o Ay
Lemma 1 ([4], pp.95-98). T(r, £,) = (4/2m)r+0(1).

Lemma 2. 1) For any a=(ay, **, a,.,) EC""'—{0} such that ¢;#0 (j=1, -+, n+1),
6(a, £)=0, or limsup N(r, a, £,)/T(r, f,)=1.

2) For a vector b=(b,, -, b, . )EC"™'—{0} such that b, #0 1</, < <j,<n+1) and b;=0
G#y s m=2)
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5(b, £)=1—1'/4,

where £’ is the length of the convex polygon spanned arround the points 4; , -, A,
Proof. 1) e,, ***, e,.,, @ are in general position and by Theorem A,
n—1
Y e, £)+6(a, £)<n+1. (3)
i=1

On the other hand, 6(e;, £)=1 (j=1, -, n+1). This and (3) imply that 6(a, £) =0.
92) Let g= [e%?%, -+, &"n*]. Then, by Lemma 1,

T(r, ¢)= (' /2m)r+0(1). (4)
By 1) of this lemma and (4) we obtain
. N(r, b, 1) ) N(r,b,g) T(r,g ¢
— 1 SN T ded g » O, . ) 1=
6(b, £)=1 11rrna§ﬁup TCr ) 1 11r11ﬁswup

T(r,g) T(r, f) A

3 The case when D is a convex n+1—gon

In this section we consider the exponential curve f,= [, e2%, -+, """ ] where 2,, Ay, **, 2, are distinct
and vertices of a convex n+1—gon D. We number without loss of generality the vertices 4; (=1, -+, n+1) in
ascending sequence as one goes arround D in the positive direction. For convenience we put 4,=4; when
(n+1)1(g—1) for any integer q.

We use the following notations fori=1, 2, =--, n+1:

st =144, (A<p<n+1).

Particularly we put s{ =2/, and note that s} =0 (i =1, 2, -, n+1).
Further we note that for any integer ¢ and 1=1, 2, -, n+1

when (n+1)|(g—1), and we have the following relation.
stl=siTp (1<p<n). (5)

We have

n+1

£= ) L.
i=1

In this case, by Lemma 1

T(r, f) = (4/2m)r+0(1). 6)
For a vector = (a,, a,, **, a,.,) EC" '—{0} and fori=1, 2, -, n+1; =1, 2, -, n we say that a is of
(a> O-type lf a?n:'&() (m:]., ety n+1),
(b) (i, ) =type if a;=a; =" =a;;.,=0, 8, #0 (m#d, i+1, =, i+j=1),

where a,=a; when (n+1)|(g—1) for any integer ¢; and we write

a, for any 0-type vector and @) for any (i, j) —type vector.

From now on throughout this section we suppose without loss of generality that £/=1. From Lemma 2 and
the relation (6) we have the following

Proposition 1. (a) 6(a,, f,) =0;

(b) 6Cal, £)= ). by \—sl, GG=1,, nt1;j=1 -, n)
k=1
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(c) In particular 6(al, £)=1 (i=1, -, n+1).
Fora=(a,, -, a,.,)EC"""'— {0}, we put

a(0)={ila,=0 (1<i<n+1)}.

Lemma 3. Leta=(a, a,, ***, a,.;) be a vector in C"'— {0} satisfyinfg 6(a, £) >0. Then there exist vec-
tors aﬁ, an:: (k>1) such that

k
1) o(a, f) = 25(01{5’ IR

2) the sets al(0), -, a],:’;C(O) are mutually disjoint and a(0) = U;_,a/*(0).
Proof. By lemma 2-1), the set @(0) is not empty. Put

I={ila;,=0, a¢;_,#0; 1<i<n+1} and M={mla,_,=0, a,#0; 1<m<n+1}.
It is easy to see that #/=#M. Put #/=k>1. Let
I={i,<i,<-<i}) and M={m,<m,<-<m}.
(1) When ¢,<m,, it is easy to see that
1<, <my <y <mpy << <m <m+1
and
{ila;=0} = U;_ {i,, i,+1, -, i;+j.,—1}, (D

where j,=m,—1i, (v=1, =+, k).
(2) When m,<1{,, we have that

1<m, <1, <my<ipy<-<m<i<nt+l
and
{ila;=0} = U*_ {4, i,+1, -~ i,+7—1}, (8)

where j,=m,.,—i, (v=1, -, k—1) and j,=n+1+m,—i,.

From (7) or (8) it is easy to see that

ko4 ) k )
1) 6ta, f)= 2 () b ,—sk )= olak, £
v=1

v=1 u=0

2) afll(O), -+, @k(0) are mutually disjoint and @(0) = Uf:,a%(O).

For any XC C"™'— {0} in general position, we put as in Section 1,
X ={aeXl|é(a, f,) >0}.
Proposition 2. #X <n(n+1).
Proof. As X is in general position, we have the inequality
#la=(a, - a;, ", a,.)EX g, =0} <n
for any i=1, 2, .-, n+1, so that we have our proposition.

Theorem 1. Let d; be the number of vectors of (i+1, n)-typein X (i=1, -, n+1). Then, 0<d,<1 and

we have the inequality

n—1
Y oola, f)<n+1— ) (1—d)(4_,+4—s] ).
i=1

ac X’
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Proof. We have the following equalities for some non-negative integers x; (i n+li=1, -, n)

n—1 n
A= ) e, )= ) zlola), £ ©
acx* i=1j=1
by Lemma 3-1), and fori=1, -, n+1land p=1, -, n
n j—p
#{a:(ah - an-l)exv\ai:aiﬂ:"':ai'p—lz()} = Z Z T}y (10)
i=p k=0

by Lemma 3-2) since for eachi (1<i<n+1) andp (1<p<n)
{4, 41, i+tp—1} Cd_,(0) (G=p, -, m k=0, -, j—p).

-,n+1 and p=1, :-, n we have the inequalities

As X7 is in general position, for =1, -
#la=C, e, 0)EX la;=a;,,==a,_,.,=0} <n+1-p,
which imply with (10) that ] (i=1, -, n+1;j=1, -, n) must satisfy the following inequalities for
i=1, -, n+1:
j=p
(1

2 ix{,kgnﬂ—p (p=1, -, n).
=p k=0

As 6(aj, £) >0, from (9) and (1 ) for p=1, we have the inequality

i=1j=2 k=

nz {n— ), ]Z zl_)6(a;, £)+ Z ifcs(a £
= j=2k=0
i Z Z L U =5 )+ Z Z zi6(al, )
i=1 i=2k=0 i=1j=2
:Zn—nfz sil_"i ix{{Z(ﬁﬁk A ) nz i zis(dl, f)

1

since =77} £,=1, which is equal to

Zn—n Z Si — Z Z Z; {6(al,f)— Zuz PR P Sivk-1)} =E,.

i=1j=2
Here, by Proposition 1(b) for j < the equality
. it
o(a;, £,)— Z uiw—l‘f’fpk_silokﬂ)

Z(lz k— l+£1+k ﬁ'k*l)

Il
=
D~ 0

£1+k,—~1 z 1

'~ =
il
= o

zzkl Zgz?k zl

holds, so that we have

n+1 -2
E=2n—n Z s+ Z xi(s) +si—4—si )+ Z Zx{z St — Z O —si .}
i=1j7=3 =0
n+1 n nrl noj—
=on+(n— 2)2 s — Z{n—l =) Z LGl sh =) i +st ) — Z ) Z (sl s
j=3k=0 i=1 i=17=3k=0

+ Zl Z II{Z Siko1— Zo giAkAS}Z' }=E,.
i=1j= =

Assl +s!>4+s>, (i=1, -, n+1), by (11) for p=2, we have the inequality
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n+1l n+1 n n+1 n+1

E,<2n+(n— Z)Z s — Z(n—lwx - Z x_ ) (sl +8)— Z xr(h+st ) — Z i 2(3Z w1 tsD

j=38k=0 i=1 i=1

n+l n

+ Zl Z x]{z Sicko1— Zo Lix—sl-))

=2n+(n—2)z silf(nfl)f(n—l)fi s?

- Z IHZ Sz k-1 Z ﬁz Kk 1 17 Z(s‘k 1+sz-k)+ Z<£l k+sz*k 1)}
= A

=n+1+(n- 2)2 S; _(”*1)2 i+ i i‘r{ Z Sfko1— Z Si xS}

n+1 n+1 — ji—2
=n+1+(n— 2)2 s} —(n—l)z si+ Z 22 (st +si—s!—si )+ Z Z Z St — Z Si_i—Si )
i=1j= k= k=0
n j—3 n—1
=n+14+(n— Z)Z s+ (n— 3)2 S;i— Z{n 2—x} Z W (8P +shH— Z x}(si+si)
i=1 ]:4k:0 i=1

n—1 n—1

n j—3 n ji—2 —3 )
o .; 24 g Lt s Wt ZZ ;Sz k-1 Zo(sil'k—‘ﬁ—l)}EES'

Ass;+si>s)+s), (i=1, -, n+1), by (11) for p=3, we have the inequality

n—1 n—1 n —
Es<n+1+(n—2)) si+(n—3)) s?— Y {n—2-z2— ) Z ' (si+sE )
i—1 i=1 i=1 J=4k=0

n

—EI(S +s} 1)*22 Z(S,k1+8 k)+ZZx{Z Sikm1 isil'k_sﬁlfl}
k=0

i=1j=4 i=1j=

=n+1+(n—-3) Z si—(n—2) Z s}
i=1 i=1

n-1 n -2 j—3 i-3 j=3
j 2 1 7 2 2 1 3
+ Z Z rf{z Si—k—17 Z Si— kS~ Z(si—kAl+Si'k)+ Z(siAk+si-k )
i=1j=4 k=0 k=0 k=0 k=0
n—1 j—3

n—1 n—1 n ji—4
=n+l+(n=3)) si=(n=2) ) s'+ ) ¥ &l{} sl = ) stu—s D} =E.
i=1 3 i=1j=4 k=0 k=0

We put for 3<g<n—1
j=lg+1)

n—1 n-1 n-1 a i—q
Eqﬂ:n—IJr(n—q)Z s{ 1_<n_q+1)z si+ Z Z Z Si—k-17 sf:,:*sf,]}.
i=1 i=1j=qg— k=

Then, by the inequalities
statsi>siT sl (=1, n—1i=1,, n+1)
and by (11), we apply the mathematical induction to obtain the following inequalities
n+1
A<E <E,<-<E, <E,=n+1+ Z sPTE-2 Z sPE Y At (st s T s ),

i= i=1

which is equal to

n-1

n—1 n—1
n—1+ Z si+ L iyl —s! ) =n—1+ ) s+ ) d,(4_,+E—s))
i=1 i—1

since £/° s} '=%/_) £,=1and 2] =d,_,, so that 0<d,<1 by (11) for p=n.
As 2120 (4,_,+18) =2,
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n—1

n—1 n~1 n—1
n—1+ ) s+ ) di(l sl ) =n+1+ ) (1—d)s/ = X (1=d) i +4)
i=1 i=1 i=1 i=1
n—1
=n+1— Y (1—d) 4+ L4—s] ).
i=1

We complete the proof of our theorem.
Corollary 1. Suppose that D is a convex #+1—gon and Z 6(a, f,) =n+1. Then

acX’

XA: {alelv “.Yan*len*rl}v (aln'an'lio)'

4 The case when D is a segment

In this section we consider the exponential curve f,= [e'?, &%, -+, " ¥], where 2,, ***, 4,-, are distinct and
on a segment L. We number without loss of generality the points 4, (=1, -, n+1) as follows:

(i) The points A, and 2,_, are the endpoints of L.

(ii) The points 4; (j=1, -+, n+1) are in ascending sequence as one goes from 2, to 4,., on L.

For convenience for g€ Z we put 4,=2; when (n+1)|(g—1) for i=1, -, n+1.

We use the following notation for g€ 2Z: |4,—4,.,| =4, Recall that £=2|2,—2,.!.

We note that for g€ Z, £,=£, when (n+1)[(g—i) for i=1, -, n+1 and that £=37"14,. Then we have
i, 6,=4,_,=£¢/2. In this case, by Lemma 1

T(r, £)=4/27n)r+0(1). (12)

Lemma 4. Fora=(a,, a,, -, a,, a,.,) EC""'—1{0}, if 6(a, £,) >0, thena,=0or a,.,=0.
Proof. Suppose to the contrary thata,#0 and a,_;#0. Then, by Lemma 2-2), 6(a, £,) =0, which is a con-

tradiction. We have our lemma.

For a vector a= (a,, a,, ***, a,, a,.,) EC"'— {0}, we say that a is of
(i) (1, ) —type if a,=a,=-+=a;=0and a,#0 (G+1<m<n+1);
(ii) (n+1, /) —type if @,., =+ =a, , ;=0and a,#0 (1<m<n+1—j), where 1<j<n and we write

@, for any (1, j) —type vector and @, ., for any (n+1, j) —type vector.

From now on throughout this section we suppose without loss of generality that £=1. Then by Lemma 2 and
(12) we have the following
Proposition 3. Forj=1, =, n

(a) 6(d), £) =2 i 4 (b) 6(a)uy, £)=2 ) byoi i
k=1 k=1

Note that 8(a”, £) =6(a’_,, £)=14as T, f=1/2.
Fora=(a, -, a,.;) EC"'={0}, we put

a(®={ila,=0 (1<i<n+1)}.

Lemma 5. Leta=(a, a, . a, a,.,)=C"'—{0} satisfying 6(a, £,) >0.
(a) When @, =0, a, ,#0, there exists an integer j; (1<j, <n) satisfying

1) éCa, £)=06(a}, £) and 2) a(0)Da}(0).

(b) When a,#0, a,.,=0, there exists an integer j, (1 <j,<n) satisfying
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2)o(a, f)=6(a?.,, £) and 2) a(0)Da? (0
(c) When a,;=0, a,.,=0, there exists two integers i and j (1<1, j;i+j<n) satisfying

n+1"

1) 6(a, £,)=6(a}, £)+6(d,,,, £) and 2) a(0)Dai(0)Ua,.,(0), @ (0)Nal_,0)=g¢.

Proof. Note thata,=0or a,_,=0if §(a, f£,) >0 by Lemma 4.
(a) Let j, be the number satisfying a;=:=a;=0and a; ;#0 (1<j,<n). Then, by Lemma 2 and

Proposition 3(a)
j .
oa, £)=1-204; ., ++4,)=2 ) 4,=6(dl, f)
k=1
and we have 2) by Lemma 2-2).

(b) Let j, be the number satisfying @, , =" =ay.5-;,=0anda, ,_,#0 (1<j,<n). Then, by Lemma 2 and
Proposition 3(b)

n—j

j? .
6(a, f)=1-2 Z 4= Z Ly =0(aty, £)
k=1 k=1

and we have 2) by Lemma 2-2).
(c) Let ¢ be the number satisfying a,=-=a,=0and a,.,#0 (1<i<n—1) and j the number satisfying
@y ="=a,, ;=0and a,,_;#0 (1<j<n—1). As i+1<n+1—j, i+j<n. Then, by Lemma 2 and

Proposition 3
; j . _
6la, f)=1-204; \++4, )=2() 4+ ), £4,_, D=6} f)+6(a_,, f)
k=1 k=1
and we have 2) by Lemma 2-2).

Theorem 2. Let d; be the number of vectors of type ae; (a#0) in X~ (i=1,,n+1). Then, 0<d,<1
(i=1,--, n+1) and we have the inequality

Y 6(a, f)<n+1-2{(1—d)t,+(1—d, )4}

acX"
Proof. By Lemma 5, for some non-negative integers z;, ¥, (=1, -, n) we have the equalities

A= ) oa, £)= ) {z;6(d, £)+y,6(d,.,, £} (13)

acsXx” j=1

and forp=1,"-,n
tHa=(a,, 0, )DEX |la)==a,=0} = Zx]«, (14)
i=p

tla=(a, -, anA1>EX"an72fp:'“:anAl:0} = Z Y, (15)

i=p
since for eachp (1<p<n)

{10} Cd(0) (G=p,+, n) and {n+2—p,, n+1} Cal. ,(0) G=p,, n).
As X is in general position, we have the inequalities
#la=(a,, . a,. DEX lay==a,=0}<n+1-p
and
tla=(a,,a,.DEX la,, ,==a, =0} <n+1-p

forp=1,---, n, which imply with (13) and (14) that z; and y; (j=1,--, n) must satisfy the following inequalities

forp=1,---, n:

Yor<n+l-p (16)

i=p



LEBRTHERERE #53% (2001)

and
By Proposition 3 and (13) we obtain

By (16) and (17) for p =1 we have the inequality

2

j=2

n j J
=n(4,+4,)+ Z {z; Z bt y; Z Loy it
j=2 k=2 k=2

by (16) and (17) for p=2

n

n n 7 J
<n(h+0)+n—1— Y 2Dl (n—1— Y 4l + 1Az ) Lty ), boer i)
i j=3 k=2 k=2

j=3 j=3

n i J
=00+ 4)+ (=D Uyt £, D+ XAz Y. Bt Y; ) Ly i)
k=3 k=3

i=3

by using (16) and (17) for p =3, **+, n successively

p—1 n J J
< Z(n-‘-lfj)(ﬁj”rﬂnﬂ,,j)“‘ Z {1} Z £k+yj Z ‘gn+1—k}
j=1 i=p k=p

k=p

n

p—1 n
<Y 1= Ut Ly )+ (n+1-p— Yoz, +(n+l1—p— _ S oyl

j=1 j=p+1

+ Z {x Z £+ y; Z Lori—i)

j=p+1 k=

Z<n+1 DUl D+ Yz, Z bryy Z L =8, 0m

j=p+1 k=p+1

< Z<n+1—ﬁ(4+@‘hp+xg,+wa
j=1

_ntl
2

_fl(l_dJ'En(l*dnu)

since £,=d, 1, Y,=d, and

j=1

=

Z(n-i—l — )4+ Z(n—H Dy — =4,

= Y+ D hyy =4, =

j=1

We have our theorem.

We write e{ for any vector of type

ae;+--tae;,

n n n j j
Bcn= Y )= Y )t 2z Y Lty ) Lyerid
j=2 j=2 k=1 k=1

S 1= U+ ) = i (1= G+ by, )~y

= S il YD 00
=1 i=1

143

aan
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where 1 <i<j<n+1 and a, - a;#0.

Proposition 4. (a) e/ '=a' (2<i<n+1).

(b) ej=a;17 (1<j<n).

(c) oCel, £)=06(a", f)+6(arll . ) (2<i<j<n).

(d) (e, =1 (1<i<n+1).

Proof. It is trivial that (a) and (b) hold by the definitions of €/, &, and @ ,.
(c) By Lemma 2 and Proposition 3

s(el, f)=1-204++4_)

i—1 n
=2() 4+ ) L) =06(a", £)+6(a"} 7, £).
k=1 k=j
(d) As ei=ae; (a#0), it is trivial that 6(e}, £)=1.

Lemma 6. Suppose that,

Y o(a, f)=n+1. (18)

acx”
Then, for each a E X " one of the following cases holds:
(a) When a,=0 and a,.;#0, there exists an integer i (1<i<n) satisfying

.
a=el}

i+1-
(b) When a,#0 and a,.,=0, there exists an integer j (1<j<n) satisfying

+1-j
a=e/ .

(¢} When a,=0 and a,.,=0, there exist two integers i and j (1<1, j;i+7<n) satisfying
n+1—j

a=e;.,

Proof. We use the same notation as in the proof of Theorem 2. From (18), Theorem 2 and its proof we ob-

tain that d,=d,,; =1 and for p=1, -=-, n

If

yi=n+l—p

Ipgs ipegs
—
-
©
©

.

The solutions of (19) are as follows:

.TIZIQZ"':Z',,ZI and y1:y2:"':yn:1'
This implies that
Y 8(a, )= ).(6(d), £)+6(d,.., £))=n+1. (20)
asx* j=1

Let a=(a,, **, @,.;) be in X*. Then by Lemma 5 we have the followings.
(a) When a,=0 and a,,, #0, there exists an integer { (1<i<n) satisfying

6(a, £,)=06(a}, £,) and a(0)Dai(0)

from which we obtain the inequality

#a(0) >%a'(0) =1. (21)
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(b) When @, #0 and a,_, =0, there exists an integer j (1<j<n) satisfying

5(a, £)=06(d,_,, £) and a(0)>Da, ,(0)
from which we obtain the inequality
$a(0) >%a),,(0)=j. (22)
(¢) When a,=a,., =0, there exists two integers i and j (1<1, f;i+j<n) satisfying
8(a, £)=0(a, f)+6(d,_,, £) and a(0)Da\(0)Ud, (0), a'(0)Na],_(0)=¢
from which we obtain the inequality
%a(0) >%a'(0) +#a, . ,(0) =i+j. (23)
On the other hand as X~ is in general position we obtain the inequality

Y #a(0) <n(n+1) (24)

a=X"

as in the proof of Proposition 2. From (21) through (24) we obtain our lemma.

Corollary 2. Suppose that D is a segment and X, x-6(@, £,) =n+1. Then, X~ must coinside with one of the
following sets X, and X, (k=1,--+, n—1) when they are in general position.
(D) Xo={ellj=1, -, n}Ule i=2, -, nt1}.

(1) For any integer k (1<k<n—1) and any integers i, =", i j;, =, j, satisfying the conditions
(i) 2<i,<iy<-<iy<nm, (ii) f,, =, ji are distinct and (iii) 2<7,<j,<n (v=1, -+, k),
X,=l{el1<j<n; j#5, - jd Uler 12<i<n+1; i#iy, -, i Ule}lv=1, k}.

Proof. We have only to see that for k=0, 1, -, n—1

Y o6(a, f)=n+1.

ac X,
n n—1 n n—1
(1 Y e, )= 6e, £+ 3 (el ) =2 ) (hy+-+4)+2 ), (4++0, )
j=1 i=2 ji=1 i=2

ac X,

=242 ) (4, ++L4)=n+1.
ji=2

n k n-1 k
(1) ) ola, £)=2 ) (4 t6) =2 ) (= +0,)+2 PRCEEYANES Yyt )

a= X,
k k
+2 ) ()2 Y (Gt )
y=1 v=1

= Z 6Ca, f,)=n+1.

a=X,

Example. 1) The set X, ,={el|i=1, --, n+1} is in general position.
2) One of X, ,: In (II) of Corollary 2, for k=n—2, put {,=v+1, j,=v+2 (v=1, -, n—2). Then, we obtain
the set

I 2 3 4 n -1 n-1
{e|, e e ey, ", e, 1,6, €,

which is in general position.
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